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configuration of [Sc(OH2),I3’ ion from the present experimental stretching vibration and the -310-cm-’ band to the M-OH2 
(equatorial) stretching vibration. data. 

As it is suggested that all three configurations have a similar 
stability,14 it is impossible to draw a definite conclusion about the Acknowledgment. We are thankful to Dr. J. Hiraishi a t  the 
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his Raman spectrometer. (14) Drew, M. G. B. Prog. Inorg. Chem. 1977, 23, 67. 

FEATURE ARTICLE 

Coupled-Cluster Approach to Molecular Structure and Spectra: A Step toward 
Predictive Quantum Chemistry 

Rodney J. Bartlett 

Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, 
Gainesuille, Florida 3261 1 (Received: June 9, 1988; In Final Form: October 31, 1988) 

One goal of ab initio quantum chemistry is to be predictive. Predictive quantum chemistry requires a very accurate inclusion 
of the essential effects of electron correlation. Coupled-cluster theory offers a novel, elegant approach for correlation that 
has had a dramatic impact on the field in the past decade and is destined to have increasing importance in the future. This 
survey assesses that development, provides a variety of illustrative applications, and emphasizes some of the new concepts 
that emerge from many-electron cluster theory. 

Preface 
In the application of ab initio quantum chemistry we have 

reached a certain level of capability. As stated in the Pimentel 
report 

“With today’s computers, the structure and stability of any 
molecular compound with up to three first-row atoms can be 
calculated almost to the best accuracy available through exper- 
iment. This capability gives to the chemist many situations not 
readily accessible to experimental measurement. Short-lived 
reaction intermediates, excited states, and even saddle points of 
reaction can now be understood, a t  least for small polyatomic 
molecules.” 

The considerable success of predictive, ab initio quantum 
chemistry is apparent. Yet, for quantum chemistry to advance, 
the qualifications in the above quote (“three first-row atoms”, 
“almost to the best accuracy”, “small polyatomic molecules”) have 
to be addressed. The questions chemists are asking theorists for 
small molecules frequently require much greater detail than 
currently available, and accurate studies of large molecules will 
become essential. What is prohibiting us from obtaining the 
accuracy we want? 

In the solution of the bound-state Schrodinger equation for 
molecules, there are really only a few limitations: basis sets, 
electron correlation, the number of atomic degrees of freedom, 
relativistic effects, and other corrections like that due to the 
Born-Oppenheimer approximation. 

The limitation on the size of molecule for which the Schriidinger 
equation can be approximated accurately largely comes from the 
above limitations. The computer resources required for the sim- 
plest ab initio method, Hartree-Fock self-consistent-field (SCF) 
calculations scale as the fourth power of the number of basis 

(1 )  Opportunities in Chemistry. National Academy of Sciences Report, 
G. C. Pimentel, committee chairman, 1975; p 72. 

functions ( n 4 ) ;  n is typically 2-5 times the number of electrons. 
Yet without electron correlation we can seldom expect to be 
predictive. Correlated calculations scale at least as ns but usually 
-n6-n7. Considering that there are roughly 3N degrees of 
freedom for N atoms and that even with analytical gradients 
several correlated calculations will typically need to be performed 
for each degree of freedom, the determination of potential energy 
surfaces which entails locating minima and saddle points for 
different electronic states is difficult, even without the added 
complication of relativistic effects and other corrections. 

The purpose of this article is to primarily focus on one of these 
limitations, the correlation problem, and one prominent new 
approach to its solution, coupled-cluster (CC) theory. Besides 
providing highly accurate results, CC theory offers some new 
concepts in quantum chemistry. For ab initio CC methods to reach 
their ultimate accuracy, however, the question of basis sets and 
gradient methods are equally essential and will be briefly addressed 
in the context of CC theory. 

Introduction 
The coupled-cluster theory of electron correlation owes some 

of its conceptual basis to the correlated electron pair theories of 
Nesbet2 and S i n a n o g l ~ . ~  However, the rigorous structure has 
its origins in the so-called linked diagram theorem4 which states 
that the exact electronic wave function and energy can be written 
as a sum of only linked diagrams in field theory language or, 
equivalently, as an exponential of cluster operators. This guar- 
antees correct scaling with the number of electrons, or size ex- 

(2) Nesbet, R. K. Phys. Rev. 1968, 175, 2; Adv. Chem. Phys. 1969, 14, 

(3) Sinanoglu, 0. J .  Chem. Phys. 1962,36,706; Adu. Chem. Phys. 1964, 

(4) Brueckner, K. A. Phys. Rev. 1955,97, 1353; 1955,100,36. Goldstone, 

1. 

6, 35. 

J. Proc. R .  Soc. London 1957, A239, 267. 
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tensivity. Though similar in concept to that of Ursell and Mayer 
in statistical mechanics, the exponential ansatz that defines the 
coupled-cluster approach to electronic and nuclear structure was 
introduced by Coester and KiimmeL5 Explicit equations for the 
simplest method, coupled-cluster doubles (CCD), were first derived 
by Cizek,6 who also presented a diagrammatic approach to derive 
working equations for general CC models. CC theory can be 
viewed as a way to systematically sum classes of terms (Le., 
diagrams) in many-body perturbation theory (MBPT)4,7-9 to all 
orders, as shown by Hubbard.lo Today, the distinction between 
MBPT and CC theory is that MBPT (later also becoming known 
in chemistry as Mdler-Plesset (MP) perturbation theory” is 
usually used to include all terms through some finite order in 
electron correlation with full fourth order (MBPT(4)) being 
common,12 while CC theory sums selected categories of MBPT 
diagrams to all  order^.^ 

Semiempirical applications of CC theory were presented in the 
1960s (for a review see ref 13), with a minimum basis a b  initio 
example presented by Paldus et al. in 1972.14 General purpose 
ab initio programs for chemically interesting applications of the 
CCD method were developed in 1978 by ourselves15 and Pople 
et a l l6  (See also ref 17 for a different computational approach.) 
Purvis and I formulated and implemented the full CCSD (single 
and double excitations) method.ls Later, Lee, Kucharski, and 
I devised and implemented CCSDT-1,19 which includes only the 
principal triple-excitation effects. Finally, results obtained by using 
the full CCSDT method were presented by Noga and myself.20 

Besides the investigators mentioned above, several other 
quantum chemistry groups have adopted and developed CC 
methods for different chemical applications, including Dykstra, 
Kaldor, Kutzelnigg, Monkhorst, Mukherjee, Nakatsuji, Simons, 
Schaefer. and co-workers.21 CC methods have now been de- 
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veloped for ionization potentials;22 some different approaches for 
excitation energ ie~ ,2~.~~ proper tie^?^ electron affinities;26 for energy 
 gradient^^^-^^ to help in efficiently searching potential energy 
surfaces and to predict vibrational spectra; and a variety of 
multireference  extension^.^^ The CC approach is taking its place 
among the most accurate and applicable quantum chemical 
methods available today. 

The following article summarizes m y  group’s work in this 
rapidly evolving field. Following a discussion of the rationale for 
the CC approach and a synopsis of the theory, the article presents 
a series of numerical examples to illustrate the accuracy attainable 
and some limitations. Since CC theory and some of its multi- 
reference generalizations use rather different ideas than more 
conventional quantum chemical methods, I will also attempt to 
describe these different concepts without undue technical detail. 

Rationale for Coupled-Cluster Theory 
The primary element that distinguishes “many-body” quantum 

mechanical methods like CC and its finite-order MBPT ap- 
proximations from most correlated methods is correct scaling with 
size. This is an essential property in accurate applications of theory 
to chemistry and a consequence of the underlying dependence on 
the linked diagram theorem of many-body methods. 

To illustrate, consider the solution to the Schrijdinger equation 
for a lattice of M noninteracting molecules p = 1 to M .  If \k@) 
is the wave function for the pth molecule, we have H@) W$) = 
E @ )  P@). Hence, the “lattice” wave function PL is the simple 
product 

M 

p= 1 
‘kL = UP@) ( l a )  

(5) Coester, F. Nucl. Phys. 1958, I ,  421. Coester, F.; Kiimmel, H. Nucl. 

(6) Cizek, J. J .  Chem. Phys. 1966,45,4256; Ado. Chem. Phys. 1969.14, 

(7) Kelly, H. P. Ado. Chem. Phys. 1969, 14, 129. 
(8) (a) Bartlett, R. J.; Silver, D. M. Phys. Reo. 1974, AIO, 1927; Chem. 

Phys. Lett. 1974, 29, 199; Int. J .  Quantum Chem. Symp. 1974, 8, 271; J .  
Chem. Phys. 1975, 62, 3258. (b) Bartlett, R. J.; Shavitt, I .  Chem. Phys. Lett. 
1977,50, 190. (c) Kaldor, U. Phys. Rev. A 1973, I ,  427. (d) Freeman, D. 
C.; Karplus, M. J .  Chem. Phys. 1976, 64, 2641. (e) Wilson, S.; Silver, D. 
M.; Bartlett, R. J. J .  Mol. Phys. 1977,33, 1177. (0 Robb, M. A. Chem. Phys. 
Lett. 1973, 20, 274. 

(9) (a) Bartlett, R. J. Annu. Rev. Phys. Chem. 1981,32, 359. (b) Bartlett, 
R. J.; Dykstra, C. E.; Paldus, J .  In Advanced Theories and Computational 
Approaches to the Electronic Structure of Molecules; Dykstra, C. E., Ed.; 
Reidel: Dordrecht, 1984; p 127. 

(IO) Hubbard, J. Proc. R .  SOC. London 1957, A240,539; 1958, A243,336. 
( I  1) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J .  Quantum Chem. Symp. 

1976, IO, 1. 
(12) (a) Frisch, M. J.; Krishnan, R.; Pople, J. A. Chem. Phys. Lett. 1980, 

75, 66. Krishnan, R.; Frisch, M. J.; Pople, J. A. J .  Chem. Phys. 1980, 72, 
4244. (b) Guest, M. F.; Wilson, S .  Chem. Phys. Lett. 1980, 73, 607. (c) 
Bartlett, R. J.; Sekino, H.; Purvis, G. D. Chem. Phys. Left. 1983, 98,66. (d) 
Urban, M.; Noga, J.; Kello, V. Theor. Chim. Acta 1983, 62, 549. (e) 
Kvasnicka, V.; Laurinc, V.;  Biskupic, S. Chem. Phys. Let?. 1979, 73, 81. 

(13) Paldus, J.; Cizek, J. In Energy, Structure and Reactivity; Smith, D. 
W., McRae, W. B., Eds.; Wiley: New York, 1973. 

(14) Paldus, J.; Cizek, J.; Shavitt, I .  Phys. Reo. 1972, AS, 50. 
(15) Bartlett, R. J.; Purvis, G. D. Int .  J .  Quantum Chem. 1978, 14, 561. 

(16) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. I n t .  J .  

Phys. 1960, 17, 477. 
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Bartlett, R. J.; Purvis, G. D. Phys. Scr. 1980, 21, 251. 

