Week 12: Chap. 18a Analysis (Acronym Day)

Pulse Processing

Analysis, A \& T to D
-- Conversion time
-- Linearity
-- ADC types
--- Flash ADC
--- Sub-ranging
--- Successive Approximation
--- Wilkinson Ramp
-- Time to Digital

Analysis, Multidimensional DAQ

ND Nuclear Data ND570 ADC Industrial NIM BIN Plug-In Module

Chap 18a - V/Q/T to Digital

Final step in traditional pulse processing: convert analog (V) signal into a digital word.
[Third step in Digitial DAQ (detector, preamp, A to D Conversion)]
The input signal can be a voltage, charge, or time difference and is compared to a reference voltage (or charge) by a variety of techniques. The choice of comparison circuit (procedure) generally determines:

Resolution, Non-linearity (integral and differential), and Conversion time
Resolution: the resolution of an ADC is specified in terms of both the (voltage) range and the digital range (number of bits, N).

The voltage associated with the least significant bit (LSB), $\mathrm{V}_{\mathrm{LSB}}=\left(\mathrm{V}_{\max }-\mathrm{V}_{\min }\right) / 2^{\mathrm{N}}$
Perfect device sorts the data into 2^{N} bins of equal width $=1 \mathrm{~V}_{\text {LSB }}$

Example: V range $=0$ to 0.5 V , 4-bit ADC

$$
\mathrm{N}=4,2^{\mathrm{N}}=16 \quad \mathrm{~V}_{\mathrm{LSB}}=0.03125
$$

Peak in bin \#:
Decimal: 12 Binary: 1100, Hexadecimal: C
(C) DJMorrissey, 2 o 19

Analog to Digital: conversion time

The input circuit can sometimes scale the input voltage signal into the accepted range. The number of bins and the conversion time (or input rate limit) are generally linked. The following table is from the manufacturer Analog Devices (www.analog.com) Precision and General Purpose ADC Finder High-Speed ADC Finder

SPS - samples / second
The algorithm used to convert the signal is generally correlated with the speed and resolution. Most modern devices (for sound, etc. processing) are used in a nearly continuous mode, rather than in a pulse processing mode.

Typical Nuc Phys Hi Res device $13 \mathrm{~b} / 6 \mu \mathrm{~s} \sim 2 \times 10^{6} \mathrm{~b} / \mathrm{s}$ Typical "digital electronics" device $12 \mathrm{~b} @ 100 \mathrm{MHz} \sim 1 \mathrm{x} 10^{9} \mathrm{~b} / \mathrm{s}$
© DJMorrissey, 2019

Analog to Digital: aside on ADC history

Figure of Merit is Power (pJ) "on Chip" needed to process event

$$
10^{-15} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}=6.2 \times 10^{3} \mathrm{eV}
$$

DSM - Delta-Sigma Modulation
Nyquist - frequency sampling device

Analog to Digital: aside on signal size

Power (pJ) "on Chip"
needed to process event

Presently a "plateau" near:
$10^{-12} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}=6.2 \times 10^{6} \mathrm{eV}$
"Effective Number of Bits"

$$
=\log _{2}\left[\mathrm{~V}_{\text {FullScale In }} /\left(\mathrm{f} * \mathrm{~V}_{\text {ADC-RMS-Noise }}\right)\right]
$$

Thermal slope from shot-noise variation with power Walden slope is an empirical rule.

Analog to Digital: Linearity

The devices are expected to be linear - thus the small deviations are quoted in terms of the integral and differential non-linearity (INL \& DNL).

$$
\text { INL }=\left[\left(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{0}\right) / \mathrm{V}_{\mathrm{LSB}}\right]-\text { DataWord }
$$

See alternate version:
Fig. 18.6 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.

Analog to Digital: Linearity

The devices are expected to be linear - thus the small deviations are quoted in terms of the integral and differential non-linearity (INL \& DNL).

Analog to Digital: Flash ADC

A Flash ADC is the fastest device: the input is compared to a set of reference voltages simultaneously. Uniform conversion time.
Hardware intensive: 2^{N} comparators
Nonlinear: resistor chain \& comparators can vary
Use in nuclear physics growing, digital signal recording of the pulse waveform (aka: trace)

Fig. 17.31 Knoll, $3^{\text {rd }}$ Ed. 17.42 in $4^{\text {th }}$ Ed.

Analog to Digital: sub-ranging ADC

Caution: Example is not Binary Encoding

© DJMorrissey, 2019

A sub-ranging ADC compares the input signal to the voltage on a resistor chain using several banks of comparators in sequence.

Uniform conversion time.
Hardware requires switching banks several comparators
Linearity \& Resolution again limited by resistor chain and comparators

Example with Binary Output (16 resistors in chain):
$\mathrm{V}_{\mathrm{LSB}}=2 \mathrm{~V} / 16$ bits $=0.125 \mathrm{~V}$
0.8 V (2 V range) $\rightarrow 40 \%$ (FS is 2^{4})
$0.4 * 16=6.4$, expect $6_{\text {decimal }}=0110_{\text {binary }}$
Alternate device determines the upper range and then subtracts it away with a DAC signal ... 15 comparators in the subranging ADC to process the signal compared to 2^{8} comparators in an 8 -bit flash ADC.

