Week 9: Chap.20 (Gamma ray) Backgrounds

Other Semiconductors and Geometries

(Gamma ray) backgrounds ...

- -- Natural radioactivities
- --- spectra properties and shielding
- -- Cosmic rays
- --- imaging

Neutron detection

MICHIGAN STA

Hey dude, what's that in the background?

© DJMorrissey, 2019

Chap. 20 – Background & Shielding

Nuclide	T 1/2	Source		
²³⁵ U	7x10 ⁸ yr	0.72% of all natural uranium		
²³⁸ U	4x10 ⁹ yr	99.2745% of all natural uranium; 0.5 to 4.7 ppm total		
		uranium in the common rock types		
²³² Th	1.41 x 10 ¹⁰ y	1.6 to 20 ppm in the common rock types with a crustal		
		average of 10.7 ppm	70 ka n	
²²⁶ Ra	1.60 x 10 ³ yr	0.42 pCi/g (16 Bq/kg) in limestone and 1.3 pCi/g (48	/ 0 kg person	
²²² Rn	3.82 days	Noble Gas; annual average air concentrations range in the	Nuclide	Activity
		US from 0.016 pCi/L (0.6 Bq/m ³) to 0.75 pCi/L (28Bq/m ³)	U : 90 µg	1.1 Bq
⁴⁰ K	1.28 x 10 ⁹ yr	soil - 1-30 pCi/g (0.037-1.1 Bq/g)	Th : 30 µg	0.11 Bq
¹⁴ C	5730 yr	Cosmic-ray interactions, ¹⁴ N(n,p) ¹⁴ C , 6 pCi/g (0.22 Bq/g) in organic material	Ra : 31 pg	1.1 Bq
³ H	12.3 yr	Cosmic-ray interactions with N and O, spallation from	⁴⁰ K : 17 mg	4.4 kBq
		cosmic-rays, $^{\circ}L_{1}(n, alpha)^{3}H$, 0.032 pCi/kg (1.2 x 10 ⁻³ Bq/kg)	$^{14}C:22 ng$	3.7kBq
http://www.physics.isu.edu/radinf/natural.htm			³ H : 60 fg	37 Bq

© DJMorrissey, 2019

http://meteo.nipne.ro/logger/lastweek.html

²³²Th spectrum .. The ²⁰⁸Pb line

²³²Th (4n series) spectrum with a small CdWO₄ survey device

²³²Th (4n series) spectrum with a small NaI(Tl) survey device

MICHIGAN STATE

Th on Mars ... Odyssey Mission

The gamma-ray spectrometer was provided by the Univ. of Arizona. The gamma ray detector is a large (1.2 kg) high-purity Germanium (Ge) crystal. The crystal is held at a voltage of approximately 3000 volts. Little or no current flows (less than one nanoAmp)... The cooler has a door which opens in flight, exposing a radiator, allowing the sensor to cool to below 90 Kelvin for science data collection. The thermal shield and door are needed to allow us to periodically warm up the sensor head to 100 Celsius to anneal radiation damage to the crystal. ... most elements to be determined with a precision of about 10%.

Source of γ's? Decay plus nuclear excitation by Cosmic Rays <u>https://grs.lpl.arizona.edu/content/about/gamma</u>

PIA04257: Map of Martian Thorium at Mid-Latitudes

Produced By: University of Arizona

Full-Res TIFF: PIA04257.tif (2.505 MB)

Full-Res JPEG: PIA04257.jpg (174.9 kB)

Background & Shielding: Singles

MICHIGAN STATI

Background & Shielding: Coincidence

 $\Delta t \sim 10^{-8}$ s is typical 'fast' coincidence for modern experiments .. except for Ge detectors.

