
Molecular Vibrations 
 

Consider a molecule with N atoms and suppose we know how the energy varies as we 
move the atoms.  Then the total electronic energy may be thought of as a function of the 
coordinates of each atom.  So ��E = E x1,x2,�x3N( )where x1,x2,and x3  are the coordinates 

of atom 1, x4 , x5,and x6  of atom 2, and so on.  Now expand this function about the 
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Since the equilibrium position is a minimum in E, all of the first derivatives vanish. 
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Now, represent the second derivative matrix at equilibrium by fij 
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and let xi − xi

0 = qi . 
 
Then, keeping terms up to quadratic (the harmonic approximation), we have 
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Keep in mind that this energy represents the change in the electronic energy as the nuclei 
move.  This is also the potential energy function for nuclear motion.   
 
To keep our notation consistent with convention, we are going to replace E by V and Eeq 
by V 0.  A trivial but potentially confusing change.  So,  
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The kinetic energy for the nuclei is 
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=�  and mi is the mass of 

the ith coordinate; i. e., m1, m2, and m3 are the same and are the mass of atom 1, etc. 
 

Note, since 0 , we havei i i i ix x q x q− = =�  
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Let’s define a set of coordinates ai{ }  called mass-weighted coordinates 

 
 ai = miqi  

 
Then, 
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The equations of motion of the atoms are given by Lagrange’s equations. 
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So, 
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A particular solution to these equations may be found by the ansatz 
 
 ( )cosi ia A tω ε= +  

 
where ε  is an arbitrary phase. 
 
Aside:  
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Define the matrix F 
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Then the equations of motion become 
 
 ��F

��
a = ω2 ��

a .  
 
ω 2 is the eigenvalue and ��

��
a  is an eigenvector of F.  Since F is 3N × 3N, it has 3N 

eigenvalues and 3N eigenvectors.  Let’s label them 
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For every vector ��
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a i , we have a ωi

2 .  The ��
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a i  define what are called normal modes, and ωi  

is the frequency of the ith normal mode. 
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Recall 
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and aki = mk qki = Aki cos ωi t + ε( ) or 
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for a given normal mode (the ith) each coordinate hs the same frequency dependence.  
Indeed, we may write 
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Alternative (Matrix-Oriented) Formulations 
 
Since F is symmetric and real, it may be diagonalized by a unitary matrix.  Accordingly, 
let U diagonalize F where 
 
 U +U = UU+ = 1 . 
 

Then, 
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The equation 
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may be rewritten as 
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and, since ,+=F U U�  
 

one has a a a a+ + +=F U U
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Using Lagrange’s equations 0
k k

d T V

dt Q Q

 ∂ ∂+ = ∂ ∂ � , the equations of motion become 

 

 2 0k k kQ Qω+ =��  

 
and, therefore, the motion is harmonic with frequency ωk. 
 
In general, 
  
 Qk = A cosωk t + Bsinωkt  
 
where 
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Clearly, the time dependence of the normal coordinate depends on the initial conditions.  
This is equivalent to writing the solution as 
 
 Qk = Ck cos ωkt + ε( ) 


