The Hartree-Fock Results for Lithium

The ground electronic configuration of Lithium is 1s²2s¹ and the atom is in a ²S state. To solve the restricted open shell Hartree-Fock equations for this atom one must first specify the gaussian expansion basis. S. Huzinaga studied this and we will present his results. Since the atomic orbitals are s orbitals one only uses s gaussians in the expansion of the 1s and 2s orbitals. Two questions must be addressed:

- 1. How many gaussians will be used in the expansion?
- 2. What are their exponents?

Huzinaga first fixed the number of gaussians (say at 6) and then determined the exponents, which minimized the Hartree-Fock energy. The variation principle insures that the resulting energy is greater than or equal to the true Hartree-Fock energy. He then increased the number of gaussians in the expansion (to say 7) and repeated the process. The resulting approximate Hartree-Fock energy decreases as the number of basis functions increases and with further increases in the number of gaussians

eventually converges to the true Hartree-Fock energy. The following table summarizes his results for Lithium.

Convergence of Li Hartree-Fock energy as a function of expansion basis length

Basis	$\mathbf{\epsilon}_{1s}$ (au)	$\mathbf{\epsilon}_{2s}$ (au)	Energy(au)	ΔEnergy(mh)
6s	-2.47625	-0.19500	-7.42786	0.0
7s	-2.47802	-0.19495	-7.43032	2.46
8s	-2.47840	-0.19492	-7.43100	0.68
9s	-2.47759	-0.19630	-7.43229	1.29
10s	-2.47763	-0.19630	-7.43251	0.22
11s	-2.47769	-0.19632	-7.43263	0.12
∞ s			-7.43273	0.10