Background: Cosmic Rays

10^{4} Flux $d\Phi/dE \times E^{2.5}$ [m⁻² s⁻¹ sr⁻¹ GeV^{1.5}] **KNEE** direct JACEE RUNJOB AGASA SOKOL 10³ Akeno 20 km² Grigorov Akeno 1 km² AUGER ⊕ HiRes/MIA O BLANCA KASCADE (e/m QGSJE1 CASA-MIA KASCADE (e/m SIBYLL) 10^{2} DICE BASJE-MAS KASCADE (h/m) EAS-Top ទី KASCADE (nn) # Fly's Eve Ø MSU Haverah Park л Mt. Norikura ¥ SUGAR 🖈 Haverah Park Fe 10 🖈 Haverah Park p ⊗ Tibet ASγ ⊗ Tibet ASγ-III HEGRA V Tunka-25 ⊕ HiRes-I ∦ ^{Yakutsk} ⊕ HiRes-II 10⁹ 1011 10^{4} 105 10^{6} 10^{7} 10^{8} 1010 Energy E [GeV] (heavy charged particles and ions) UPPER ATMOSPHERE SECONDARIES up to (mu-mesons, pi-mesons, 100's of neutrons, electrons, MeV positrons, ...) ~2 particles $dE/dx \sim 1.5 \text{ keV} / \text{mg/cm}^2$ cm²- min. © DJMorrissey, 2019

Scaled distribution at the top of the atmosphere

MICHIGAN STA

 $\sim \cos^2 \Theta$ angular distribution

R. Chartrand, et al. LANL

Background: Cosmic Ray Radiography

K.N. Borodzin, et al. Nature 422 (2003) 277

(b) LANK

1" Pb-stock, 10⁵ muons Q: How long did it take?

See also early work: <u>Search for Hidden Chambers in the Pyramids</u>, L. Alvarez, et al. Science **167** (1970) 832. Recent work: <u>Cosmic Ray Radiography of the Damaged Cores of the Fukushima Reactors</u>, K. Borozdin, et al., Phys. Rev. Lett. **109** (2012) 152501 (6 week measurement proposed) © DJMorrissey, 2019

Chap. 20 – Background & Shielding Question

- Problem 20.1 One potential source of background counts from sodium iodide scintillators is ⁴⁰K from trace level potassium impurity in the crystal [both K and Na are Group 1 alkali metals].
- a) Find the maximum potassium concentration (in ppm) if the corresponding background rate from a 7.62 x 7.62 cm cylindrical crystal is to not exceed 1 cps.
- b) What is the approximate counting rate from cosmic rays in this crystal?

© DJMorrissey, 2019

Chap. 20 – Background & Shielding Question

Problem 20.1 – One potential source of background counts from sodium iodide scintillators is ⁴⁰K from trace level potassium impurity in the crystal [both K and Na are Group 1 alkali metals].

MICHIGA

a) Find the maximum potassium concentration (in ppm) if the corresponding background rate from a 7.62 x 7.62 cm cylindrical crystal is to not exceed 1 cps.

$$\begin{split} N_^{40}K &= A/\lambda = 1 \text{c/s} \ / \ [\ln(2) \ / \ (1.27 \text{x} 10^9 \text{yr} * \ 3.15 \text{x} 10^7 \ \text{s/yr})] \\ N_^{40}K &= 5.77 \text{x} 10^{16} \end{split}$$

```
N_K = N_{40}K / 0.0001167 = 4.95 \times 10^{20}
```

```
N_NaI = N_A * Vol * density / MM
= 6.022x10<sup>23</sup> /mol * (44.6*7.54 cm<sup>3</sup>) * 3.67 g/cm<sup>3</sup> / (23+127g/mol)
= 4.95x10<sup>24</sup>
```

```
N_K / N_NaI < 4.95 \times 10^{20} / 4.95 \times 10^{24} = 9.99 \times 10^{-5} or ~100ppm
```

```
Probably should divide by 2 for "per atom"
© DJMorrissey, 2019
```

Chap. 20 – Background & Shielding Question

- Problem 20.1 One potential source of background counts from sodium iodide scintillators is ⁴⁰K from trace level potassium impurity in the crystal [both K and Na are Group 1 alkali metals].
- a) Find the maximum potassium concentration (in ppm) if the corresponding background rate from a 7.62 x 7.62 cm cylindrical crystal is to not exceed 1 cps.
- b) What is the approximate counting rate from cosmic rays in this crystal?

Lower limit if upright:

area of end = $\pi (7.54 / 2)^2 = 44.6 \text{ cm}^2 \dots \text{Rate} - \text{Area x } 2/\text{cm}^2/\text{min} = 89/\text{min}$

(probably should really integrate over angle but that is certainly more complicated)