Week 11: Chap. 16a Pulse Processing

Pulse Processing (passive)

-- Signal shape
-- Cable properties
--- connecters
--- impedance
-- CR, RC filters

Pulse Processing (active)

Big RIPS Electronics

Pulse Processing: overview

Fig. 16.1 Knoll, $4^{\text {th }}$ Ed.

Fig. 16.2 Knoll, $4^{\text {th }}$ Ed.

Chap. 16a - Pulse Processing

Fig. 4.1 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.

Leading or Falling edge Rise or Fall time - 10:90\%
(Uni or Bipolar // Analog or Digital)
© DJMorrissey, 2019

Fig. 11.1 Leo, $2^{\text {nd }}$ Ed.

Pulse Processing: cables

Twisted pairs - "differential" signals, analogue or logic

Coaxial conductor/shield - signal on the "center"
Each configuration has a RG/U name with a characteristic capacitance and inductance per unit length, and an impedance (with a negligible resistance).

$$
\begin{aligned}
& \frac{d^{2} V}{d x^{2}}=-\omega^{2} L_{0} C_{0} V \\
& V=A e^{j k x}+B e^{-j k x} \quad k^{2}=\omega^{2} L_{0} C_{0} \\
& \nu=\frac{\omega}{k}=\frac{1}{\sqrt{L_{0} C_{0}}} \\
& Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}
\end{aligned}
$$

$$
I(x) L_{0} \Delta x I(x+\Delta x)
$$

$$
c_{0} \Delta x \text { I } \quad \underset{I}{I} \quad \underset{I}{I}
$$

Pulse Processing: some connectors

http://www.cdint.com/catalog/model/CC-B

https://www.amphenolrf.com/connectors/bnc.html
"BNC is an acronym for Bayonet Neill-Concelman, after Paul Neill of Bell Labs (inventor of the N connector) and Amphenol engineer Carl Concelman (inventor of the C connector). BNC is often erroneously expanded to "Baby Neill-Concelman", "Baby N connector", "British Naval Connector", "Bayonet Nut Connector", "Bayonet Network Connector",
"Barrel Nut Connector", "Bayonet N-type Compact", "Berkeley Nucleonics Corp." ...
"This connector has a characteristic impedance of 50 ohms, and needs to be mated with 50 ohm coaxial cable in order to prevent signal loss, noise, and/or transmitter damage due to signal reflections at the point of mismatch. 50 ohm coax cable, connectors, and adapters are commonly used in co-ax wifi cables (old school, 802.11 wireless LAN) antennas, ham transceivers, and other radio frequency (RF) analog and digital signaling, microwave, radar, hi-fidelity professional audio, non-destructive testing (NDT), oil and petroleum production, ultrasonic transducers,
 accelerometers, strain gauges, and some professional video applications."

LEMO documentation

LEMO to BNC

Pulse Processing: impedance matching

Fig. 16.4 Knoll, $3^{\text {rd }}$ Ed.

What happens if: ?

$$
\begin{aligned}
& I_{\text {Inc }}+I_{\text {refl }}=I_{L} \\
& V_{\text {Inc }}+V_{\text {refl }}=V_{L} \\
& V_{\text {refl }}=-I_{\text {refl }} Z_{0}
\end{aligned}
$$

$$
\rightarrow \frac{V_{\text {refl }}}{V_{\text {Inc }}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$$
\frac{V_{L}}{V_{\text {Inc }}}=\frac{2 Z_{L}}{Z_{L}+Z_{0}}
$$

- Open circuit .. $\mathrm{Z}_{\mathrm{L}} \sim \infty$
- Short circuit .. $\mathrm{Z}_{\mathrm{L}}=0$
- Match circuit .. $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$

Match to get maximum transmission to load (S / N), minimize reflections (ringing), maintain signal shape.
Don't Match to minimize transmission .. Weak signals into high impedance loads or low power sources (but must use short cables).

Pulse Processing: simplest manipulations

Voltage divider (recall PMT base)

$$
\begin{aligned}
& \text { Attenuation } \alpha=V_{\text {out }} / V_{\text {in }} \\
& \mathrm{R}_{1}=\mathrm{R}_{0} \alpha-1 / \alpha+1 \\
& \mathrm{R}_{2}=\mathrm{R}_{0} 2 \alpha / \alpha^{2}-1
\end{aligned}
$$

Fig. 16.5 Knoll, $3^{\text {rd }}$ Ed.

$$
16.8,4^{\text {th }} \mathrm{Ed} .
$$

Signal splitter: $\mathrm{R}=\mathrm{R}_{0} / 3$

Fig. 16.6 Knoll, $3^{\text {rd }}$ Ed $16.9,4^{\text {th }}$ Ed..

Fig. 16.7 Knoll, $3^{\text {rd }}$ Ed.

$$
16.104^{\text {th }} \text { Ed. }
$$

All loads must be present, or else see previous discussion about reflections!

