Week 10: Chap. 15 Fast Neutron Detection

Slow Neutron Detection

Fast Neutron Detection
-- nuclear reactions reprise
-- Thermalize neutrons, counters
--- "Long" counters
--- Liquid scintillator counters
-- Scatter neutrons
--- Kinematics
--- Solid scintillators
--- Neutron arrays

Pulse Processing

Final resting place of ORION detector, Caen, FR

Chap. 15 - Fast Neutron Detection

All neutron detection relies on observing a neutron-induced nuclear reaction.

The capture cross sections for fast-neutron induced reactions are small compared to those at low energies (in the limit: geometric cross sections with occasional resonances).

Two approaches to detect fast neutrons:

- thermalized \& capture which only provides a "count" (al la NERO)
- Elastic scatter from protons at high energy - observe recoils for ToF techniques.
DJMorrissey, 2019

Bonner Spheres - "Counter"

$\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow\left({ }^{4} \mathrm{He}\right)^{*} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H}, \mathrm{Q}=0.765 \mathrm{MeV}$
Moderate neutrons in spheres of different sizes and then detect the neutrons in a proportional counter in the center. Add metal for highest energy neutrons ... unfold response to get

STS-102 Space Shuttle, six spheres, 3 He , 6atm
JRadMeas 42 (2007) 1510 Neut ISS
ZMedPhys 18 (2008) 265 Rad. Monitor ISSDJMorrissey, 2019

See also NIM A620 (2010) 260-269

Neutrons in the Environment

Components of NUSTL's new neutron spectrometer

© DJMorrissey, 2019
NMworkshop/2015 Goldhagen nuclear detection.pdf

Fast neutron detection: Long Counter

$\mathrm{n}+{ }^{10} \mathrm{~B} \rightarrow\left({ }^{11} \mathrm{~B}\right)^{*} \rightarrow{ }^{7} \mathrm{Li}^{*}+{ }^{4} \mathrm{He}, \mathrm{Q}=2.31 \mathrm{MeV}$, Branch $=94 \%$, target abundance $=19.9 \%$
$\rightarrow{ }^{7} \mathrm{Li}+{ }^{4} \mathrm{He}, \mathrm{Q}=2.79 \mathrm{MeV}$, Branch $=6 \%$

Fig. 15.6 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.
NSCL Bucket neutron detectors use BF_{3} (1" diameter, 4" long, 400Torr) in a paraffin filled container.
Paraffin: $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{n}=20$ to 40
Cadmium metal cover

Gd-loaded Liquid Scintillator - "Counter"

Gd-loaded Liquid Scintillator - "Counter"

$$
\mathrm{n}+{ }^{157} \mathrm{Gd} \rightarrow\left({ }^{158} \mathrm{Gd}\right)^{*} \rightarrow{ }^{158} \mathrm{Gd}+\gamma, \mathrm{Q} \sim 8 \mathrm{MeV}, \text { target abundance }=15.6 \%(255 \mathrm{k} \text { barns })
$$

Gd-loaded Liquid Scintillator - "SuperBall"

The miniball charged-particle detector was once installed inside the Univ. of Rochester superball neutron calorimeter at the NSCL

Fast Neutron Detection: Scattering

(C) DJMorrissey, 2019

Fast Neutron Detection: Absorption

Energy loss must be less than change with angle

Efficiency is set by thickness

Proton-radiator telescope: Target allows protons to escape. Target thickness has to be consistent with the $\Delta \mathrm{E} / \Delta \Theta$ of the recoil angular distribution.

