The Hartree-Fock Equations

Our goal is to construct the best single determinant wave function for a system of N
electrons. We write our trial function as a determinant of spin orbitals

w(1.2..N) = Ag, (1) 0, (2) 0 (N),

where <g0i ‘ (0‘/.> =0, A is the antisymeterizing operator,

N

and we want to determine the orbitals {goi}l.:l ,

so that the energy E

E={y (12 N)[ |y (1.2:-N))

is a minimum. Recall that the Hamiltonian is the sum of one and two body operators

N N
H=) f()+> g(,))
=1

i<j

Using the Slater-Condon rules the energy can be written in terms of integrals over the
spin orbitals,

N N
E=(y|H|y)=Y (o /o) + 2 (0:D0; (2| 2(,2)(1- B2 )| 2 (De; (2)
i=1 i>j
where 131 » 1s a transposition operator that interchanges the coordinates 1 and 2. We want
to find those orbitals for which the energy is stationary to first order. This means that if
the orbitals we seek are {(pi}l].il ,and we incremented each by an infinitesimal amount

N
1

{(pi +0¢; }l.: , and recalculated the energy it should not change.

Accordingly if we increment or vary each of the ¢; independently, we would write
N ~
E(y+001,0, +002, 0y +0py ) = D (0 +50;| [ 0; + 5¢1)

~
—_

+§:<(¢i +5¢’z‘)(¢’j +5¢’j)‘g(132)<1_1312)‘(¢i +5(Pi)()(j +5¢j)>-

i>j

The one-electron contribution becomes
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i{<¢i|f}|(pj>+<5¢i|J}|¢i>+<¢i|f|5¢i>+<5¢i|f|5¢i>}

~
—_

or

M=

({011 710+ G0i| 7101} + (011 F |0} +0( ).

~
Il
—

In a similar way, we may expand the two-electron terms

N

Z{<¢i¢j‘é

i>j

¢i¢j>+<¢i5¢j‘é (/’i(ﬂj>+<5(/’i(/’j‘é ¢i¢j>

o0, G000, )+ (0, |G|opw,; )} +0(87),

where G(1,2)=g(1,2)(1-A;).

N N
We may write the restricted sum Z as the less restricted sum % 2'
i>j L,j

N N
and so z<¢)l-5(pj‘é gol-(pj>:%Z’<¢)i5¢)j‘G
i>j ij

00;):

where the prime on the sum means that i # ;.
Since i and j are dummy indices, this term may be written as

1 N A 1 N A
> 2000 Gloje) =2 2 (600, |Glow,)

i,j i,j

and, of course,

0,00, ) =% i’(@%\@\mm-

N A
Z’<¢i¢j‘G L

> i,j

So, if we form the difference

5E:E(¢1 +5(01,¢2 +5¢29"'¢N +5¢N)—E(¢1,¢2’...¢N)
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we have the first order change in energy

N A~
5E=§{<5¢,|f|¢,> (¢:] 7169,)}
N ~
+2. ({500, |Gl o) +{0:0,]G |00, )|
i,
N
s = z{w, )7+ 5 1ol 2160200, Qa2 0)
i=1
+ZI¢J G(1.2); (2 )df(2)\5¢i(1)>}
N N
Note that we may extend the summation Z’ to Z because the term i=j vanishes
j=1 j=1

identically. For compactness, define the operator

z [ar (2} (2)2(1,2)(1- B ), (2)

and ..

N ~ A ~ ~
SE=Y s, T +V o)+ (o] F +7 |5¢,)}.

i=1

V is called the Hartree-Fock Potential. We further define the Fock operator as F = f +
and write OF as

5E:é{<5¢i|ﬁ|¢i>+<¢’i|F|5¢”’>}'

We must not vary ¢; independently of 6¢;, since they are coupled by the constraints,

<¢’i (/7j> =0

To comply with these constraints, we use the technique of Lagrangian multipliers.

Recall, to vary the functional F ((p(x)) with respect to ¢(x) subject to G(¢(x))=0,
we first form the independent variations of F and G, 1. e., 0F and 6G, and then, add a

multiple of the variation of the constraint to the variation of the functional to form
OF + 10G.
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One then chooses go(x) such that this expression is zero, 1. €., solve

0F +26G =0.

We then obtain ¢(x,4) and fix A by requiring

G(o(x,4))=0.

A is called a Lagrangian multiplier.

In this problem we have N* constraints of the form <(ol~ @ j> = 0;;and each has the

variation

¢j>:<¢i+5¢i ?; +5¢j>_<¢i‘¢j>
=<(0,- 5(pj>+<5(p,- (pj>+0(52).