Analog to Digital: successive approximation

DAC
output

A successive-approximation ADC compares the input signal to a digitally generated signal (usually) starting at the midpoint of the range.

Analog to Digital: successive approximation

A successive-approximation ADC compares the input signal to a digitally generated signal (usually) starting at the midpoint of the range.

Uniform conversion time.
Hardware requires accurate DAC Linearity: one comparitor and one DAC Resolution usually limited by DAC

Very common in nuclear physics but not for the highest resolution systems.

Analog to Digital: Wilkinson Ramp ADC

The input signal is stored as a charge on a capacitor that is discharged by a constant current source with a clock (100 up to 400 MHz)

See alternate version:
Fig. 18.8 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.

Variable conversion time.
Linearity: one comparitor but stretcher Input rate limited by clock rate

Used for highest resolution devices in nuclear physics, i.e., Ge detectors.

$8192 / 400 \mathrm{MHz} \sim 20 \mu \mathrm{~s}$

Analog to Digital: the Gatti Register

The highest resolution ADC's generally over-sample the signal using a technique based on the "Gatti Register" or sliding-scale register [Cottini, Gatti, \& Svelto NIM 24(1963)241] to improve the differential non-linearity by averaging the response of the ADC. The idea relies on application to large sets of measurements of the same signal (e.g., peaks in spectra). There is no free lunch, the averaging results in a loss of some dynamic range.

One example of many variations:

R.Bassini, et al. (InFN-Milano)

See alternate version:
Fig. 18.10 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.
Example: $2^{12}=4096$ channels
$2^{8}=256$ channels
Values in range 3840-4096 not valid!
-The counter contains a random number and generates a voltage that is added to the input voltage. -The analog signal is converted to a larger number but the value of the counter is then subtracted. -The counter is incremented before the next pulse.

The net effect for many pulses is to smear out the DNL.
N.B. The voltage step of each bit in the DAC must be exactly equal to the step size (LSB) in the ADC.

Analog to Digital: time to digital

Time differences are recorded in two ways:
-Creation of an amplitude signal from the time difference followed by a "normal" ADC

Phillips Scientific 7186

-Counting clock pulses between start/stop signals - generally limited to $\Delta \mathrm{t}=1 \mathrm{~ns}$ or poorer resolution, can read multiple hits before \& after start (with appropriate logic) AKA - multihit TDC

Chap. 18a - Analog to Digital: question
Problem 18.11 - The following data is part of a gamma-ray pulse height spectrum. It can be assumed that the data consist of a constant background plus a Gaussian peak.
a) Plot the data, estimate the constant background level, find the net number of counts, estimate the centroid and FWHM.
b) Fit the data with a Gaussian function ...

Ch No Cts
711238
$712 \quad 241$
Problem 18.10 - Plot the second derivative of .. (the data).
713219
714227
715242
716280
717409
$718 \quad 736$
7191190
7201625
$721 \quad 1739$
7221412
723901
724497
725308
$726 \quad 256$
$727 \quad 219$
728230
(C) DJMorrissey, 2019

Chap. 18a - Analog to Digital: question

Problem 18.11 - The following data is part of a gamma-ray pulse height spectrum. It can be assumed that the data consist of a constant background plus a Gaussian peak.
a) Plot the data, estimate the constant background level, find the net number of counts, estimate the centroid and FWHM. [N.B. this was done by the computer for you in PS\#3]
b) Fit the data with a Gaussian function ...

Problem 18.10 - Plot the second derivative of .. (the data).

$$
\begin{aligned}
& \overline{\text { Centroid }}=\sum_{711}^{728} N_{i} * i / \sum_{711}^{728} N_{i} \\
& \text { Width }^{2}=\sum_{711}^{728}(i-\overline{C h})^{2} N_{i} / \sum_{711}^{728} N_{i}
\end{aligned}
$$

© DJM

Chap. 18a - Analog to Digital: question, too

Estimate the minimum conversion time for an Ortec AD811 ADC to convert a 1 V pulse.

The AD811 Octal ADC contains eight peak-measuring analog-to-digital converters packaged in a single-width CAMAC module. The instrument is designed to measure positive unipolar or bipolar signals from nuclear shaping amplifiers in the range of 0 to +2 V . The device uses the Wilkinson technique with a 50 MHz clock. The AD811 provides 1 mV resolution with a range of 11 bits (2047 counts) and a 12th bit is included in each of the eight data registers for overflow detection.

Chap. 18a - Analog to Digital: question, three

What is $\mathrm{V}_{\mathrm{LSB}}$ and the conversion time per bit for an Ortec $A D 413 A$ ADC ?
The $A D 413 A$ ADC contains four peak-measuring analog-to-digital converters packaged in a double-width CAMAC module. The instrument is designed to measure positive signals from shaping amplifiers in the range of 0 to +10 V . The device uses the successive approximation technique with a $6 \mu \mathrm{~s}$ conversion time for 13 bits.