Quantum Chem. 1978, 14, 545. 
(17) Taylor, P. R.; Backsay, G. B.; Hurley, A. C.; Hush, N. S .  J .  Chem. 
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(Antisymmetrization is irrelevant since there is no overlap of the 
component wave functions.) and EL are the Hamiltonian and 
a nondegenerate energy for the noninteracting lattice. This is 
simply a statement that the energy scales properly with molecular 
size, or is (size) “exten~ive” .~~ 
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C.; Lee, T. J.; Rice, J. E.; Schaefer, H. F., 111 J .  Chem. Phys. 1987,86, 2881. 
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@(p) = @ o b )  + cqq + cqD$ = @ob) + x ( p )  (4) 
i,a i<j 

a<b 

The singly and doubly excited determinants are 

4 = A ( 4 a ( 1 )  dj(2)) and o b  = A($a(l)  $b(2)) 

The coefficients c and qb weight the “time“ the electrons are 
allowed to spend in the “unoccupied” orbitals. The two-electron 
antisymmetrized products define a Hilbert space, and \k(p) is the 
exact, “correlated” solution for H2 in the MO basis, with x ( p )  
the correlation correction to the reference wave function, 

Just as the single-determinant approximation satisfies the ex- 
tensive property, the product of CI  wave functions like those in 
eq 4 must be the exact solution for the full lattice (within the MO 
basis). 

Before we analyze that solution further, however, we can sim- 
plify the analysis by choosing our orbitals {e} not to be HF-SCF 
orbitals, but, instead, the “natural orbitals”, which are a trans- 
formation of the SCF orbitals. These orbitals have the advantage 
that c = 0, and x ( p )  only consists of double excitations. Our 
product wave function for the lattice is then 

qL = n(@o(P) + x ( P ) )  = n@o@) + m @ O @ )  x ( k ) / @ o ( k )  

+ E@ kx(k)/@o(k) + C@.oLX(k) x ( l ) / @ o ( k )  @do + ‘1. 

(5) 

( 6 )  
The exact wave function in eq 5 consists of double, quadruple, 
hextuple, etc., up to 2M-tuple excitations for M H2 molecules. 
Equation 5 is equivalent to a “complete” CI in a complete basis 
of orbitals (the exact solution) and is the “full” CI in a finite basis 
(basis set limit solution). 

Now consider the configuration interaction model limited to 
double excitations (CID). For a single H2 molecule we have eq 
4, and for the lattice 

P P k P  

\EL = 

k k,l 

and the energy for the lattice is 

EL = ME(H2) = M[EREF(Hz) + AE(H2)l 

= @b + CC&jX(k)/@O(k) = + cqbLD$L (7)  
k i<j 

a<b 

Since the CID wave function is exact for each H2 molecule, and 
since their product is given by eq 5, eq 7 cannot be the exact wave 
function for the lattice. Instead, the new CI coefficients (c;;b‘] 
are to be determined by the variational principle to obtain the 
lowest possible energy, so the higher excitation effects neglected 
are partly replaced by adding additional flexibility through the 
coefficients, but we still have an error. How large is the error? 

We can readily solve the model problem for M H2 molecules,33 
and we find that the correlation energy error in CID for M = 2 
is 1.5%, 4.8% for M = 4, and 10% for M = 8. For a molecule 
with a separated pair structure of the size of benzene ( M  = 21) 
the error would be more than 20%, or -200 kcal/mol. As the 
molecule gets larger, there are much greater errors. Clearly, if 
we also include quadruple excitations in CI, we would now have 
an exact result for M = 2 but would have errors starting with M 
= 3. Similarly, we can continue to reduce this “extension” error 
the more high excitations we include, until we reach the full CI, 
which has all up to 2M-fold excitations and is the exact, size- 
extensive result. 

Rather than absolute energies, energy differences are of im- 
portance in chemistry; and these, too, are affected by the exten- 
sivity property. One particularly important property for chemistry 
is that the heat of reaction for A + B - C + D should be obtained 
by differences of heats of formation for the components. However, 
since AHf(C+D) = AHf(C) + AHf(D) only when \k(C+D) = 
\k(C) \k(D), the extensivity property is essential to even construct 
a table of computed AH, to use in such analyses. Furthermore, 

In the Hartree-Fock or self-consistent-field (SCF) single-de- 
terminant approximation, each \k@) is replaced by O0(p), which 
is in turn usually represented as a determinant of np molecular 
(spin) orbitals, fl, one for each of the np electrons 

@o@) = ~ ( 4 4 ( 1 ) . . . 4 q n p ) )  (2) 

(A is the antisymmetrizer (n$)-1/2&(-l)+’P where P indicates 
the permutation operator and p is its parity which simply forms 
a determinant of the spin orbital product). The orbitals are 
assumed localized on the pth molecule. a0@) can represent a 
closed-shell (RHF) or open-shell (UHF, ROHF) single-deter- 
minant solution. The latter “independent-particle model” con- 
stitutes the foundation for much of our qualitative understanding 
of molecules and a large part of our quantitative calculations, but 
it should be remembered that “orbitals” are just an approximation 
to reality for more than one-electron systems. Clearly, the lattice 
wave function a.0“ and energy EkcF 

(3) 

satisfy the extensive property. 
The SCF theory makes the assumption that one electron moves 

in an averagefield of np - 1 other electrons. Electrons are charged, 
however, and have instantaneous interactions among themselves, 
which causes their motions to be “correlated”. Since the effect 
of electron correlation is to keep electrons apart, diminishing their 
mutual repulsions, the exact ”correlated” wave function for a 
molecule has a lower energy. The energy difference is called the 
“correlation” energy, or correlation error when referring to mo- 
lecular properties in general. We will define the correlation error 
as the difference between the H F  (RHF, UHF, or ROHF) result 
and the “exact” result once correction has been made for relativistic 
effects, AE = EHF - E,,,,,. The correlation problem has been 
the focal point of ab initio quantum chemistry for about 30 years.32 
Without allowance for electron correlation we cannot expect to 
be “predictive” for most properties. 

For simplicity, let us think of each of our \k(p) above as 
ground-state H2 molecules, which are conceptually like a series 
of noninteracting electron pair bonds in a saturated molecule. 
Then (Po@) = A( 1 aga( 1) 1 ap@(2)), where the molecular spin 
orbitals are given their usual lug designation with CY or p spin 
attached. To introduce electron correlation into H2, we conceive 
of a set of unoccupied molecular orbitals (MO), lau, 2a,, 1rU,  
..., that along with l a ,  form a complete (usually infinite) set of 
orbitals. In practice, a finite linear combination of AO’s (usually 
contracted Gaussian functions) is used to represent the MO’s, 
thereby restricting the number of MO’s to the same dimension 
as that for the A 0  basis and thereby introducing the inevitable 
basis set error. We introduce electron correlation by formally 
allowing the two electrons to spend “time” in each of these pre- 
viously unoccupied spin orbitals so that the electrons are better 
able to spatially avoid each other. Labeling the occupied orbitals 
i, j ,  k ,  I ,  ... and the unoccupied orbitals a ,  b, c, d ,  ..., this is 
accomplished via configuration interaction by constructing the 
wave function 

(31) This term, introduced in ref 15 above, is related to the term “size 
consistent” introduced in Pople et al.” but does not mean exactly the same 
thing. Strictly speaking, (size) extensive means a method has no unlinked 
diagrams. Pople et al.’s term means that a quantum chemical method should 
give the same results in the noninteracting limit where only atoms (or frag- 
ments) are present when they are treated separately, or if they were treated 
as a supermolecule. The extensive condition guarantees the additivity in the 
noninteracting limit in the latter, but the converse is not true. Once inter- 
actions are introduced, extensivity or the absence of unlinked diagrams is 
well-defined, but size consistency is defined only in the noninteracting limit. 
Also, extensivity is rigorously defined for an atom, unlike size consistency 
which requires a molecular definition. In the following text we use the 
noninteracting limit initially as a pedogogical device to introduce the expo- 
nential ansatz, but at the end, we guarantee there are no unlinked diagrams 
in the CC method by virtue of the exponential ansatz, regardless of the degree 
of interaction. See footnote 2, p 364, ref 9a, for other distinctions between 
extensivity and size consistency, particularly with regard to correct separation 
of a molecule into its fragments, which is a different property. 

(32) Lowdin, P. 0. Adu. Chem. Phys. 1959, 2, 207. (33) Bartlett, R. J.; Purvis, G. D. Ann. N.Y.  Acad. Sci. 1981, 367, 62. 



1700 

if the two states whose difference is of interest do not scale cor- 
rectly, then the difference will not necessarily do so. Hence, 
excitation energies between different electronic states are another 
property that will not automatically scale properly with size.34 
Also, the electronic density, which is ultimately responsible for 
all observable properties, will not have the correct A4 dependence 
if its corresponding approximate wave function does not.” Clearly, 
it is desirable that the theories employed in quantum chemistry 
be extensive and essential for anticipated application to bio- 
chemically important molecules, polymers, surface phenomena, 
and the solid state. 

Coupled-Cluster Equations 
To ensure the extensive property, many-body quantum chemical 

methods like coupled-cluster (CC) theory differ from CI as they 
are based upon an exponential wave function 
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*CC = exp(T)@o (8) 

Tis defined to be an operator that creates excitations from an 
independent particle reference, where 

(9)  T = ET, = T1 + T2 + T3 + ... 
4 

The operation of T2 gives, e.g. 

T2a0 = ct$bD$ (10) 
i>j 
a> b 

The coefficients (operator amplitudes), &6), are different from 
the CI  coefficients (qb) since for the CCD wave function the 
exponential expansion 

+ c c D  = e ~ p ( T ~ ) @ ~  = ( 1  + T2 + TZ2/2 + T23/3! + ...) @o 
(1la)  

gives 

+ c c D  = @o + C t$b&/ + ‘/z C t$bt$$)$$d + ... (1 1 b) 
i>j i>j k>l 
a> b a>b c>d 

and we have quadruple, hextuple, etc., excitations introduced into 
the wave function via a number of “disconnected” terms like T2/2 
until T2”/n! vanishes for n/2 electrons. However, these higher 
excitation terms are not introduced in the most general way 
possible, since their coefficients are products of just double-ex- 
citation Coefficients. If nm and are respectively the numbers 
of occupied and “virtual” (Le., unoccupied) orbitals, then there 
would be asymptotically -nm4n,,ilt4 - ns quadruple excitations 
with an equivalent number of coefficients to determine in the CI  
(requiring about an -do computational procedure). But there 
are only -nocc2nvil: - n4 double-excitation coefficients to de- 
termine in CCD (an -n6 procedure), which is obviously far 
simpler computationally. In practice, the product approximation 
to quadruple and higher excitations is very accurate (as is further 
discussed in the numerical examples in the next section). 