Introduce the Lagrangian multipliers 4; and subtract all the constraint variations to JE,

o <(0i

resulting in

(Pj>)}

= 5E—§(/1ﬁ <¢,~ \5¢i>+ﬂfj <5‘Pi ‘¢j>)'

i,j

5(pj>+<5(pl-

&—i{/@j (e

Now, using the fact the Fock operator is Hermetian we can write o F as

N A A %
5E =Y \(50,| Flg)+ (50| Fl,) |
i—-1

We may also rearrange the constraint variations as

0;)= Z{;‘ij (50, ¢j>)*}-

i’j

(Pj>+(/1;i <5(Pi

> 40 (g,
i.j

allowing us to write
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SE+Y 230 (9;|9;) =
i

*

ﬁ;_‘.&’;(l){ Z i ( } %[J‘&”z { Z ji?; ( H z(1)

i=1

If we require that this be zero, we recover the equations
Z/W, 0 and Fop; - Z 0, =0,

from which we deduce /Il-j =A jis 1. €., /ll-j 1s an element of an Hermetian matrix. Since

the two sets of equations are equivalent, we consider only one, i. €.,
N
=2 4%,
Jj=1

Now, define a row vector @ = (@, ¢, @y ), and note that we may write the above set of

equations in a very compact matrix notation,
Fo=0a,

where 1:“¢E(ﬁ'¢1 1:“¢2---F¢N)

and A is the Hermetian matrix with elements 4;; .

To continue, we make use of the invariance of a Slater determinant to a unitary
transformation of the constituent spin orbitals; i. e., since the normalized Slater
determinant

P (L2,N)=Ap (1) (2) - on (N)

has associated with it a matrix, @, 1. €.,
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o) @(2) - @o(N)

o= 2 2(2) (V)
%&U ¢;@)-~ %&N)
then,
(1.2-N)= o]

where ||¢|| is the determinant of ¢.

Define a new set of functions &;, by the unitary transformation
N
& (k)= U, (k) i=1,--N:k=1---N
j=1
or in matrix notation
c=Up
and
p=U'¢

Note that if we choose not to consider the electron index as a label we may write the
transformation as

N N
T .
&=2 U0, =2.0;Uj; i=1-N
j=1 j=1
and the row vectors & and @ are related by
E=pU"
or
¢=¢U

The wavefunction in terms of the transformed orbitals becomes

¥(1,2,-N

)=rllel = |l == el - e
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and so, the determinant formed from a unitary transformation of the {(p} functions is

equal to the original determinant. Given this invariance, how are the Hartree-Fock
Equations in the ¢ basis related to those in the & basis? To find out we substitute

@ =& U into the Hartree-Fock equations.

Since
F(¢)p=pA
we have
F(éu)éu=¢ua
and so

F(EU)E=EvauT

Now, U is an arbitrary unitary matrix and A is Hermetian. Since a Hermetian matrix
may always be diagonalized by a unitary matrix we have

UTiu=¢

where ¢ is a diagonal matrix containing the eigenvalues of 4. Then,

ZJ ?;(2)6(1.2)¢; (2)dz(2)

7(1)+ trace< ‘G 1.2)|5(2)),
= f(1)+ trace G, (1).

So,
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F(&U)=7(1)+ wrace ((£U)'|6]ev)
=f(l)+trace {UT<§T §>U}

f(1)+ trace {UTG§ U} =j}(1)+ trace {G§ }

G

and so ﬁ’(fU) :ﬁ’(f)
or F& =g

These are the canonical Hartree-Fock Equations. The &; are the molecular (atomic)
orbitals and the ¢&; are called the Hartree-Fock eigenvalues or the one-electron
eigenvalues.

Total Energy
Once one has the HF orbitals, one may calculate the total energy, as follows:
E=(¥(1,2,-N)|H|¥(1,2,--N))
(Ao ()02 (2)-0n (N)|H| A (1)05(2)-- 05 (N))

N ~
=2 (ol f
i=1

(pl.> + §:<¢)i (1) ?; (2)‘ é(l, 2)‘@- (1)(/)] (2)> +nuclear repulsion

i>j

Recall the Hartree-Fock potential /(1) is given by

M=

7(1)= 3 [d7(2)0}(2)6(1.2)0, (2).
and so,

E

N nuclei

R
Z<¢i|f+EV|¢i>+ D ZkZ /Ry,
K<L

—_

1=

since F = f +V  atleast two choices present themselves:
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. ~ o1 P

1) f+5V_ f+ (f+V) (f+F),
The energy may be written in terms of the Hartree-Fock eigenvalues ( the orbital
energies) the one electron matrix elements f;, and the nuclear repulsion energy.

1 N . . 1 N NuclezZK
E=32lalitFlo)=y (et} X 5

i= K<L

JLLin

i) Alternatively we may write the energy in terms of the Hartee-Fock eigenvalues,
the two electron matrix elements (coulomb and exchange integrals) and the nuclear
repulsion energy.

S N_1p_p 1p
f+5V=(f+V)—§V:F‘§V’
then
v 1 N ) NuclelZ Z
E=2(olF =2V o) = zg 2Vl X
= i=1 K<L KL
. 1 Ny * ) A NuclezZ
i) ZJ% (e;(2)6(12)er (1), (2)dr(L2)+ 2, “ AKL
i= ==
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