Week 9: Chap.13 Other Semiconductor Material

Germanium Diodes

- -- Why
- --- CZT properties
- -- Silicon Structures
- ---- CCD's
- --- SiPM's

Gamma ray Backgrounds

MICHIGAN STA

© DJMorrissey, 2019

The MIT Semiconductor Subway (of links from 2007)

Chap. 13 – Other Semiconductors - Motivation

Fig. 13.22 Knoll, 3rd 4th Eds.

NaI(Tl) has a significantly higher stopping power for ~MeV gamma rays than Ge and especially Si, thus significant effort has been applied to finding other semiconducting materials with higher atomic numbers.

Other Semiconductor Properties

Material	Z	Bandgap	Mobility [cm ² /Vs]		Density
		[eV]	electrons	holes	g/cm ³
Si	14	1.1	1350	480	2.3
Ge	32	0.7	3800	1800	5.3
Diamond	6	5.5	1800	1200	3.5
GaAs	31-33	1.5	8600	400	5.4
AISb	13-51	1.6	200	700	4.3
GaSe	31-34	2.0	60	250	4.6
CdSe	48-34	1.7	50	50	
CdS	48-16	2.4	300	15	4.8
InP	49-15	1.4	4800	150	
ZnTe	30-52	2.3	350	110	
WSe ₂	74-34	1.4	100	80	
Bil ₃	83-53	1.7	680	20	
Bi_2S_3	83-16	1.3	1100	200	6.7
Cs₃Sb	55-51	1.6	500	10	
Pbl ₂	82-53	2.6	8	2	6.2
Hgl ₂	89-53	2.1	100	4	6.3
CdTe	48-52	1.5	1100	100	6.1
CdZnTe	48-30-52	1.5-2.4	1350	120	5.8
NaI(Tl)	11-53-81	5.8 - 6.3	(0,0 scintillator)		3.7

[NaI from Poole, et al. Chem.Phys.Lett.26 (1974) 514]

Recall correlation of W with band gap – higher W leads to lower signal but also lower thermal noise.

© DJMorrissey, 2019

Other Semiconductors – CZT

MICHIGAN STATE

[max: 5.0 GeV/s]

© DJMorrissey, 2019

Application Specific Integrated Circuit (ASIC)

Position Sensitivity [Simple]

Charge division: q0 = qx1 + qx2 + qE

© DJMorrissey, 2019

MICHIGAN STA

ORTEC PSD n-type, B-contact

Position Sensitivity [Patterns]

MICHIGAN

© DJMorrissey, 2019

Fig. 13.37 Knoll, 4th Ed.

Position Sensitivity [CCD]

© DJMorrissey, 2019

MICHIGAN STAT

New Application – SiPM

- (1) Recall that NaI(Tl) and other scintillators emit ~tens of thousand photons per MeV deposited in the crystal and of order ½ make to the photocathode and then ¼ create photoelectrons. Thus, one has ~thousands information carriers per MeV → few % resolution.
- (2) A Silicon diode will "break down" or discharge if it is over biased. If the discharge can be terminated then only a large pulse is passed. Such a device that breaks down when exposed to light: avalanche photodiode (APD).
- (3) Extremely small structures (circuits) can be created in silicon, e.g., thousands

New Application – SiPM

MICHIGAN STATE

SensL: A typical SiPM has a few macroscopic cells (~10) each with microcell densities of between 500 (10 μ m) and several 1000 per mm², depending upon the size of the microcell. Each microcell is an APD that detects photons identically and independently. The sum of the breakdown currents from all of these individual microcells combines to form a *quasi-analog output*, and is thus capable of giving information on the magnitude of an instantaneous photon flux.

Chap. 13 – CCD Readout Question

- Problem 13.8 A fully depleted silicon CCD is 300 µm thick and used to form a recorded image of of incident x-rays whose energy is 10 keV. It has an array of 256 x 256 pixels per frame and is operated in a simple mode of alternating exposure and readout. The readout frequency is 100 kHz. The exposure time per frame is to be kept at least 20 times the total readout time. The same measurement is designed to measure the energy deposited by each individual x-ray so that probability of multiple hits should be less than 5% per pixel during exposure.
- a) Determine the maximum x-ray interaction rate in the full image.

- b) Find the minimum required storage capacity for electrons in one pixel.
- c) If the charge due to leakage is to be kept less than 10% of of the signal charge due to a single x-ray interaction in a pixel, estimate the maximum leakage current for the entire device.

Chap. 13 – CCD Readout Question

- Problem 13.8 A fully depleted silicon CCD is 300 µm thick and used to form a recorded image of of incident x-rays whose energy is 10 keV. It has an array of 256 x 256 pixels per frame and is operated in a simple mode of alternating exposure and readout. The readout frequency is 100 kHz. The exposure time per frame is to be kept at least 20 times the total readout time. The same measurement is designed to measure the energy deposited by each individual x-ray so that probability of multiple hits should be less than 5% per pixel during exposure.
- a) Determine the maximum x-ray interaction rate in the full image. $t_{Readout} = 256*256 / 10^5 / s = 0.655 s$ $t_{Exposure} = 20 * t_{Readout} = 13.1 s$

5% chance of more than one per pixel ..

$$\begin{split} P(0) &= e^{-rt} \\ P(1) &= rt \ e^{-rt} \\ P(>1) &= 1 - [P(0) + P(1)] = 1 - rt \ e^{-rt} - e^{-rt} = 1 - e^{-rt} \ (rt + 1) \\ 0.05 &= 1 - e^{-rt} \ (rt + 1) \\ e^{-rt} \ (rt + 1) &= 0.95 \qquad e^{-x} \sim 1 - x + \dots \ for \ small \ x \\ (1 - rt) \ (rt + 1) &= 0.95 \qquad \rightarrow rt = (0.05)^{1/2} \rightarrow r_1 = (0.05)^{1/2} \ /t \end{split}$$

 $rate_{device} = 256*256*rate_1 = 256*256*(0.05)^{1/2} / 13.1 = 1120 / s$

© DJMorrissey, 2019

Chap. 13 – CCD Readout Question

- Problem 13.8 A fully depleted silicon CCD is 300 µm thick and used to form a recorded image of of incident x-rays whose energy is 10 keV. It has an array of 256 x 256 pixels per frame and is operated in a simple mode of alternating exposure and readout. The readout frequency is 100 kHz. The exposure time per frame is to be kept at least 20 times the total readout time. The same measurement is designed to measure the energy deposited by each individual x-ray so that probability of multiple hits should be less than 5% per pixel during exposure.
- a) Determine the maximum x-ray interaction rate in the full image.

 $t_{Readout} = 256*256 / 10^5 / s = 0.655 s$ $t_{Exposure} = 20 * t_{Readout} = 13.1 s$

 $rate_{device} = 256*256*rate_1 = 256*256*(0.05)^{1/2} / 13.1 = 1120 / s$

- b) Find the minimum required storage capacity for electrons in one pixel.
- c) If the charge due to leakage is to be kept less than 10% of of the signal charge due to a single x-ray interaction in a pixel, estimate the maximum leakage current for the entire device.