The formal advantages are as significant as the computational 
advantages of the exponential wave function. For the H2 lattice 
example, an individual H2 molecule has the CCD wave function 

*CCD@) = exp[T2@)l @O@) (12) 

and for the lattice 

*kCD = exp(?f)@k = !exp[T2@)laO@) = n + C C D ( P )  P (13) 

ECCD = MECCD(H2) (14) 

Equation 12 follows since T2(q) @,@) = 0 (q  # p )  for orbitals 
localized on the different units. As is the case for both the HF 
case and the exact solutions, CC theory satisfies the extensive 
property by providing a product wave function for  the nonin- 
teracting case. Note that none of the above discussion is limited 
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(34) Meunier, A.; Levy, B.; Berthier, G. Int. J. Quantum Chem. 1976, 10, 
1061. 

to two-electron or identical units. 
Since the different cluster operators commute, CCSD is defined 

by the wave function exp(Tl + T2)a0 = exp(TI) exp(T2)a0; this 
adds terms like TlT2Q0 which are “disconnected” triple-excitation 
contributions plus all other products involving TI and T2. 

Similarly, we can add additional electron clusters as in the 
CCSDT approximation, which means exp( TI + T2 + T,)@, where 
we have now included “connected” triple-excitation contributions 
like T3@0 along with additional disconnected terms involving T3 
like TIT3 and T2T3, etc. The next contribution T4, Le., connected 
quadruple excitations, would define CCSDTQ. 

Since in the limit of all excitations CC theory must be equal 
to full CI, we can equate the CZ excitation operators, C,,, and the 
cluster operators, T,, to be 

C1 = TI 

C2 = T2 + T12/2 

C, = T, + TlT2 + TI3/3! 

C4 = T4 + T 2 / 2  + TI2T2/2 + TIT, + TI4/4! 

C5 = T5 + TIT4 + T2T3 + T12T3/2 + Ti3T2/2 + T,T22/6 + 
T15/5! (15) 

More specifically, for the antisymmetrized coefficients, C$ = t b  
+ tS!,b - t f t y ,  etc. Below we will use these definitions of C, to avoid 
writing all the T products. 

Now we need equations for determining the coefficients in the 
correlation energy and the CC wave function. This is accomplished 
by inserting the CC wave function into the Schriidinger equation 
(subtracting the reference energy ( @olfl@o) from both sides for 
simplicity, H N  = H - ( @ o l ~ @ o ) )  and projecting. We have 

(16) 

(17) 
Similarly, projection by different categories of excitations provides 
equations for the coefficients. Through CCSDT these are 

q A E  = ( q l H N ( l  + C1 + C2 + C3)l@o) (18a) 

@/AE = (&/lHAl + CI + C2 + C, + C,‘)l@o) (18b) 

@$AE = (@$IHN(CI + C2 + C, + C,‘ + C5’)I@o) (l8c) 

where C,‘ = C4 - T4 and C,’ = C, - T5 - TlT4. N o  additional 
terms can contribute since HN only has one- and two-particle 
operators, limiting the contributing matrix elements to those that 
differ by no more than two excitations. Equation 18 provides a 
closed set of coupled equations which are nonlinear in the t 
coefficients. They can be written into a convenient form for 
iterative solution35 as shown at  the end of this section. 

The variational CI equations limited to single, double, and triple 
excitations (CISDT) are exactly the same except for C,‘ and C,’, 
but these are disconnected products of only T,, T2, and T,. The 
former’s lead term, TZ2/2, is responsible for most of the effect 
of quadruple excitations in calculations and all through the 
fourth-order energy in MBPT. Such disconnected terms like 
T:/2, TlT2, and T2T3 in C,’ are also responsible for ensuring size 
extensivity by eliminating the so-called “unlinked diagrams” as 
discussed below. 

In the form of eq 18 the CCSDT equations may also be viewed 
as arising from a decoupling of the CI  equations where C4 and 
C5, which would be in a CISDTQP method, are replaced by the 
primed quantities. Unlike the CI quadruple and pentuple exci- 
tations, the fact that C,‘ and C,’ are disconnected products of only 
TI, T2, and T, obviates the need to solve for the quadruple (C4, 
an -do procedure) and pentuple (C5, an -nI2 procedure) ex- 
citation coefficients, greatly simplifying computation. 

HN exp(T)@o = AE exp(T)@o 

Al? = (@OIHNtCZ + Cl)l@O) 

Projecting from the left by O0, and using eq 15, we obtain 

(35) Kucharski, S. A,; Bartlett, R. J. Adu. Quantum Chem. 1986, 28,281. 
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Notice what else is different in CI  compared to CC theory. 
Before projecting eq 16, we could have multiplied from the left 
by exp(-T). This is just a manipulation that does not change the 
equations but puts them into the slightly different form commonly 
used in CC theory, where the Schrijdinger equation becomes 

C indicates a restriction to “connectedn diagrams (which are a 
subset of the linked diagrams). The detailed terminology is un- 
important to the present discussion. It simply means we have 
cancelled all possible terms from eq 18. It then follows that 
projection by some category of excitations would have given zero 
by orthogonality on the left of eq 18 instead of AE times a 
coefficient. To take just eq 18b as an example, we have 

exp(-T)H, exp(T)l@o) = [ H N  exp(T)lcl@~) = A W O )  and the 
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That is, there is no AE dependence in the CC equations (but there 
would be in the CISDT equations because C,‘ and C,l would not 
be there), and this has underlying significance. 

Remember that, for our noninteracting example, AEL is given 
by eq 6 for any M ,  and since it is easy to show (via the iterative 
solution of eq 18d outlined below) that the ttb;;, and consequently 
q;.;. coefficients have a similar dependence on the energy of the 
separated units of M (or higher), the products on the left of eq 
18 then scale at least as -@. But in a proper theory, the 
equations have to scale linearly with M .  In CC theory these 
erroneous terms cancel as in eq 18d, but in a truncated CI they 
would remain. In many-body language, the terms that arise from 
AEc;,;. correspond to the so-called “unlinked”  diagram^,^"^^ and 
the linked diagram theorem tells us they are not in the correct 
wave function or energy. Their erroneous dependence on the 
number of separated pairs @, M3,  etc., is responsible for the 
failure of any truncated CI to be extensive, necessitating the use 
of unlinked diagram corrections3’ which are based upon some 
approximate consideration of terms like C,l and which are rou- 
tinely added to high-accuracy CI  calculations today.3s Fur- 
thermore, the CC equations are independent of AE (i.e., they form 
a set of algebraic equations), but the CI equations depend on AE 
(Le., they are eigenvalue equations and the AE dependence is part 
of the reason that CI results for the energy are variational). Until 
the full CI is reached, usually a choice has to be made whether 
to use an extensive method or a variational method. Since the 
CC equations have eliminated all erroneous (unlinked diagram 
terms) from the beginning by virtue of the exponential wave 
function choice, any approximation made to the CC equations 
like stopping with finite-order MBPT (see below), or limiting to 
a subset of cluster operators like T I  and T2 as in CCSD, or even 
some subset of the possible T I ,  T2,  T3 contributions like the 
CCSDT-1 method,lg is extensive as it already benefits from the 
unlinked diagram cancellation. Hence, we have now come full 
circle. The rationale of correct scaling is manifest in the CC/ 
MBPT equations. 

