# Week 11: Chap. 16a Pulse Processing

Fast Neutron Detection

Pulse Processing (passive)

-- Signal shape

-- Cable properties

--- connecters

--- impedance

-- CR, RC filters

Pulse Processing (active)



MICHIGAN STATE

#### Pulse Processing: overview

Fig. 16.1 Knoll, 4<sup>th</sup> Ed.



Fig. 16.2 Knoll, 4th Ed.



© DJMorrissey, 2019

MICHIGAN STATE



## Pulse Processing: cables

#### Twisted pairs – "differential" signals, analogue or logic



Coaxial conductor/shield – signal on the "center"

Each configuration has a RG/U name with a characteristic capacitance and inductance per unit length, and an impedance (with a negligible resistance).  $d^2V = \omega^2 L C V$ 



 $\begin{array}{cccc} V(x) & V(x+\Delta x) \\ I(x) & L_0 \Delta x & I(x+\Delta x) \\ \hline C_0 \Delta x & \underline{I} & \underline{I} & \underline{I} & \underline{I} & \underline{I} & \underline{I} \\ \hline \end{array}$ 

$$dx^{2} = Ae^{jkx} + Be^{-jkx} \quad k^{2} = \omega^{2}L_{0}C_{0}$$

$$v = \frac{\omega}{k} = \frac{1}{\sqrt{L_0 C_0}}$$
$$Z_0 = \sqrt{\frac{L_0}{C_0}}$$

for coax  $C_0 = 2\pi\varepsilon / \ln(r_2/r_1)$   $L_0 = (\mu/2\pi) \ln(r_2/r_1)$ 

#### Pulse Processing: some connectors

#### <u>http://www.cdint.com/catalog/model/CC-B</u> <u>https://www.amphenolrf.com/connectors/bnc.html</u>

"BNC is an acronym for Bayonet Neill-Concelman, after Paul Neill of Bell Labs (inventor of the N connector) and Amphenol engineer Carl Concelman (inventor of the C connector). BNC is often erroneously expanded to "Baby Neill-Concelman", "Baby N connector", "British Naval Connector", "Bayonet Nut Connector", "Bayonet Network Connector", "Barrel Nut Connector", "Bayonet N-type Compact", "Berkeley Nucleonics Corp." ...

"This connector has a characteristic impedance of 50 ohms, and needs to be mated with 50 ohm coaxial cable in order to prevent signal loss, noise, and/or transmitter damage due to signal reflections at the point of mismatch. 50 ohm coax cable, connectors, and adapters are commonly used in co-ax wifi cables (old school, 802.11 wireless LAN) antennas, ham transceivers, and other radio frequency (RF) analog and digital signaling, microwave, radar, hi-fidelity professional audio, non-destructive testing (NDT), oil and petroleum production, ultrasonic transducers, accelerometers, strain gauges, and some professional video applications."

LEMO documentation

http://www.lemo.com/en/documentation

(Léon Mouttet)









to

LEMO

**BNC** 





### Pulse Processing: impedance matching



- •Open circuit ..  $Z_L \sim \infty$ •Short circuit ..  $Z_L = 0$
- •Match circuit ..  $Z_L = Z_0$

<u>Match</u> to get maximum transmission to load (S/N), minimize reflections (ringing), maintain signal shape.

<u>Don't Match</u> to minimize transmission .. Weak signals into high impedance loads or low power sources (but must use short cables).

### Pulse Processing: simplest manipulations



Voltage divider (recall PMT base)



Fig. 16.5 Knoll, 3<sup>rd</sup> Ed. 16.8, 4<sup>th</sup> Ed.





Signal Inverter



All loads must be present, or else see previous discussion about reflections!

#### Pulse Processing: CR circuit

# MICHIGAN STATE



The differentiator (when  $\tau$  is small, "fast" electronics) .. Should remove low frequency components and is called a "high-pass" filter.

#### Pulse Processing: RC circuit



Fig. 16.9 Knoll, 3<sup>rd</sup> Ed.



The integrator (when  $\tau$  is large, "slow" electronics) .. Should remove high frequency components and is called a "low-pass" filter.

#### Pulse Processing: Cable Properties

$$v = \frac{\omega}{k} = \frac{1}{\sqrt{L_0 C_0}}$$
$$Z_0 = \sqrt{\frac{L_0}{C_0}} \to Z_0^2 C_0 = L_0$$
$$v = \frac{\omega}{k} = \frac{1}{\sqrt{Z_0^2 C_0^2}} = \frac{1}{Z_0 C_0}$$

A velocity has dimensions of ( length / time) The time depends on the length of the real cable. Some example properties from Belden Cables:

|     | 58 /U                 | 59 /U     | 213/U     | 316 /U    |
|-----|-----------------------|-----------|-----------|-----------|
| Zo  | 50 Ω                  | 75        | 50        | 50        |
| Со  | 24.3 pF/ft            | 16.3      | 30.8      | 29        |
| Lo  | 0.064 µH/ft           | 0.107     | 0.077     | 0.067     |
| v/c | 0.77                  | 0.83      | 0.66      | 0.695     |
| τ   | 1.2 ns/ft<br>(4 ns/m) | 1.3 ns/ft | 1.5 ns/ft | 1.4 ns/ft |

#### Pulse Processing: Cable Consequences

$$v = \frac{\omega}{k} = \frac{1}{\sqrt{L_0 C_0}}$$
$$Z_0 = \sqrt{\frac{L_0}{C_0}} \to Z_0^2 C_0 = L_0$$

A velocity has dimensions of ( length / time) The time depends on the length of the real cable. Some example properties from Belden Cables:





#### Pulse Processing: Question



Compare the output of a preamp step-function pulse that passes through a 1m Beldin RG-58/U cable to that from passing through 50 m of the same cable. Use the Fermi function with a=1,  $t_0=10$ ,  $\tau = 4$  ns/m, and t in ns.

$$f(t) = 1/(1 + e^{-(t-to)/a})$$

#### Pulse Processing: Answer

MICHIGAN STAT



Compare the output of a preamp step-function pulse that passes through a 1m Beldin RG-58/U cable to that from passing through 50 m of the same cable. Use the Fermi function with a=1,  $t_0=10$ ,  $\tau = 4$  ns/m, and t in ns.

