
Perturbation Theory 
 
Frequently one wants to solve the eigenvalue problem 
 

Ĥ Eµ µ µΦ = Φ  where 0,1,2, ,µ = ∞  
 
and  is the sum of two terms, Ĥ
 

0 0 0ˆ ˆ ˆ ˆ ˆ( )H H H H H V= + − = + ˆ  
 
where one knows the eigenfunctions and eigenvalues of  0Ĥ
 

0 0 0 0Ĥ Eµ µ µΦ = Φ  
 
V̂
Ĥ

 is called the perturbation and to the extent that V is (in some sense) small relative to 
 we expect the eigenfunctions and eigenvalues of to be similar to those of . A 

powerful approach to the solution of the original eigenvalue problem is to use Rayleigh 
Schrodinger perturbation theory, which we will now develop. We begin by introducing 
the fictious Hamiltonian 

ˆ
0 Ĥ 0Ĥ

 
0ˆ ˆ( )H H V̂λ λ= +   

 
which is equal to the Hamiltonian of interest ,  when Ĥ 1λ =  and to the Hamiltonian  
whose eigenvalues and eigenfunctions we know, when 

0Ĥ
0λ = .λ  is often called the 

ordering parameter. 
 
The eigenvalue problem for ˆ ( )H λ  is 
 

ˆ ( ) ( ) ( ) ( )H Eµ µ µλ λ λΦ = Φ λ

µ

 
 
where we note that ( ) &  ( )Eµ λ λΦ  are functions of λ .We assume that both  &  Eµ µΦ  
have a Maclaurin series expansion in λ  and write 
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Inserting these expansions into the Schrodinger equation gives 
 

( ) ( ) ( ) ( )

0 0 0

ˆ ˆ N N P P Q Q

N P Q

H V Eµ µλ λ λ λ
∞ ∞ ∞

= = =

+ Φ =∑ ∑ ∑ µΦ

µ

 

 
The right hand side may be rewritten as 
 

( ) ( ) ( ) ( )

0 0 0 1

N
P P Q Q N P N P

P Q N P
E Eµ µ µλ λ λ

∞ ∞ ∞
−

= = = =

Φ = Φ∑ ∑ ∑ ∑  

 
From which we obtain 
 

1
0

0 1

ˆ ˆ(1 ) 0
N

N N N P N P
N

N P

H V Eµ µ µ µλ δ
∞

− −

= =

 Φ + − Φ − Φ = 
 

∑ ∑  

 
and since we want this to be true for arbitrary λ  we set the coefficient of Nλ equal to 
zero and obtain the Rayleigh-Schrodinger equations. 
 

1
0

1

ˆ ˆ(1 ) 0
N

N N P
N

P
H V Eµ µ µδ − −

=

Φ + − Φ − Φ =∑ N P
µ , for 0,1, 2, ,N = ∞  and 0,1,2, ,µ = ∞  

 
The first equation in this sequence is 
 

0 0Ĥ E 0
µ µ µΦ Φ=  

 
and is recognized as the unperturbed problem for which we know all of the eigenvalues 
and eigenfunctions. The next, or first order equation, is 
 

(1) 0 (1) 0 0 (1)ˆ ˆH V E Eµ µ µ µ µΦ Φ Φ Φ+ = + µ  
 
Keep in mind that the unknowns are the first order correction to the energy and 
wavefunction, (1) (1) &  Eµ µΦ . To find (1)Eµ  we multiply both sides of the above equation 

by the complex conjugate of the unperturbed solution, 0
µΦ  and integrate. This gives us  

 
0 (1) 0 0 (1) 0 0 0 0 (ˆ ˆH V E E 1)
µ µ µ µ µ µ µ µ µΦ Φ Φ Φ Φ Φ Φ Φ+ = + µ  

 
and because is Hermetian we find that the first order correction to the energy is simply 
the average of the perturbing potential over the unperturbed wavefunction.  