Also, it should be recognized that only an exponential has the 
correct multiplicative factors in its expansion to fully eliminate 
all unlinked terms. The so-called quadratic CI  method (QCI)39 
(which is an unfortunate name because it is not CI  as it is not 
an eigenvalue equation, or variational; nor does it include all 
quadratic terms) would appear to be more properly viewed as an 
approximation to the CC equations where some quadratic, cubic, 

~~~~ ~ ~ 

(36) March, N. H.; Young, W. H.; Sampanthar, S. The Many-Body 
Problem in Quantum Mechanics; Cambridge University Press: New York, 
1967. 

(37) Langhoff, S. R.; Davidson, E. R. Int. J .  Quantum Chem. 1974,8, 61. 
Ahlrichs, R.; Scharf, P.; Ehrhardt, C. J .  Chem. Phys. 1985, 82, 890. 

(38) (a) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Taylor, P. R.; Partridge, 
H. Chem. Phys. Left .  1986, 126,436. (b) Bauschlicher, C. W., Jr.; Taylor, 
P. R. J .  Chem. Phys. 1986,85, 2779. (c) Bauschlicher, C. W., Jr.; Langhoff, 
S. R.; Taylor, P. R.; Handy, N. C.; Knowles, P. J. J .  Chem. Phys. 1986.85, 
1469. (d) Harrison, R. J.; Handy, N.  C. Chem. Phys. Lef t .  1983, 95, 386. 
(e) Saxe, P.; Schaefer, H. F., 111; Handy, N. C. Chem. Phys. Lett. 1981, 79, 
202. 

(39) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J .  Chem. Phys. 
1987,87,5968. 

TABLE I: Mean Absolute Error of Correlation Energies (kcal/mol) 
for CC Methods and Other Single-Reference (RHF) Correlated 
Methods Compared to Full CI“vb 

FH(DZP), BH(DZP), 

F N e  Re l S R e  2.OR, 
CISDC 8.4 4.8 5.5 14.1 34.2 

H,O(DZ), H,O(DZP) 

CISDT‘ 6.5 
CISDTQC.~ 0.4 
LCCD 6.1 
CCD 7.1 
CCSD 3.8 
MBPT(4) 3.2 
M BPT ( 5) - 
MBPT(5) + - 

CCSD + T(CCSD) 0.7 
CCSDT-1 0.7 
CCSDT 0.4 

[2,1]Padte 

3.2 4.3 9.4 21.6 
0.1 0.2 0.5 1.7 
0.7 0.8 1.1 11.2 
1.6 1.7 5.9 16.5 
1.8 1.9 4.4 8.6 
0.4 1.1 3.1 7.8 
- 0.8 2.6 9.2 
- 0.3 1.1 8.3 

0.1 0.2 0.4 3.2 
0.1 0.3 0.7 1.3 
0.1 0.2 0.6 0.9 

“Reference 38. bBasis sets for F are (4s3pld), (4s3p2d), (5s4p2d). 
Basis sets for Ne  are (4s2pld), (6s4pld), (5s3p2d). Molecules listed 
are studied at  three geometries, their respective equilibrium values Re, 
and with the bond(s) stretched to 1.5Re and 2.0Re. A D Z  basis means 
4s2p contracted atomic orbitals on the heavy atom and 2s on H. A 
DZP basis adds a set of d functions on the heavier atom and a set of p 
functions on H ,  Le., (4s2pld/2slp).  c C I  results do not include BH at 
1.5Re and 2.0Re or at  Re for CISDT. dCISDTQ results do not include 
H20(DZP) ,  which has the largest error for the other CI  methods. 
e Results exclude FH. 

and higher product terms are excluded.40 
I should briefly comment on the iterative solution of eq 18d 

to indicate how MBPT approximations arise.35 Separating HN 
into a one-electronf, and two-electron part WN, in the canonical 
S C F  case we would get (D;blf,T21@o) = (to + t b  - t i  - tj)ttb; 
taking this term to the left-hand side (similar terms (to - q ) t :  and 
(to + t b  + t, - ti - ti - would occur in eq 18a and 18c), we 
can initiate an iterative solution by evaluating (ti + t ,  - to - tb)ttb 
= (@W,l@O) to obtain an initial approximation to izb. Inserting 
this approximation into eq 17 gives the MBPT(2) energy, while 
using its value in another iteration of eq 18d gives an updated t tb,  
whose corresponding energy is MBPT(3). Initiating the single- 
and triple-excitation equations and the T2’/2 contribution from 
eq 18d with the first approximation to ttb leads to the MBPT(4) 
energy, while continued iterations of all these equations gives 
convergence to the CCSDT result.35 Hence, in examples where 
convergence is good, MBPT(4) N CCSDT, but the latter method 
will be much better for difficult cases as we will see in the next 
section. 

Numerical Examples 
The above discussion of the rationale for CC theory is nice 

formally, but does it buy us any real improvement in accessible 
computational accuracy? The answer is yes, which I hope to 
demonstrate with several examples in the following. 

(40) The following equations are programmed in QCISD;’* (i) (PIHdT + T~ + T,T,)IO) = AB:; (ii) (:~IHN(I + T ,  + T~ + r22/2)10) = ut:!;  
where T, arethe cluster operators a s  defined here, not the-CI operators fn. 
In CCSD-l4I the TIT2  term in (i) is not included, but the TIt/2 part of the 
energy formula is. In CPMET(C),I4 the TIT2 term is included in (i) and (ii). 
The TIT2  in (ii) contributes in fifth-order MBPT for an SCF reference, while 
in (i) it contributes only in sixth order. Other contributing quadratic terms 
would be TI2/2 which would contribute first in sixth-order MBPT. CCSD 
would also include TI3/3! in (i) and TI2T2/2 and T14/4! in (ii), which would 
be numerically unimportant for ordinary SCF cases but can become quite 
important for non-SCF cases.42 However, all terms including the quartic terms 
require no more than an -n6 computational procedure, as do the other terms. 
Consequently, QCISD is an approximation to CCSD that should be satis- 
factory for nonpathological SCF reference examples. Similarly, QCISD(T) 
is similar to CCSD + T(CCSD).43 The differences are that QCISD(T) deletes 
the higher order terms in CCSD, adds a single-excitation term to the triple- 
excitation expectation value, and excludes the TI2/2 contribution to the energy. 

(41) Purvis, G. D.; Bartlett, R. J. J .  Chem. Phys. 1981, 75, 1284. 
(42) Laidig, W. D.; Purvis, G. D.; Bartlett, R. J. J .  Phys. Chem. 1985,89, 

(43) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J .  Chem. Phys. 1985, 
2161. 

83, 404 1. 
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A. Comparison with Model Exact Solutions. The best that 
can be done in a given basis set is the “full” CI, which for N 
electrons includes in its wave function all possible N-fold exci- 
tations. The full CI  is size extensive; it gives a variational upper 
bound to the exact nonrelativistic energy, and it is independent 
of the particular choice of molecular orbitals. The degree of 
agreement with experiment depends on the A 0  basis set for the 
problem, but agreement with full CI (not experiment) is the 
mathematically consistent goal of any correlated ab initio method. 
If we can obtain the full CI  solution in a basis that is able to 
describe the experimental phenomena accurately (and if relativistic 
corrections are small), the result has to give excellent agreement 
with correct experimental values. 

The full CI solution cannot be obtained except for comparatively 
small examples (small molecules and small basis sets) since 
otherwise the number of configurations, proportional to the number 
of basis functions as -nN, is exorbitant. Consequently, any 
comparisons with full CI could be criticized as being potentially 
different than would occur in large basis or large molecule ap- 
plications. However, many of the recent full CI  results,38 with 
up to 28 million determinants and done mostly a t  NASA Ames 
on the CRAY-2, use a Gaussian (AO) basis set of at least double-[ 
plus polarization (DZP) quality. This means having 4s2pld A O s  
on C, 0, N, F and 2slp on H,  a level of basis that is frequently 
used today in many correlated, chemical applications. Hence, 
the comparisons on uuerage should be indicative of the comparative 
quality of the methods that would be obtained even in much larger 
basis sets. The detailed comparisons with full CI are presented 
e l ~ e w h e r e , * ~ , ~ ~  but they may be summarized as in Table I .  Re 
represents the equilibrium internuclear distance, with 1 SR,  and 
2.0Re corresponding to stretched bonds. 

The largest error occurs when bonds are stretched to twice their 
equilibrium distance, 2.0Re. There is a reason for this behavior. 
In each of the examples listed, a restricted H F  (RHF) calculation 
is used as the reference for the correlated wave function. For 
molecules that separate into open-shell fragments, it is well-known 
that an R H F  function does not separate correctly into neutral 
fragments but instead into an average of ionic states (e.g., F and 
H+ for FH) that is much higher in energy than for the neutral 
atoms. Hence, the R H F  function is qualitatiuely wrong at  large 
separation, causing the correlated wave function to have to attempt 
to overcome this erroneous behavior. This places extreme demands 
on the correlated method compared to the results obtained for 
atoms or for molecules at Re. When two or more determinants 
are equally important (the two determinants I(core)3uil and 
I(core)3u31 enable FH to properly separate into neutral atoms so 
they are equally important a t  large separations), there is an am- 
biguity as to which to use as the reference function for the problem. 
This “multireference” situation manifests itself in causing poor 
convergence of the CC equations. Finite-order MBPT and lin- 
earized (LCCD) energies in particular can tend toward minus 
infinity at large internuclear  distance^.^^^^^ Bond-breaking 
problems of this type, and certain other cases where several de- 
terminants are essential to a correct zeroth-order description of 
some molecular states, like in 03, frequently require multireference 
(MR) based CC techniques as discussed later. Also, unrestricted 
Hartree-Fock (UHF) single-determinant references may be used 
which will frequently separate correctly, but as discussed else- 
where,”*4s U H F  based CC results are generally no better for these 
examples than are the RHF-CC results shown. 

One observation from Table I is that even a linearized (LCCD) 
approximation frequently offers energies much closer to full CI 
than CISD. This is mostly because of the cancellation of unlinked 
diagrams in eq 18d. The LCCD approximation corresponds to 
the wave function (1  + T2)a0, where the (t tb) amplitudes would 
be obtained from eq 18d with all T,, = 0 except for T2, and the 
T 2 / 2  term is also not considered in the equation. However, LCCD 
is not CID, since unlike the CID equations, eq 18d has no unlinked 

Bartlett 

~ 

(44) Cole, S.  J.;  Bartlett, R.  J. J .  Chem. Phys. 1987, 86, 873. 
(45) Laidig, W. D.: Bartlett, R. J. Chem. Phys. Lett. 1984, 104, 424 

Laidig, W. D.; Saxe, P.; Bartlett, R.  J. J .  Chem. Phys. 1987, 86, 887. 

terms in it. This makes LCCD an extensive approximation. A 
rough measure of the value of the extensivity error is the difference 
in energy between LCCD and CISD. Table I shows that for small 
molecules the values of the unlinked diagrams, which, remember, 
do not contribute to the “right” answer (Le., the full CI), severely 
hurt the accuracy of CISD, being -20 kcal/mol in the worst case 
and -4 kcal/mol even for Ne. 

The CCD method, $cc0 = exp(T2)a0, means we only use eq 
18d with T, = T3 = 0, and, now, the TZ2/2  part remains. The 
change from LCCD to CCD is fairly large and because of error 
cancellation LCCD can be fortuitously better. Table I does not 
show that LCCD results sometime overestimate the correlation 
effects (Le., its errors are sometimes negative),gb while CCD results 
tend to lie above the full CI.lS 

CCSD which means T3 = 0, with TI and T2 determined from 
eq 18a and 18b, offers a further improvement, and the CC/MBFT 
methods that include triple excitations are much better. The 
inclusion of triple excitations adds at  least an -n7 step. CCSD 
+ T(CCSD)43 means that, following a CCSD calculation, we 
perturbatively perform a single evaluation of triple excitations using 
the converged CCSD coefficients. This noniterative procedure 
has an -n6NIrs (the number of iterations) dependence for CCSD 
followed by a single -n7T(CCSD) step. CCSDT-1I9 means that 
the contribution of triple excitations is approximated by the largest 
perturbation theory contribution in eq 18c, which comes from T2. 
