$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE MPLEVL=2 UNITS=ANGS <---- job control parameters COORD=ZMT ISPHER=1 $END <---- job control parameters $SYSTEM MEMORY=1000000 $END <---- job control parameters $BASIS GBASIS=N31 NGAUSS=6 NPFUNC=1 NDFUNC=1 $END <---- job control parameters (basis set) $DATA <---- beginning of the $DATA group, where the geometry is described H2O, geometry optimization, 6-31G(d,p) basis set <---- your comment (ignored by GAMESS) Cnv 2 <----molecular point group blank line O <------------------- Z matrix H 1 roh <------------------- Z matrix H 1 roh 2 ang <------------------- Z matrix blank line roh=0.957 <------------------- initial value of roh ang=104.5 <------------------- initial value of ang $END <---- end of the $DATA groupThis input file corresponds to geometry optimization (RUNTYP=OPTIMIZE), using the closed-shell (SCFTYP=RHF) MBPT(2)=MP2 (MPLEVL=2) method and the 6-31G(d,p) (GBASIS=N31 NGAUSS=6 NPFUNC=1 NDFUNC=1) basis set. The lowest core orbital is kept frozen (the default in GAMESS is to freeze all chemical core orbitals in the correlated calculations). The calculation utilizes the point symmetry of H2O (C2v; cf. "Cnv 2" in the input). ISPHER=1 means that the spherical components of d, f, etc. orbitals (5d, 7f, etc.) are used. COORD=ZMT means that the Gaussian style internal coordinates are used to describe nuclear geometry.
And here is another input, corresponding to coupled-cluster (CR-CC(2,3)) energy calculations for glycine (Jensen and Gordon's GLY12 isomer, the AM1 geometry).
$CONTRL SCFTYP=RHF RUNTYP=ENERGY CCTYP=CR-CCL UNITS=BOHR ISPHER=1 $END <---- job control parameters $SYSTEM MWORDS=5 $END <---- job control parameters $BASIS GBASIS=N31 NGAUSS=6 $END <---- job control parameters (basis set) $DATA <---- beginning of the $DATA group, where the geometry is described Glycine...H2N-CH2-COOH...GLY12 isomer...AM1 structure <---- your comment (ignored by GAMESS) C1 <---- molecular point group O 8.0 -2.8770919486 1.5073755650 0.3989960497 <---- Cartesian coordinates of the O nucleus C 6.0 -0.9993929716 0.2223265108 -0.0939400216 C 6.0 1.6330980507 1.1263991128 -0.7236778647 O 8.0 -1.3167079358 -2.3304840070 -0.1955378962 N 7.0 3.5887721300 -0.1900460352 0.6355723246 H 1.0 1.7384347574 3.1922914768 -0.2011420479 H 1.0 1.8051078216 0.9725472539 -2.8503867814 H 1.0 3.3674278149 -2.0653924379 0.5211399625 H 1.0 5.2887327108 0.3011058554 -0.0285088728 H 1.0 -3.0501350657 -2.7557071585 0.2342441831 $END <---- end of the $DATA groupAs you can see, you can use Carterian coordinates for symmetry unique atoms (default in GAMESS) instead of Z-matrix and bohr instead of Angstroem. The CCTYP option controls the type of coupled-cluster calculation you are interested in. For example, CCTYP=CCSD(T) means that you are interested in running the CCSD(T) calculation. Other coupled-cluster options or values of CCTYP available in GAMESS at present (January 2010) include LCCD, CCD, CCSD, R-CC, CR-CC, CR-CCL, CCSD(TQ), CR-CC(Q), EOM-CCSD, and CR-EOM. The CCTYP=CR-CC choice implies the standard, renormalized (R), and completely renormalized (CR) CCSD(T) calculations (all in one; available for the closed-shell RHF references). The