
 
Geometry Corresponding to the Minimum Energy 

 
 
An important problem in Quantum Chemistry is to find the point on a molecules potential 
energy surface that corresponds to the lowest energy because if the molecular vibrations 
were harmonic this point would define its equilibrium structure. Since anharmonic effects 
are often small the geometry corresponding to this minimum is a good approximation to 
the equilibrium structure. 
 
Let’s suppose that we have the energy of an N nuclei molecule as a function of the 
coordinates of each nucleus. 
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and we want to find the minimum energy. Let’s expand this function around a point  
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in the 3N dimensional space that we think is a reasonable approximation to the minimum 
energy point. 
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Let’s define the first and second derivatives of the energy at the expansion point as  
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expansion after quadratic terms results in  
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Which we can write as  
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Where is a column vector containing the first derivatives, oqr x∆r is a column vector 
containing the displacements and oF is a matrix containing the second derivatives. oF is 
called the Hessian matrix.  
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If this quadratic approximation is a reasonable approximation in the vicinity of the 
minimum we may approximate the minimum by taking the derivative and setting it equal 
to zero. This results in the 3N equations 
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and so 
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So we can calculate minx∆  from r ( ) 1o

oq x
−

− = min∆
r rF  and estimate the minimum point from  
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r . We then use this updated estimate as the new expansion point and 
repeat the procedure until the input estimate and the output estimate are equal to within a 
prescribed tolerance. At this point oq or

� . 
 
The effort required to find the minimum energy geometry depends on the initial estimate 
and the way the derivatives are computed. The worst case is when the first and second 
derivatives are computed numerically. The first derivative o

KE requires 2 separate energy 
calculations and is evaluated as 
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derivatives would be 
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Clearly this could become very impractical! 
 
One of the most significant developments in Quantum Chemistry was the development of 
a method by Pulay (Adv. Chem. Phys., 1987, 69, 241) to evaluate the first derivative of 
the energy of an SCF wavefunction analytically. This technique typically takes 1-3 times 
more than the energy calculation and makes the derivative calculation practical. Also its 
often necessary to have a reasonable estimate of the Hessian and improve it by various 
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numerical methods as the geometry improves. As we will see latter there are analytic 
gradients for many correlated wavefunctions and these have lead to the ability to 
calculate very accurate equilibrium geometries.  
 
 