This in turn defines the T3 amplitudes which contribute to the 
T ,  and T2 parts of eq 18a and 18b. Continuing the iterations until 
convergence gives CCSDT- 1, an - n7NITs procedure. The full 
CCSDT modelZo means eq 18 (after all cancellations as illustrated 
by eq 18d) is solved without any approximation. Its asymptotic 
dependence is -n8NIrs, The average error compared to full CI 
is less than a kcal/mol for CCSDT for these examples. 

Comparing the CISDT model with any of the CC methods 
shows that even the inclusion of triple excitations in CI only offers 
modest improvement over CISD. Once again, the reason lies 
mainly in the unlinked diagrams remaining in CISDT. 

Only when extended to CISDTQ (an -nl0Nm procedure) does 
the ordinary CI method become competitive with the CC methods 
that include triples. The reason is that once the quadruples are 
introduced in CI, we introduce T3/2 along with T4 and the other 
disconnected terms in C4 in eq 15. T3/2 effects the cancellation 
of the numerically most important unlinked diagrams. For large 
enough molecules, however, even CISDTQ will fail to be a good 
approximation because of the unlinked diagrams that could only 
be cancelled by disconnected pentuple, hextuple, and higher ex- 
citations. Hence, CCSDT would be expected to become consid- 
erably better for large molecules, in addition to its superior -n8 
versus -do dependence. (I  might add, we have shown that the 
largest effects of T4 can actually be added to CCSDT with only 
an -n6 depender~ce.~~)  

The -do computational dependence of CISDTQ arises because 
coefficients for all Nn8 quadruple excitations would be computed. 
This is not generally the best use of configurations. The preferable 
CI approach is to define a multireference (MR) set of several 
important configurations and, typically, take all single and double 
excitations from that set. Instead of including all excitations like 
quadruples from one reference, this introduces a selected set of 
excitations, some of which would be “quadruple” relative to a single 
reference. This procedure is superior to a straightforward 
CISDTQ because there are fewer configurations in the MR-CI, 
and the multireference space will normally include the other 
configurations important for bond breaking, ensuring a correct 
zeroth-order description as a function of internuclear separation, 
unlike the R H F  functions discussed above. We refer to such MR 
corrections as “nondynamical” correlation to distinguish the MR 
effect from the “dynamical” correlation introduced so effectively 
in CC/MBPT theory to keep electrons apart. For the examples 
in Table I, and for  sufficiently large M R  spaces, such MR-CI 
methods can obtain results very close to full CI that are as good 
as the CCSDT results are in equilibrium situations and will often 
do better at stretched g e o m e t r i e ~ . ~ ~  However, MR-CI is still not 
rigorously size extensive and in practice is usually still augmented 
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CCSD, CCSDT-I, CCSDT and FULL CI 
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Figure 1. CCSD (*), CCSDT-1 (O) ,  CCSDT (+), and full CI (0) 
curves for the ‘Zg+ ground state of Be2. 

by some unlinked diagram  correction^.^^ M R  methods will have 
similar advantages in CC theory. (See sections E and F for 
MR-coupled cluster examples.) 

We might ask if the very sophisticated CCSDT method provides 
observable improvements over the simple CCSDT-1 and CCSD + T(CCSD) approaches. We might even ask, How important 
are the connected T4 terms that are not in CCSDT? Clearly, for 
small molecules at least, these terms are numerically small since 
the full CI contains all such terms plus Ts, Ts, ... up to the number 
of electrons, and in all examples shown in Table I, these amount 
to <1 kcal/mol. For one ab initio example, however, we have 
a definitive and observable measure of the full effect of T3 and 
T4. This is provided by the very interesting Be2 molecule. Theory 
predicted& and experiment verified47 that Bez was not just a van 
der Waals molecule but had a potential well at -5 bohrs of -2 
kcal/mol that could support several vibrational levels. Many 
theoreticians studied the Bez curve, but depending upon the so- 
phistication of the approach, the inner well could be too deep or 
not appear a t  a11.19a,48 

In Figure 1 are shown CC results at three levels4* obtained in 
a modest (7s3pld) basis compared to full CI.49 The molecule 
is treated as a four-electron system by keeping the Be(lsz) electrons 
frozen, so the full CI is the CISDTQ result in this case, indicated 
by open circles. In this basis, the full CI well depth is 0.7 kcal/mol. 
(In the real world, to obtain the well depth of -2 kcal/mol would 
require a much larger basis (see section B), but the current full 
CI  comparison is sufficient for our purposes.) 

The first thing to notice is that the CCSD result is totally 
repulsive, although it will give the exact result for two Be atoms 
at  large separation, since CCSD is exact for two electrons. 
However, the error in the vicinity of the inner well where we 
actually have four electrons interacting is 2.2 kcal/mol, washing 
out the well. Using CCSDT-1 which adds T3 partly via its effect 
on Tz amplitudes at  least leads to a plateau near 5 au, but still 
no well. Yet the full inclusion of T3,  which unlike CCSDT-1 
permits T3 to have an opportunity to directly affect the T3 am- 
plitudes in the coupled equation ( 1 8 ~ ) : ~  now gives binding. Since 
the only remaining contribution in the full CI that is not in 
CCSDT is the effect of T4, the difference in the two curves 
provides that value. This difference amounts to 0.18 kcal/mol 
at the minimum. 

For metallic systems there is evidence that T4 will be larges0 
and perhaps even comparable to T?/2, despite T4 being of higher 

(46) Lengsfield, B. H.; McLean, A. D.; Yoshimine, M.; Liu, B. J .  Chem. 

(47) Bondybey, V. Chem. Phys. Lett. 1984, 109, 436. 
(48) Sosa, C.; Noga, J.  Bartlett, R.  J. J .  Chem. Phys. 1988, 88, 5974. 
(49) Harrison, R. J.; Handy, N .  C. Chem. Phys. Lett. 1985, 113, 257. 
(50) Paldus, J.; Boyle, M. J.  In?. J .  Quantum Chem. 1982, 22, 1281. 

Phys. 1983, 78, 1891. 

order in perturbation theory; but for most small molecules, T4 and 
higher connected cluster terms should be comparatively unim- 
portant as long as the reference function chosen is a “reasonable” 
approximation. For a poor a0, T4 and higher terms will have to 
be large to overcome the unrealistic starting point, and this can 
happen in some pathological (probably multireference) cases when 
a single-reference function is used. 

B. Basis Sets and Approach to Exact Coupled-Cluster Results. 
The above examples compared to full CI  demonstrate that sin- 
gle-reference CC methods with triples are capable of obtaining 
the basis set limit correlation energy to within a few kcal/mol, 
at least for small molecules. Most of the remaining error comes 
from the choice of (AO) basis set. Although not the subject of 
this article, the interplay between basis set and electron correlation 
is important to predictive quantum chemistry and in assessing the 
accuracy of CC theory. 

To illustrate with an interesting molecule consider C4. The 
transient C4 molecule has been thought to exist in an open-shell 
(3Zi )  cumulene-like linear structure, :C=C=C=C:.51 However, 
accurate calculations have shown that a closed-shell rhombus 
(]Alg) state is close in en erg^.^^^^^ In a DZP (4s2pld) basis a t  
the (UHF) S C F  level, the linear form is lower by 20 kcal/mol, 
yet once correlation is included at  even MBPT(2), the rhombus 
is preferred by almost as much. Going to higher order MBPT(4) 
favors the rhombus by 10.8 kcal/mol. Yet a higher-order CCSD 
+ T(CCSD) calculation reduces this difference to 4.5 kcal /m~l .”~ 
Expanding the basis set to (5s3pld), the linear form is 26 kcal/mol 
more stable a t  the S C F  level, but MBPT(4) now favors the 
rhombus by only 5.6 kcal/mol and CCSD + T(CCSD) reverses 
the stability to be in favor of the linear isomer, but by only 1.3 
k c a l / m ~ l . ~ ~ ~  This is a change in relative energy with basis set 
of about 6 kcal/mol. A systematic further extension of the basis 
may eventually permit an extrapolation to the basis set limit, but 
the basis dimension would be sufficiently large to seldom make 
that practical. Of course, other properties than the energy, like 
moments, polarizabilities, field gradients, etc., can be much more 
sensitive to basis set effects. 

The pervasive basis set problem in quantum chemistry could 
be eliminated in principle by solving the Schrodinger equation 
numerically. A variety of quantum Monte Carlo methodss4 take 
steps in that direction, but they have other problems. At least 
for diatomic molecules, by exploiting the elliptical coordinate 
systemss or by performing two-dimensional numerical integra- 
t i o n ~ , ~ ~  purely numerical Hartree-Fock and multiconfiguration 
Hartree-Fock (MCHF) calculations are now possible. Clearly, 
progress in numerical solutions is being made, but for the fore- 
seeable future, the vast majority of quantum chemical applications 
will have to continue to use some form of basis sets. Adamowicz 
and I have investigated one way to attempt to transcend the 
limitations of conventional basis sets in CC/MBPT to attempt 
to approach the exact result, by using a basis set of numerical 
orbitals. 

Solving the HF equations for diatomics n ~ m e r i c a l l y ~ ’ ~ ~ ~  provides 
us with Hartree-Fock limit results for the occupied orbitals, and 

(51) Pitzer, K. S.; Clementi, E. J .  Am.  Chem. SOC. 1958, 81, 4477. 
(52) Whiteside, R. A.; Krishnan, R.; DeFrees, D. J.; Pople, J. A. Chem. 

Phys. Lett. 1981, 78, 538. 
(53) (a) Magers, D. H.; Harrison, R. J.; Bartlett, R.  J. J .  Chem. Phys. 

1986, 84, 3284. (b) Bernholdt, D.; Magers, D. H.; Bartlett, R. J. J .  Chem. 
Phys. 1988,89, 3612. 

(54) See for example: Ceperley, D. M.; Kolos, M. H. In Monte Carlo 
Methods in Statistical Physics; Binder, K . ,  Ed.; Springer: Berlin, 1979. 
Reynolds, P. J.; Ceperley, D. M.; Alder, B. J.; Lester, W. A, ,  Jr. J.  Chem. 
Phys. 1982, 77, 5573. Moskowtiz, J. W.; Schmidt, K. E.; Lee, M. A.; Kolos, 
M. H. J .  Chem. Phys. 1982, 76, 1064. 

(55) McCullough, E. A. J .  Chem. Phys. 1975,62, 399. Adamowicz, L.; 
McCullough, E. A. J .  Chem. Phys. 1981, 75, 2475. 

(56) Laaksonen, L.; Pykko, P.; Sandholm, D. Comput. Phys. Rep. 1986, 
4, 313 .  

(57) (a) Adamowicz, L.; Bartlett, R. J.  J .  Chem. Phys. 1986, 84, 6837. 
(b) Adamowicz, L.; Bartlett, R. J.; McCullough, E. A. Phys. Rev. Lett. 1985, 
54,426. (c) Adamowicz, L.; Bartlett, R. J. Int. J .  Quantum Chem. 1987, 31, 
173. (d) In Applied Quantum Chemistry; Smith, V. H., Ed.; Reidel: Dor- 
drecht, 1986; p 1 1 1 .  
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N e  (28a,24~,176,7$) 94.5 
LiH (3Oa ,24~ ,  166,126) 85.2 
FH (45a,40~,266,8$) 96.6 
FH (19~ ,21~ ,176 ,5$ )  94.2 
F (19U,21H,176,5$) 93.7 
F (19U,21*,176,5@) 93.4 

94.2 
95.2 
96.0 
93.9 
90.7 
96.7 

TABLE 11: Percent AE Obtained by Numerical Orbital CC/MBPT Results (au)' 
MBPT(2) MBPT(3) MBPT(4) CCSD CCSD + T(CCSD) 

96.6 94.4 96.0 
97.7 98.6 98.8 
99.1 96.4 98.7b 
96.9 94.3 96.6 
96.0 91.8 94.8 
98.4 94.0 95.7 

"All results are  from the papers in ref 57-60. b99.7 extrapolate m). 

solving a series of MCHF equations (discussed elsewheres5) 
provides us with a set of unoccupied orbitals enabling us to describe 
electron correlation in the usual framework. Insofar as this set 
of orbitals is nearly complete (there is no mathematical proof!) 
and a CC calculation using them should be close to the full CI  