20 MeV n .. Scatters and gives protons 10 MeV p in $\mathrm{CH}_{2} . . \mathrm{dE} / \mathrm{dx} \sim 30 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$

$$
\Delta \mathrm{x} \sim \Delta \mathrm{E}_{\mathrm{p}} /(\mathrm{dE} / \mathrm{dx})=0.03 * 20 \mathrm{MeV} / 30 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}
$$

$$
\Delta \mathrm{x} \sim 0.02 \mathrm{~g} / \mathrm{cm}^{2}
$$

$$
\rho_{\mathrm{n}} \Delta \mathrm{x} \sim\left(2 * 6 \times 10^{23} / 14\right) 0.02=1.7 \times 10^{21} / \mathrm{cm}^{2}
$$

$$
\sigma(\mathrm{E}=20 \mathrm{MeV})=0.4 \mathrm{~b}
$$

$$
\varepsilon=1-\mathrm{e}^{\wedge}\left(-\rho_{\mathrm{n}} \Delta \mathrm{x} \sigma\right)=7 \times 10^{-4}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{n}} \operatorname{Cos}^{2} \theta \quad \Delta \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p}}(\theta)-\mathrm{E}_{\mathrm{p}}(0) \\
& \Delta \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{n}}\left[1-\operatorname{Cos}^{2} \theta\right] \\
& \Delta \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{n}} \operatorname{Sin}^{2} \theta \quad\left(\sim 3 \% \text { for } 0-10^{\circ}\right)
\end{aligned}
$$

Give up! Use a thick plastic scintillator .. $10 \mathrm{~cm} \quad \varepsilon \sim 0.2$

N.B. modern variant of this is a gas-filled 'active target'

Fast Neutron Detection: Scattering Pulse Height

2.6 MeV neutron 1"x1" stilbene

 Fig. 15.18 Knoll, $3^{\text {rd }}$ $15.204^{\text {th }}$ Ed.

Set threshold

Recoil Energy
${ }^{4} \mathrm{He}(\mathrm{n}, \mathrm{n}$ ') angular distribution is shown
${ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{n}$ ') cross section has a modest angular distribution .. Small energy dependence on recoil angle. Note that the carbon recoil energy usually falls below the detector threshold but the scattered neutron can go on to interact.

The ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{n}$ ') distribution is flat.
Combine and fold with scintillator light output
(a) ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{n}$ ') single scattering
(b) ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{n}$ '") double scattering
(d) ${ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{n}$ ') scattering

Fast Neutron Detection: Expt. Pulse Height

Fast Neutron Detection: Arrays - Intrinsic Effic.

MoNA plastic scintillator Ten layers - plastic scint. $2 \mathrm{mx} 10 \times 10 \mathrm{~cm}^{2}$
Add Iron converter layers

NSCL "neutron wall"
One layer of liquid scint.

Fast Neutron Detection: Arrays - ToF

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}} \ll \mathrm{~m}_{\mathrm{o}} \mathrm{c}^{2} \\
& E=\frac{m}{2} v^{2}=\frac{m}{2}\left(\frac{L}{t}\right)^{2} \\
& \frac{d E}{d t}=\frac{-m L^{2}}{t^{3}} \rightarrow \frac{d E}{d t}=\frac{-2 E}{t} \rightarrow \frac{d E}{E}=\frac{-2 d t}{t}
\end{aligned}
$$

QCD

QDC - charge to digital convertor TDC - time to digital convertor
CFD - constant fraction discriminator

Hardware construction of position/ToF

Fast Neutron Detection: Arrays - ToF

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}} \ll \mathrm{~m}_{\mathrm{o}} \mathrm{c}^{2} \\
& E=\frac{m}{2} v^{2}=\frac{m}{2}\left(\frac{L}{t}\right)^{2} \\
& \frac{d E}{d t}=\frac{-m L^{2}}{t^{3}} \rightarrow \frac{d E}{d t}=\frac{-2 E}{t} \rightarrow \frac{d E}{E}=\frac{-2 d t}{t}
\end{aligned}
$$

QCD

QDC - charge to digital convertor
TDC - time to digital convertor
CFD - constant fraction discriminator

Software construction of position/ToF

Chap. 15 - Fast n Detection: Question

Estimate the number of photons reaching the end of a fast-neutron detection bar from the interaction of a cosmic ray muon passing horizontally through the midpoint of the bar along the thinnest direction. The attenuation length of the bars was found to be 4.2 m , the bars are each $300 \times 45 \times 30 \mathrm{~mm}^{3}$, are made from BC-408 scintillator and are readout on the long ends. The position uncertainty was found to be 6.2 cm using the time-difference technique. Estimate the time resolution in ns that would be consistent with this position resolution.