Pulse Processing: CR circuit

Fig. 16.9 Knoll, $3^{\text {rd }}$ Ed.

$$
V_{\text {in }}=\frac{Q}{C}+V_{\text {out }} \quad(C \text { is constant })
$$

$\frac{d V_{\text {in }}}{d t}=\frac{1}{C} \frac{d Q}{d t}+\frac{d V_{\text {out }}}{d t} \quad \frac{d Q}{d t}=i=V / R$
$\frac{d V_{\text {in }}}{d t}=\frac{V_{\text {out }}}{R C}+\frac{d V_{\text {out }}}{d t} \quad \tau=R C$
$\tau \frac{d V_{\text {in }}}{d t}=V_{\text {out }}+\tau \frac{d V_{\text {out }}}{d t}$

$$
V_{o u t} \approx \tau \frac{d V_{i n}}{d t} \quad \text { for small } \tau
$$

$$
\begin{aligned}
& \tau \frac{d V_{\text {out }}}{d t} \approx \tau \frac{d V_{\text {in }}}{d t} \quad \text { for large } \tau \\
& V_{\text {out }} \approx V_{\text {in }}
\end{aligned}
$$

The differentiator (when τ is small, "fast" electronics)
.. Should remove low frequency components and is called a
"high-pass" filter.

Pulse Processing: RC circuit

Fig. 16.9 Knoll, $3^{\text {rd }}$ Ed.

$$
\begin{aligned}
& V_{\text {in }}=i R+V_{\text {out }} \\
& i=\frac{d Q}{d t}=C \frac{d V_{\text {out }}}{d t} \quad(\text { on capacitor })
\end{aligned}
$$

$$
V_{\text {in }}=R C \frac{d V_{\text {out }}}{d t}+V_{\text {out }}
$$

$$
V_{\text {in }}=\tau \frac{d V_{\text {out }}}{d t}+V_{\text {out }}
$$

$$
\frac{V_{i n}}{\tau} \approx \frac{d V_{o u t}}{d t} \rightarrow \frac{1}{\tau} \int V_{i n} d t \approx V_{o u t}
$$

$$
V_{\text {out }} \approx V_{\text {in }} \text { for small RC }
$$

The integrator (when τ is large, "slow" electronics)
.. Should remove high frequency components and is called a
"low-pass" filter.
(C) DJMorrissey, 2019

Pulse Processing: Cable Properties

$$
\begin{gathered}
v=\frac{\omega}{k}=\frac{1}{\sqrt{L_{0} C_{0}}} \\
Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} \rightarrow Z_{0}^{2} C_{0}=L_{0} \\
v=\frac{\omega}{k}=\frac{1}{\sqrt{Z_{0}^{2} C_{0}^{2}}}=\frac{1}{Z_{0} C_{0}}
\end{gathered}
$$

A velocity has dimensions of (length / time) The time depends on the length of the real cable. Some example properties from Belden Cables:

	$58 / \mathrm{U}$	$59 / \mathrm{U}$	$213 / \mathrm{U}$	$316 / \mathrm{U}$
Zo	50Ω	75	50	50
Co	$24.3 \mathrm{pF} / \mathrm{ft}$	16.3	30.8	29
Lo	$0.064 \mu \mathrm{H} / \mathrm{ft}$	0.107	0.077	0.067
v / c	0.77	0.83	0.66	0.695
τ	$1.2 \mathrm{~ns} / \mathrm{ft}$ $(4 \mathrm{~ns} / \mathrm{m})$	$1.3 \mathrm{~ns} / \mathrm{ft}$	$1.5 \mathrm{~ns} / \mathrm{ft}$	$1.4 \mathrm{~ns} / \mathrm{ft}$

Pulse Processing: Cable Consequences

$$
v=\frac{\omega}{k}=\frac{1}{\sqrt{L_{0} C_{0}}}
$$

$$
Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} \rightarrow Z_{0}^{2} C_{0}=L_{0}
$$

A velocity has dimensions of (length / time) The time depends on the length of the real cable. Some example properties from Belden Cables:

$$
v=\frac{\omega}{k}=\frac{1}{\sqrt{Z_{0}^{2} C_{0}^{2}}}=\frac{1}{Z_{0} C_{0}}
$$

Pulse Processing: Question

Electronics in the vault or not?

Compare the output of a preamp step-function pulse that passes through a 1 m Beldin RG-58/U cable to that from passing through 50 m of the same cable. Use the Fermi function with $\mathrm{a}=1, \mathrm{t}_{0}=10, \tau=4 \mathrm{~ns} / \mathrm{m}$, and t in ns .

$$
f(t)=1 /\left(1+e^{-(t-t o) / a}\right)
$$

Pulse Processing: Answer

Electronics in the vault or not?

Compare the output of a preamp step-function pulse that passes through a 1 m Beldin RG-58/U cable to that from passing through 50 m of the same cable. Use the Fermi function with $\mathrm{a}=1, \mathrm{t}_{0}=10, \tau=4 \mathrm{~ns} / \mathrm{m}$, and t in ns .

(C) DJMorrissey, 2019