in that basis, we should be close to the exact solution of the 
(nonrelativistic) Schrodinger equation. Some results using this 
method are illustrated in Table 11. 

The basis sets are defined for each system. Since the numerical 
program is for diatomics, the designation uses diatomic symmetry 
even for atoms. The first observation is that on average about 
95% of the "experimental" correlation energy is obtained. This 
should be contrasted with -9599% of the basis set limit cor- 
relation energy for the examples shown in Table I; yet the DZP 
bases there would offer only -60% of the experimental corre- 
lations energy. Hence, these numerical basis results are among 
the most accurate obtained for molecules and attest to the accuracy 
of CC/MBPT methods with excellent basis sets. 

Two FH calculations are presented. The smaller but very 
extensive basis of 105 functions is also used for F and F to permit 
the evaluation of a highly accurate dissociation energy for FH 
and electron affinity of F, both classic, long-term objectives of 
ab initio quantum chemistry. The residual correlation energy error 
for these species of 3 4 %  is about 8 kcal/mol although most of 
the error would be expected to cancel in evaluating the energy 
differences for dissociation and electron attachment. The De of 
141.8 kcal/mol agrees exactly with experiment,59 but this is partly 
accidental since there is a potential change of a few kcal/mol for 
further extensions even in this high level of calculation. The 
electron affinity obtained for F is 3.37 eV compared to an ex- 
perimental value of 3.41. Notice that MBPT(4) gives poorer 
results of 146.2 kcal/mol and 3.65 eV, respectively. 

The other very extensive basis FH calculation ( n  = 193)58 uses 
a hybrid numerical and Slater orbital basis and our optimized 
virtual orbital space (OVOS) method.59 With extrapolation we 
obtain almost the exact result, but the main point to make here 
is the slow convergence with basis set of the correlation energy. 
Even increasing n from 105 to 193 gains only a couple of percent 
of the correlation energy, reducing the error to 3.1 kcal/mol. 
Extrapolation for contributions of functions with m > 3 affects 
the result by another 2-3 kcal/mol. We have used numerical 
orbital CC methods to correctly describe highly diffuse dipole 
bound anions including some excited states,60 since more con- 
ventional basis sets would not generally be appropriate. 

The numerical orbital technique is currently only possible for 
diatomic molecules. To study polyatomic systems more accurately 
than before requires other approaches. Two worth mentioning 
are the atomic natural orbital techniques6' and our complementary 
OVOS method.5g For example, using OVOS we were able to 
reduce a benzene basis from 105 virtual orbitals to only 30 and 
still retain 97% of the full basis CC correlation energy with a 
hybrid method.59 

C. Vibrational Frequencies. In CC theory we are not just 
interested in energies but also in the shape of potential energy 
surfaces. To raise the question of how well CC theory can treat 
such problems, we can take the example of the H,O molecule. 

(58) Adamowicz, L.; Bartlett, R. J. Phys. Reu. 1988, A37, I .  
(59) Adamowicz, L.; Bartlett, R.  J. J .  Chem. Phys. 1987, 86, 6314. 
(60) Adamowicz, L.; Bartlett, R. J. J .  Chem. Phys. 1987, 88, 313; Chem. 

(61) Almlof, J.; Taylor, P. R .  J .  Chem. Phys. 1987, 86, 4070. 
Phys. Lett. 1986, 129, 159. 

TABLE 111: Errors in Fundamental Frequencies for H20 vs 
Exwriment ( c d )  

Awl Aw2 Aw3 
SC F 300 123 293 
CISD 98 54 93 
CCSD 34 40 32 
MBPT(4) -9 25 6 
CCSDT- 1 -2 28 -3 

In a series of papers,62 CI, MBPT, and CC results for the quartic 
force field of H 2 0  were determined. This was done by evaluating 
the energy at 36 geometries (symmetric and asymmetric) in the 
vicinity of the equilibrium geometry using an extended Slater 
orbital basis. By fitting these points and solving the vibrational 
Schrodinger equation, we obtained the fundamental frequencies, 
a series of overtone frequencies corresponding to levels accessible 
by a few quanta, and the constants Xij which characterize low- 
order anharmonicity in the potential energy function. 

The errors in the fundamental frequencies compared to ex- 
periment for SCF, CISD, and various CC/MBPT methods are 
shown in Table 111. The CISD result improves upon S C F  by 
close to a factor of 3 in the two stretching modes and somewhat 
less for the bending mode. CCSD improves upon CISD by another 
factor of 3, attesting to the important effect of the unlinked 
diagrams left in CISD compared to CCSD. Once triple excitations 
are included via the CCSDT-1 model, excellent agreement is 
obtained for the two stretch modes, but somewhat poorer results 
are obtained for the bend. The constancy of the error in the latter 
tends to suggest a basis set deficiency that preferentially affects 
that mode. 

Bowman et al.63 fit our CCSDT-1 surface and found the average 
error in the predicted frequencies for 18 vibrational states to be 
less than 18 cm-'. By making an adjustment in the bending force 
constant which attempted to correct for the observed basis set 
error, he reduced the average error in the set of frequencies to 
only 6 cm-'. 

Of course, the best way to study energy surfaces is not to 
compute a series of energies a t  different geometries and fit the 
surface but to analytically compute first, second, and eventually 
higher derivatives. However, we are still a long way from doing 
that for a quartic force field a t  a correlated level. (Cubic S C F  
derivatives have been done, however.64) On the other hand, great 
progress has recently been made in analytical first derivatives in 
CC/MBPT which permits frequency calculations from finite 
differences of gradients, and analytical second derivatives have 
been implemented for the simplest correlated model, MBPT( 2)? 
Soon I expect general CC second and third derivatives will be 
available. 

The theory for CC analytical derivatives, which has MBPT as 
a special case, has been pre~ented.~ '  The basic idea is straight- 

(62) Bartlett, R. J.; Cole, S. J.; Purvis, G. D.; Ermler, W. C.; Hsieh, H. 
C.; Shavitt, I .  J .  Chem. Phys. 1987, 87, 6579. Bartlett, R. J.; Shavitt, I.; 
Purvis, G. D. J .  Chem. Phys. 1979, 71, 281. Rosenberg, B. J.; Ermler, W. 
C.; Shavitt, I .  J .  Chem. Phys. 1976, 65, 4072. 

(63) Bowman, J. M.;  Wierzbicki, A,; Zuniga, J. Chem. Phys. Lett. 1988, 
150, 269. 

(64) Gaw, J. F.; Handy, N. C. Chem. Phys. Lett. 1986, 128, 182. 
(65) Fitzgerald, G. B.; Cole, S. J.; Bartlett, R. J. J .  Chem. Phys. 1986, 85, 

1702. Handy, N. C.; Amos, R. D.; Gaw, J. F.; Rice, J .  E.; Simandrias, E. 
D.; Lee, T. J.; Harrison, R. J.; Laidig, W. D.; Fitzgerald, G. B.; Bartlett, R. 
J. In Geometrical Deriuatiues of Energy Surfaces and Molecular Properties; 
Jorgensen, P., Simons, J., Eds.; Reidel: Dordrecht, 1985. 
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correct results at the noninteracting limit, which reduced their 
result to 1.6 kcal/mol. Schaefer, however, concludes that all the 
quality calculations indicate the barrier must be greater than 2.35 
kcal/mol. Quantum chemistry is being pushed to agonize over 
a difference of - 1 kcal/mol, but in this reaction, as in Be2, it is 
an important 1 kcal/mol. 

Several very thorough MR-CI studies, with very extended 
bases, consistently find a barrier higher than 3.43 kcal/mol. 
However, since the size-extensive property of CC/MBPT is 
particularly important in getting correct relative energies as in 
an activation barrier, might we expect some potential improvement 
from such methods? A very large basis UHF-MBPT(4) study 
was performed by Frisch et al.,72 resulting in values of 3.24 and 
3.68 kcal/mol, depending on the geometry choice. This is an 
extensive method, so it tends to support the MR-CI results. 
However, a UHF reference suffers from spin contamination which 
might artificially increase the value of the UHF-MBFT'(4) barrier 
due to quartet and higher spin states. 

CC theory can potentially improve upon CI because of its size 
extensive property. It can improve upon MBPT(4) because of 
its infinite-order correlation corrections. Also, CC theory sig- 
nificantly improves upon the U H F  spin multiplicity as several 
results have shown.73 Furthermore, a theorem74 shows that CCSD 
will naturally benefit from annihilation of the principal U H F  
contaminant, so at the level of UHF + CCSDT-1 we might expect 
to get a better result than the finite-order UHF-MBPT. Using 
the extended basis of Schwenke et al., Rittby and I did this 
calculation and found a barrier of 2.5 kcal /m01,~~ which is sig- 
nificantly lower than the unscaled MR-CI result of 3.69 kcal/mol. 
As this basis is comparable with that of Frisch et al.,72 we can 
expect UHF multiplicity corrections plus infinite-order correlation 
corrections to perhaps be as large as -0.7 to - 1.2 kcal/mol. 

An even more pervasive improvement on an erroneous U H F  
multiplicity is offered by a new method recently developed, which 
is to use a restricted open-shell Hartree-Fock reference (ROHF) 
or a variant we call a (quasi)-QRHF function as a starting point.76 
The latter is composed of any set of orbitals, like those for FH2+, 
which we can then doubly occupy up to the open-shell orbital, 
to offer a starting point for FH2. Unlike U H F  for open shells, 
QRHF or ROHF offers pure doublet reference states, which aids 
in further eliminating spin contamination. The CC _wave function 
is spin contaminated, but its projected value ( @olS211c/,) = S ( S  
+ 1) is not. Using this method and CCSDT-1, we obtain 2.0 
kcal/mol for the activation barrier, closer to the scaled estimate 
of Truhlar in the same basis. The residual effects can be due to 
higher correlation corrections and to expected additional basis set 
deficiencies, but we also see changes as large as 0.3 kcal/mol in 
ROHF versus QRHF for this example. This would not happen 
at the full CI limit, so we can only conclude that there is good 
evidence that the barrier is near or below the 2.35 kcal/mol 
estimate of Schaefer. 

A thorough study recently published by Bauschlicher et al.77 
obtains a classical barrier of 2.89 kcal/mol for MR-CI, and using 
a correction for unlinked diagrams reduces this value to 2.14 
kcal/mol (falling between our results). The unlinked diagram 
estimate of 0.75 is highly significant here, as even for extremely 
sophisticated calculations, unlinked diagram, size-extensive cor- 
rections remain a crucial part of the final result. This should be 
contrasted with CC results that eliminates unlinked diagrams 
rigorously. Corrections to the adiabatic approximation further 
lower Bauschlicher et al.'s predicted barrier to 1.86 kcal /m01.~~ 

TABLE IV: FH2 Barrier and Transition-State Geometry 

geometry, 
au barrier, 

method basis R F H  R H H  kcal/mol 
MR-CI" 

MR-CIC 
MR-CIc 
UHF-CCSDT- 1 
QRHF-CCSDT-ld 
MR-CI' 
MR-CI 
MR-CI 

MBPT(4)b 
7s5p3d2f/4s3pZd 
1 ls7pSd3f/7sSp3d 
8s5p3dl f/3s lpld 
8s5p3dlf/3slpld 
8s5p3dl f/3slpld 
8s5p3dlf/3slpld 
5s5p3d2f lg/4s3p2d 
5s5p3d2flg/4s3p2d 
5s5p3d2flg/4s3p2d 

2.80 1.46 3.43 
2.72 1.46 3.68 
2.81 1.46 3.69 
3.07 1.43 1.59' 
2.78 1.46 2.50 
2.78 1.46 2.02 
2.88 1.45 2.89 
2.91 1.44 2.148 
2.91 1.44 1.86h 

" Reference 72b. Reference 72a. Reference 7 1. Reference 75 
and this work. Transition-state geometry determined by the CCSD + 
T(CCSD) method. ' Reference 77. fScaled. g Plus Q correction. 
Plus Q and adiabatic correction. 

forward. Since the energy and coefficients are computed in eq 
17 and 18, differentiation of these equations with respect to some 
atomic displacement for an atom, X,, gives a set of equations for 