Ĥ
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0 0V̂ E(1)
µ µ µΦ Φ =  

 
We will leave the determination of (1)

µΦ  for the time being and consider the second order 
equation 
 

(2) (1) (2) 0 (1) (1) 0 (2)ˆ ˆH V E E Eµ µ µ µ µ µ µΦ Φ Φ Φ Φ+ = + + µ  
 
To isolate (2)Eµ we once again multiply both sides by the complex conjugate of the 
unperturbed solution and integrate. This results in  
 

0 (1) (2) (1) 0 (1)V̂ E Eµ µ µ µ µΦ Φ Φ Φ= + µ  

 
To deal with 0 (1)

µ µΦ Φ , the coefficent of (1)Eµ , we need to consider the normalization of 

the perturbed solution, ( )µ λΦ . Rather than selecting the conventional normalization  
 

( ) ( ) 1µ µλ λΦ Φ =  

 
we will choose the more convenient intermediate normalization in which the overlap 
between the perturbed and unperturbed wavefunctions is taken to be 1, i.e.,  
 

0( ) 1µ µλΦ Φ =  

 
Of course after we obtain ( )µ λΦ  we may renormalize it to 1. Intermediate normalization 

is convenient because it requires that the unperturbed wavefunction 0
µΦ  is orthogonal to 

all of the corrections ( )N
µΦ , 

 
0 ( )

0
N

Nµ µ δΦ Φ =  

 
Returning to the second order equation we see that 0 (1) 0µ µΦ Φ =  and so the second 

order correction to the energy is 
 

0 (1)V̂ E(2)
µ µ µΦ Φ =  

 
where as yet we do not know (1)

µΦ . Lets determine (3)Eµ  before find (1)
µΦ . Writing the 

third order equation  
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(3) (2) (3) 0 (2) (1) (1) (2) 0 (3)ˆ ˆH V E E E Eµ µ µ µ µ µ µ µ µΦ Φ Φ Φ Φ Φ+ = + + + µ  

 
multiplying by the complex conjugate of 0

µΦ  and integrating we obtain 
 

0 (2)V̂ E(3)
µ µ µΦ Φ =  

 
We may write this in terms of (1)

µΦ  as follows. From the first order equation we have 
 

0 (1) (1) 0 0 (1)ˆ ˆV H E Eµ µ µ µ µΦ Φ Φ Φ= − + + µ  
 
and since  
 

0 (2) (3) 0 (2ˆ ˆV E Vµ µ µ µ µΦ Φ Φ Φ= = )  

 
we have 
 

(3) (1) (2)ˆE Hµ µΦ Φ= − µ  

 
Using the second order equation this becomes 
 

(3) (1) (1)ˆE Vµ µ µΦ Φ=  

 
and the third order correction to the energy is determined by the first order correction to 
the wavefunction. This is an example of the 2 1N +  rule, which states that the corrections 
to the wavefunction through order determines the corrections to the energy through 

 order. Lets know find

thN

(2 1 thN + ) (1)
µΦ , the first order correction to the wavefunction. 

Occasionally one can solve the differential equation directly for (1)
µΦ  and we illustrate 

this approach in the examples. Most of the time however this is not possible and a more 
general approach is called for.  
 
We will assume that the function (1)

µΦ  can be expanded in the eigenfunctions of the 

unperturbed hamitonian,  so that Ĥ
 

(1) 0Cµ ν νµ
ν µ

Φ Φ
≠

= ∑  
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where we exclude the unperturbed state 0
µΦ  from the summation because 0 (1) 0µ µΦ Φ =  

 
To determine the coefficients Cνµ  we insert the expansion into the first order equation , 
multiply through by the complex conjugate of one of the unperturbed eigenfunctions, say 

0
ηΦ  and integrate. This results in 

 
0 0

0 0

V̂
C

E E
η µ

ηµ
µ η

Φ Φ
=

−
 

 
and therefore 
 

0 0
(1)

0 0

V̂

E E

0
ν µ ν

µ
µ νν µ

Φ Φ Φ
Φ

≠

=
−∑  

 
Using this expression the second and third order corrections to the energy become 
 

2 20 00 0 0 0
(2)

0 0 0 0 0

ˆˆ ˆ VV V V
E

E E E E E

µ νµ ν ν µ µν
µ

µ ν µ νν µ ν µ ν µ≠ ≠

= =
− −∑ ∑

Φ ΦΦ Φ Φ Φ

µν≠

=∑  

 
where 
 

0 0 0 0ˆ  &  V V E E 0Eµν µ ν µν µ= Φ Φ = − ν  

 
and 
 

(3)
0 0

V V V
E

E E
µν νσ σµ

µ
µν µσν µ σ µ≠ ≠

=∑∑  
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