AEa and which may be solved simultaneously to provide the 
first derivatives. Proceeding in this brute force fashion is not 
recommended, however, since that would require the solution of 
-3N (linearized) CC equations, one for each possible X,. 
Fortunately, we were able to show that the CC gradient problem 
could be formulated such that only a single linearized CC-like 
equation needed to be solvedz7 and that this could be readily 
accomplished in what we term a "relaxed" density formulation 
that avoids all derivative integral transformations. Our initial 
implementation for CCD2* did not make use of this efficient 
density approach, but subsequently, the density approach was 
implemented by Scheiner et al.29 at  the CCSD level. They have 
now presented results for harmonic vibrational frequencies of small 
molecules with great success.66 The average CCSD error is 2.2% 
compared to 3.7% for CISD and 9.1% for SCF. MBPT(3) and 
MBPT(4) gradients have also been implemented by using the 
relaxed density method.67 In addition, CCSDT- 1 analytical 
gradients have been reported by Scuseria and Schaefer,68a dem- 
onstrating the high accuracy we observed for the H 2 0  molecule, 
for a wider class of small molecules. They also observe some 
important changes for frequencies of multiply bonded systems like 
C O  between CCSDT-I and CCSDT,68b analogous to the Be2 
binding energy example above. A bonus from the analytical 
gradient theory is that the correlated relaxed density is obtained 
as a byproduct. This permits the facile evaluation of all one- 
electron properties like moments, field gradients, etc.,68c plus 
density plots for qualitative studies of the effects of electron 

D. Activation Barrier. Another example of great interest and 
controversy is the classical barrier of the extensively studied re- 
action F + H2 - FH + H, recently reviewed by Schaefer.'O In 
essence, the best ab initio calculations had predicted 3-4 kcal/mol 
for this barrier, but the experimental value is believed to be 1-1.2 
kcal/mol. Pertinent results are summarized in Table IV. 
Schwenke et al.71 performed a large basis MR-CI calculation 
which gave a computed barrier of 3.69 kcal/mol but then intro- 
duced some empirical scale factors based upon requiring the 

(66) Besler, B. H.; Scuseria, G. E.; Scheiner, A. C.; Schaefer, H. F., I11 
J .  Chem. Phys. 1988, 89, 360. 

(67) (a) Salter, E. A,; Trucks, G. W.; Fitzgerald, G. B.; Bartlett, R J. 
Chem. Phys. Leu. 1987, 141, 61. (b) Trucks, G. W.; Salter, E. A,; Sosa, C.; 
Bartlett, R. J. Chem. Phys. Lett. 1988, 147, 359. (c) Trucks, G. W.; Salter, 
E. A.; Noga, J.; Bartlett, R. J. Chem. Phys. Lett. 1988, 150, 37. (d) Trucks, 
G. W.; Watts, J.; Salter, E. A.; Bartlett, R. J. Chem. Phys. Lett. 1988, 153, 
4911 ._  _ .  

(68) (a) Scuseria, G.; Schaefer, H. F., I11 Chem. Phys. Lett. 1988, 146, 

(69) Sosa, C.;  Trucks, G. W.; Purvis, G. D., 111; Bartlett. R. J. J .  Mol.  
23. (b) Ibid. 1988, 152, 382. 

Graphics, in press. 

Phys. 1986, 84, 5706. 

(70) Schaefer, H. F., I11 J .  Phys. Chem. 1985, 89, 5336. 
(71) Schwenke, D. W.; Steckler, R.; Brown, F. B.; Truhlar, D. G. J .  Chem. 

(72) Frisch, M. J.; Binkley, J .  S.; Schaefer, H. F., I11 J .  Chem. Phys. 1984, 
81, 1882. Frisch, M. J.; Liu, B.; Binkley, J. S.; Schaefer, H. F., 111; Miller, 
W. H. Chem. Phys. Lett. 1985, 114, 1. 

(73) Bartlett, R. J.; Sekino, H.; Purvis, G. D., I11 Chem. Phys. Lett. 1983, 
98,66. Purvis, G. D.; Sekino, H.; Bartlett, R. J .  Commun. Czech. Chem. SOC. 
1988, 53, 2203. 

(74) Schlegel, H. B. J .  Phys. Chem. 1988, 92, 3075. 
(75) Rittby, Bartlett, R. J. Presented at Sanibel Symposium, March 1987, 

to be Dublished. 
(76) Rittby, M.; Bartlett, R. J.  J .  Phys. Chem. 1988, 92, 3033. 
(77) Bauschlicher, C. W.; Walch, S. P.; Langhoff, S. R.; Taylor, P. R.; 

Jaffe, R. L. J .  Chem. Phys. 1988, 88, 1743. 
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Figure 2. RHF-based SCF, CISD, CCSD and CCSDT-1, MCSCF-IO, 
MRCISD-10, and MR-LCCM-10 potential curves for F2. All potential 
curves are shifted such that their respective energy minima are zero. The 
various curves are identified as follows: (---) SCF, (0) CISD, (0) 
CCSD, (+) CCSDT-1, (0) MCSCF, (m) MR-CISD, and (0) MR- 
LCCM. 

The activation barrier of F + H2 is an example of a problem 
where most corrections due to basis set, correlation, spin con- 
tamination, size-extensivity, and multireference character have 
effectively the same sign, which is the worst situation possible for 
quantum chemistry since there is little error cancellation. The 
fact that the spin-restricted open-shell CC methods can help resolve 
such delicate energy differences is an encouraging result. 

Another study of an activation barrier is also informative. In 
the automerization of cyclobutadiene the transition state (TS) 
is a square that requires two important configurations to describe 
its wave function. A two-configuration S C F  (GVB)78 is the 
obvious choice. Attempting to obtain this barrier with a single 
configuration is diffi~ult.’~ The correct barrier is probably about 
9-10 kcal/mol. 

In a DZP basis a single-configuration SCF gives 30.6 kcal/mol, 
attesting to the difficulty in describing the TS. CISD using the 
S C F  as a reference would give only a modest improvement. 
Second- and third-order MBPT is about the same, or -20-24 
kcal/mol, but even in fourth order (19.5), MBPT misses the 
barrier by a factor of 2. CCSD is no better (19.8). Yet when 
triple excitations are introduced into the CC method, CCSD + 
T(CCSD) gives 14.4 kcal/mol with their more complete inclusion 
in CCSDT-1 providing a good answer (9S)?9 Note that in section 
A triple excitations were usually required to successfully overcome 
the errors a t  stretched geometries, which is another manifestation 
of a multireference problem. However, GVB-CISD is a relatively 
simple calculation and is already quite accurate for the barrier. 
Even GVB itself is cornparatively good. 

Problems that benefit from the unambiguous use of a single- 
reference function even when inappropriate can often be accurately 
solved by CC theory if connected triple excitations are included. 
However, multireference CC variants analogous to the GVB-CI 
are going to be preferred for many classes of problems. 

E .  Single-State Multireference Coupled-Cluster Methods. 
Multireference C C  theories fall into two categories: those that 
describe bond-breaking phenomena and those directed toward 
excitation or ionization energies. For bond breaking crude first 
attempts to handle this problem have been made!, The essential 
idea is to use a wave function like +i = eT$7 where $7 = C,@,C,~ 
consists of a sum over a series of important determinants @* 
weighted by c,,, that introduce the “nondynamic” correlation. One 
realization for $7 is a multiconfiguration (MCSCF) wave function. 

(78) Bobrowicz, F. W.; Goddard, W. A,, 111 In Modern Theoretical 
Chemistry; Schaefer, H. F., 111, Ed.; Plenum Press: New York, 1977; Vol. 
3, pp 79-127. 

(79) Carsky, P.; Bartlett, R. J.; Fitzgerald, G .  B.; Noga, J.; Spirko, V. J .  
Chem. Phys. 1988,89, 3008. 
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Figure 3. RHF-based CISD, CCSD and CCSDT-1, MCSCF, MR- 
CISD, and MR-LCCM potential curves for N2 (absolute scale). The 
various curves are identified as follows: (0)  CISD, (0) CCSD, (A) 
CCSDT-1, (0) MCSCF, (+) MR-CISD, and (*) MR-LCCM. 

T,  here, has to be suitably defined to generate nonredundant classes 
of excitations from all the determinants in the MCSCF. This is 
a single, but multiconfiguration, reference approach. It may be 
generalized by introducing an effective Hamiltonian matrix (see 
section F) whose eigenvectors are the ( c ~ ) , ~ ,  but in a first ap- 
proximation the coefficients are fixed at  their MCSCF values. 

Building upon some work of P a l d ~ s , ~ ~  we have solved these 
MR-CC equations in a linear approximation, -( 1 + n$: termed 
MR-LCCM,45 but this is still quite informative. Results for the 
F2 and Nz molecule are shown in Figure 2 and 3.  For Fz the 
minima of the curves are superimposed while for N z  absolute 
locations are shown. 

The R H F  result for F2 shows the erroneous separation char- 
acteristic previously discussed. The MCSCF for F2, which consists 
of 10 configurations, is qualitatively correct but leads to a sub- 
stantially wrong De. For N2 the MCSCF consists of 176 con- 
figurations, and though it separates correctly, it too underestimates 
the dissociation energy. As long as a reference function is 
qualitatively right, however, the exponential operator even line- 
arized introduces much of the dynamic correlation. In this case, 
the T operator generates the other single and double excitations 
relative to all the references. The analogue in CI  is known as 
complete active space CASSCF-CI or FORS-CLS0 In both F2 
and N2, a single and a triple bond, MR-CISD and MR-LCCM 
give curves that separate correctly. With a couple of exceptions, 
all the single-reference CI, CC, or MBPT methods fail. For F2, 
where only a single bond is broken, the CCSDT-1 method even 
with an R H F  reference provides a good curve all the way to 6 
bohrs. This should be contrasted with the same method for N2, 
where CCSDT-1 is fine until about 3.5 bohrs, but fails beyond 
that. In other words, additional corrections, possibly due to more 
complete inclusion of T3 plus T4, T,, or T6, might be important 
to correctly describe Nz when using an incorrectly separating R H F  
reference. Since UHF correctly separates for N2, UHF-CC curves 
shown elsewhere45 are much improved as they benefit from the 
spin annihilation inherent in CCSD and CCSDT-1 but are still 
not as accurate as the MR-LCCM results. Much work remains 
to be done in developing rigorous, accurate MR-CC methods for 
potential energy surfaces. 

F. Multistate Multireference Coupled-Cluster Theory. So  
far, we have mostly limited ourselves to CC methods directed 
toward the ground state (or lowest state of a given symmetry). 
However, we obviously need to be able to treat excited, ionized, 
and electron attached states equally well. In this regard, the CC 
theory offers some new ideas. These ideas have their origin in 

(80) Roos, B. 0.; Taylor, P. R.; Siegbahn, P. E. M .  Chem. Phys. 1980,48, 
157. Cheung, L. M.; Sundberg, K. R.; Reudenberg, K. Int .  J .  Quantum 
Chem. 1979, 16, 1103. 
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a “universal” (wave) operator R81J’z that will take a reference 
function into the exact solution for the Schriidinger equation. In 
the standard theory Q = exp(T) and the “model” or reference 
function is a0, an independent particle solution like SCF. For 
other kinds of states, we want to define an M R  model function, +: = C,,d,,c,,, where {d,} are a set of important configurations, 
as above. However, R will still take +O into the exact solution 

However, unlike the 
approach in section E, here we do not care how many electrons 
are being described by +,. That is, one and only one “universal” 
R will be able to take an appropriately chosen +: into the exact 
solution for ionization processes ( N  - l ) ,  electron affinities ( N  + l ) ,  or excited states (N). Similarly, we can describe double 
ionization ( N  - 2), as is important to Auger spectroscopy, and 
many other phenomena. In mathematical language we say we 
are now working in Fock space instead of Hilbert space, since in 
Fock space we can change the number of electrons. 

An example might make this discussion more concrete. For 
an eight-electron system we have a0 = li$7kklll, the determinant 
of four spatial (eight spin) orbitals. We perform a CC calculation 
to define the ground-state energy and wave function exp( T)a0. 
We will assume k and I correspond to inner shell electron pairs 
which are of less interest, while i a n d j  correspond to the valence 
orbitals. The latter will be said to be active. Similarly, we have 
a set of unoccupied orbitals labeled as a,  b, c ,  ... of which we will 
assume a and b are the unoccupied orbitals chosen to be active. 
To describe an ionization from the cccup-x! oibjtal i or j ,  we would 
define a doublet model function +: = c,lijjkklll + c$ckRIjJ. We 
now require two things: To get the exact solution we require that 
all possible new correlation effects (i.e., the distinct excitations 
from the two N - 1 electron determinants) be introduced by the 
wave operator 0, and we need to know the values of c! and cj. The 
excitations that we can now have involve the orbitals i andj ,  since 
they are empty in one or the other determinants, and we can now 
excite an electron from k and 1 into i or j .  Since this cannot happen 
in the ground state, we have new coefficients (amplitudes) for these 
processes which we term S(O, l ) .  

Our universal wave operator80 becomes R = {exp(T) exp(S(OJ))J. 
(The “normal ordering” signified by OZ4 is important to avoid 
ambiguity in the definition but is not essential to the concepts we 
are describing.) All terms in S(O,l) expanded in terms of the cluster 
operators Sn(OJ) would give zero when applied to a0, so Q is correct 
for the ground state and now also for the ionized states. Inserting 
R into the Schrodinger equation and subtracting the ground-state 
energy, we obtain the ionization energies {a,) and coefficients from 
the effective Hamiltonian equation, H,f,€ = C w ,  H,ff = 
(@lR-lHRl@) for 4 the ( N  - 1) electron functions that span the 
reference space. Analogous to the single-reference case, the 
coefficients in the operator S(O,I) are obtained from projecting the 
Schriidinger equation onto the set of N - 1 electron determinants 
that are orthogonal to the reference determinants. Tis known 
from the ground-state solution. 

At the next stage in this hierarchy, we would define a model 
space of N + 1 electron determinants li$jkkljal by adding ad- 
ditional active unoccupied orbitals. The same procedure will lead 
to an S ( l s o )  operator for the new excitations we can now introduce 
by virtue of exciting from the new occupied orbital, a. Now our 
universal operator becomes R = (exp( 7‘) exp(S(O,’)) exp(S(’*o))}, 
and the eigenvalues of the Hcff constructed in the N + 1 electron 
space give the electron affinities. 

The next stage is to consider excitation energies. A reasonable 
model space for most such states consists of a set of singly excited 
(N-particle) determinants like la$]k&ljl where the electron in active 
orbital i is excited to orbital a. We now have some new correlation 
effects in the excited state introduced by excitations like removing 
electrons from orbitals a and k and putting them into i and c, e.g., 
that we could not previously have in T,  S(OJ), or S(lvo). We call 

of the Schrodinger equation, $, = R+,. ‘s 

(81) Lindgren, I. Int. J .  Quantum Chem. Symp.  1978, 12,  33. Lindgren, 
I.; Mukherjee, D. Phys. Rep. 1987, 151, 93. 

(82) Mukherjee, D. Int. J .  Quantum Chem. Symp.  1986, 20, 409. Muk- 
herjee, D.; Moitra, R. K.; Mukhopadhyay, A. Mol. Phys. 1975, 30, 1861; 
1977, 33, 955. 

TABLE V Vertical Excitation Energies of N2 and CO in DZP Basis 
Sets (eV) 

N2 (R = 2.074 au) CO (R = 2.132 au) 
state MRCC exPt state MRCC exut 

B ’II, 7.95 8.1 a ’II 6.32 6.3 
a In, 9.27 9.3 A I I I  8.79 8.5 
A ’2”’ 7.60 7.8 a’ 3E+ 8.26 8.5 
B 3Z; 9.92 9.7 e ’2- 9.82 9.9 
W 3Au 8.95 8.9 d ’A 9.18 9.4 
a’ l&- 10.12 9.9 I ‘E- 9.92 9.9 
w ‘A,, 10.59 10.3 D ‘A 10.10 10.2 

the operator composed of these amplitudes, S(lJ) and R gains a 
fourth exponential term. Hierarchially building upon all prior 
operators whose amplitudes have since been determined, we can 
now construct R and Herr. Its eigenvalues are the electronic 
excitation energies. We present results for the prototype molecules 
N2 and CO in Table V. These numbers, computed with a DZP 
basis, included all one- and two-electron operators in the S, op- 
erators (MR-CCSD), while the ground-state T was determined 
by CCD. Higher excitations can be introduced in T and S to 
approach the exact solution, leading to a series of approximations 
analogous to those already presented in the single-reference CC 
method. 

We also obtain the ionization potentials as a step toward the 
excitation energies. For the first two ionizations these are 14.0 
and 16.6 eV for CO compared to experimental values, 14.0 and 
16.9 eV. For N2 the same results are 15.3 and 17.0 V compared 
to 15.6 and 17.0 eV. These can be improved with a better basis 
and some consideration of triple e x c i t a t i ~ n s . ~ ~ ~ ~ ~  The excitation 
energies are already quite good, however, and competitive with 
good CI, higher RPA, and polarization propagator results.24 With 
a basis set appropriately chosen to be able to describe anions, 
electron affinities can also be quite accurate.26 

There is a definite philosophical difference between the Fock 
space approach and more conventional quantum chemistry. To 
get excitation energies, you have to compute ionization potentials 
and electron affinities whether you want them or not. On the other 
hand, assuming we want to know all the properties of a molecule, 
there is an economy and unity in performing calculations in this 
way. I believe the Fock space approach will be a further area 
of great development in quantum chemistry. 

The Future in Coupled-Cluster Theory: Some Speculations 
Since this article calls for speculations, I will at least risk a few 

comments from my personal perspective. 
We have seen several examples that show how correlation 

effects, comparatively easily included in single-reference CC 
theory, permit better results to be obtained for molecules than 
many other methods. MR-CC should further expand the at- 
tainable accuracy. CC theory, like its finite-order MBPT ap- 
proximation, lends itself to “easily used” computer programs. This 
has its pros and cons, but the universal application GAUSSIAN 
for MBPT calculations suggests that some system like our ACES 
program,85 which performed all the CC/MBPT calculations re- 
ported here, and will be released soon, could have a similar ap- 
plicability for CC theory. “Quadratic CI”39 which, remember, 
is a restricted CC theory, will be in future editions of the GAUSSIAN 
program system. 

We have discussed single-reference and two variants of mul- 
tireference CC theory. The unity of the Fock space approach for 
a variety of properties is appealing and will soon near a routine 
application level. The MR-CC approach to potential energy 

(83) Kaldor, U. In?. J .  Quantum Chem. Symp.  1986, 20, 445. 
(84) GAUSSIAN 86: Frisch, M. J.; Binkley, J. S.; Schlegel, H.  B.; Ragha- 

vachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; 
Rohlfing, C. M.; Kahn, L. R.; Defrees, D. J.; Seeger, R.; Whiteside, R. A.; 
Fox, D. J.; Fleuder, E. M.; Pople, J. A. Carnegie-Mellon Quantum Chemistry 
Publishing Unit, Pittsburgh, PA, 1984. 

(85) ACES (Advanced Concepts in Electronic Structure Program System): 
Bartlett, R. J.; Purvis, G. D., 111; Fitzgerald, G. B.; Harrison, R. J.; Rittby, 
M.; Sosa, C.; Lee, Y .  S.; Trucks, G. W.; Cole, S. J.; Salter, E. A.; Pal, S.; 
Watts, J.; Laidig, W. D.; Magers, D. H.; Stanton, J. F.; Bernholdt, D. 
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surfaces is still undergoing rapid development. The so-called 
“intruder state” problem, where configurations excluded from the 
reference space assume unusual importance, is severe for potential 
energy surfaces (PES). This can introduce singularities in an 
effective Hamiltonian method. Hence, applications to PES where 
very different configurations can be important a t  different ge- 
ometries would seem to recommend a single but multidetermi- 
nantal reference as discussed in section E, if such a CC theory 
can be formulated rigorously. 

New kinds of CC approaches that maintain the size-extensive 
property can be envisioned. Two of these may be viewed to arise 
from an expectation value e x p r e ~ ~ i o n . ~ , ~ ~ * ~ ~ , ~ ~ ~  
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AE = (ol[exp(p)HN exp(T)lclO) 

or from a unitary ansatz87b,88 

Bartlett 

izabilitiesgO that are important in nonlinear optical behavior, for 
magnetic susceptibilities, and for numerous other properties of 
interest. Other CC methods proposed with an eye toward prop- 
erties are the ECCM approaches of Arponen et aL9* 

For polymers and other extended systems, only size-extensive 
(“many-body”) methods are appropriate. I anticipate that sub- 
stantial efforts will be directed toward coupling CC methods with 
translational symmetry conditions to try to obtain correlated 
studies of energy levels in solids and polymers. An important 
application today might be to high-temperature superconducting 
materials, where among other elements, strong pair correlations 
that would be ideally introduced by CC theory, might play an 
important role. 

When translational symmetry is not present, more conventional 
but stili “extensive” large molecule quantum chemical methods 
would have to be used. Any such method is likely to be based 
upon some localized-orbital fragment method to make the method 
scale no worse than quadratic with the number of electron pairs. 
Two such localized CC/MBPT schemes have been pr~posed.~’ .~* 

As an effective computational tool, CI has been around for 
maybe 25 years, although essential mutlireference, unitary group 
advances have only been made in the past 10 years.93 MBPT 
has been available for general applications for only about 10 years,8 
with important developments in gradient methods only being made 
quite Computational CC theory has been similarly 
available for about 10 years,15 with the requisite gradient ap- 
plicationsz9 and methods for excited ~ t a t e s * ~ J ~  and multireference 
methods only now being developed.30 Considering the accelerated 
pace of development, the fact that greater accuracy is more 
frequently required, plus the computer hardware advances, CC 
theory and its extensions should play an increasingly prominent 
role in the future. 
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where T = T -  71. 
Unlike the standard CC theory, these expressions lead to an 

infinite series of terms. However, by truncating in some way and 
varying AE with respect to the amplitudes, we obtain different 
equations for the amplitudes than in the standard theory, termed 
XCC and UCC.87 This leads to a hierarchy of new approxi- 
mations that have some computational advantages for correlation 
energies. Though these methods use a “variational”, Le., stationary 
principle, they do not result in an upper bound to the energy. 
However, these new methods have some properties that the 
standard approach does not. First, they permit the facile inclusion 
of T4 in CC theory; and UCC can be used to satisfy the generalized 
Hellman-Feynman (GHF) theorem.89 This ensures that the 
expectation value of an operator and the energy derivative of a 
Hamiltonian perturbed by that operator are equivalent, as is true 
for the exact wave function. Hence, we have an alternative way 
to evaluate properties like gradients and moments. Also with a 
single set of perturbed P operators, we can analytically evaluate 
second and third derivatives for force constants, for hyperpolar- 

(86) Kutzelnigg, W. In Modern Theoretical Chemistry; Schaefer, H. F., 
111, Ed.; Plenum: New York, 1977; Vol. 4, p 129. 
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