CCTYP=CR-CCL option (available for the closed-shell RHF and open-shell ROHF references) executes the most recent, rigorously size extensive, and improved variant of CR-CCSD(T), termed CR-CC(2,3), while providing an automatic access to the CCSD properties as byproduct. The CR-CCSD(T) method and, particularly, the more recent CR-CC(2,3) approach provide a correct description of single bond breaking and biradicals with the ease-of-use of the standard CCSD(T) approach. They remove the failing of CCSD(T) at larger internuclear separations, and CR-CC(2,3) is as accurate as CCSD(T) for molecules near the equilibrium geometries. The CCTYP=CCSD(TQ) and CCTYP=CR-CC(Q) options add quadruples corrections to the CCSD(T) and CR-CCSD(T) energies, respectively, and by running the sequence of the CCTYP=CR-CCL and CCTYP=CR-CC(Q) calculations, one can calculate the CR-CC(2,3)+Q energy (the CR-CC(2,3) energy augmented by quadruples), which is defined as CR-CC(2,3) + [CR-CCSD(TQ),B - CR-CCSD(T)]. The CCTYP=EOM-CCSD and CCTYP=CR-EOM choices execute the excited-state EOMCCSD and CR-EOMCCSD(T) calculations, respectively (for the closed-shell RHF references, i.e., for singlet excited states only). The CR-EOMCCSD(T) approach is particularly useful when the excited states of interest have significant contributions due to two-electron excitations. In addition to energies, one can get access to the one-body reduced density matrices and one-electron properties and transition matrix elements at the CCSD and EOMCCSD levels.
The R-CCSD(T), CR-CCSD(T), CCSD(TQ),B, R-CCSD(TQ), CR-CCSD(TQ), CR-CC(2,3), and CR-EOMCCSD(T) methods have been discovered and developed by the Piecuch group. The Piecuch group has provided all conventional and (completely) renormalized CC and EOMCC options in GAMESS. Work continues in the Piecuch group to enrich the CC GAMESS menu. Among the new enhancements, which should be available to all GAMESS users sometime in 2010, are the electron-attached (EA) and ionized (IP) EOMCC methods that are particularly well suited for open-shell valence systems that differ by one electron from the corresponding closed shells, and the extension of CR-CC(2,3) to excited states, termed CR-EOMCC(2,3). Please note that if you are interested in using coupled-cluster options in GAMESS, you are asked to cite one or more appropriate papers from the Piecuch group, listed in the output, in addition to the standard GAMESS references: "General Atomic and Molecular Electronic Structure System" M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-1363 (1993) and "Advances in electronic structure theory: GAMESS a decade later" M.S.Gordon, M.W.Schmidt Chapter 41, pp 1167-1189, in "Theory and Applications of Computational Chemistry, the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria, editors Elsevier, Amsterdam, 2005. Here is how the relevant sections of the output, where the appropriate citations are provided, look like:
SCFTYP=RHF: ***************************************************************** THE FOLLOWING PAPERS SHOULD BE CITED WHEN USING COUPLED-CLUSTER OPTIONS: CCTYP = LCCD, CCD, CCSD, CCSD(T) P. PIECUCH, S.A. KUCHARSKI, K. KOWALSKI, AND M. MUSIAL, COMP. PHYS. COMMUN. 149, 71-96 (2002). CCTYP = R-CC, CR-CC, CCSD(TQ), CR-CC(Q) P. PIECUCH, S.A. KUCHARSKI, K. KOWALSKI, AND M. MUSIAL, COMP. PHYS. COMMUN. 149, 71-96 (2002); K. KOWALSKI AND P. PIECUCH, J. CHEM. PHYS. 113, 18-35 (2000); K. KOWALSKI AND P. PIECUCH, J. CHEM. PHYS. 113, 5644-5652 (2000). CCTYP = EOM-CCSD, CR-EOM P. PIECUCH, S.A. KUCHARSKI, K. KOWALSKI, AND M. MUSIAL, COMP. PHYS. COMMUN. 149, 71-96 (2002); K. KOWALSKI AND P. PIECUCH, J. CHEM. PHYS. 120, 1715-1738 (2004); M. WLOCH, J.R. GOUR, K. KOWALSKI, AND P. PIECUCH, J. CHEM. PHYS. 122, 214107-1 - 214107-15 (2005). CCTYP = CR-CCL P. PIECUCH, S.A. KUCHARSKI, K. KOWALSKI, AND M. MUSIAL, COMP. PHYS. COMMUN. 149, 71-96 (2002); P. PIECUCH AND M. WLOCH, J. CHEM. PHYS. 123, 224105-1 - 224105-10 (2005). CCTYP = CR-EOML P. PIECUCH, S.A. KUCHARSKI, K. KOWALSKI, AND M. MUSIAL, COMP. PHYS. COMMUN. 149, 71-96 (2002); P. PIECUCH, J. R. GOUR, AND M. WLOCH, INT. J. QUANTUM CHEM. 109, 3268-3304 (2009); K. KOWALSKI AND P. PIECUCH, J. CHEM. PHYS. 120, 1715-1738 (2004). IN ADDITION, THE USE OF CCPRP=.TRUE. IN $CCINP AND/OR THE USE OF CCPRPE=.TRUE. IN $EOMINP SHOULD REFERENCE M. WLOCH, J.R. GOUR, K. KOWALSKI, AND P. PIECUCH, J. CHEM. PHYS. 122, 214107-1 - 214107-15 (2005). ***************************************************************** SCFTYP=ROHF *************************************************************** THE FOLLOWING PAPERS SHOULD BE CITED WHEN USING OPEN-SHELL CCSD AND/OR CR-CCL COUPLED-CLUSTER OPTIONS: P. PIECUCH AND M. WLOCH, J. CHEM. PHYS. 123, 224105/1-10 (2005). M. WLOCH, J.R. GOUR, AND P. PIECUCH, J. PHYS. CHEM. A, 111, 11359-11382 (2007). THE FOLLOWING PAPERS SHOULD BE CITED IF USING THE EA-EOMCC OR IP-EOMCC OPTIONS: J. R. GOUR, P. PIECUCH, AND M. WLOCH, J. CHEM. PHYS. 123, 134113/1-14 (2005). J. R. GOUR AND P. PIECUCH, J. CHEM. PHYS. 125, 234107/1-17 (2006). ***************************************************************
The final input example describes the 2nd order MC-QDPT calculation (using the multi-configurational quasi-degenerate or multi-reference second-order perturbation theory). This job finds the Full Optimized Reaction Space or CASSCF wavefunction for water and then performs the 2nd order MC-QDPT calculation of the energy. The initial molecular orbitals (in the $VEC group) were obtained in a separate RHF calculation (they can always be found in the .dat short output file; in this case, in the .dat file produced by the RHF calculation).
$CONTRL SCFTYP=MCSCF MPLEVL=2 $END <---- job control parameters (theory level) $SYSTEM TIMLIM=8 MEMORY=300000 $END <---- job control parameters $GUESS GUESS=MOREAD NORB=13 $END <---- job control parameters (initial guess for MOs) $DET NCORE=1 NACT=6 NELS=8 $END <---- job control parameters (1 core orbital doubly occupied in all reference determinants; 6 active orbitals; 8 active electrons) $MCQDPT NSTATE=1 ISTSYM=1 REFWGT=.TRUE. $END<---- job control parameters (NSTATE=1, one state to be determined; ISTSYM=1 means state of the A1 symmetry) $BASIS GBASIS=N21 NGAUSS=3 $END<---- job control parameters (basis set) $DATA <---- beginning of the $DATA group, where the geometry is described WATER...3-21G BASIS...FORS-MCSCF...EXPERIMENTAL GEOMETRY <---- your comment (ignored by GAMESS) Cnv 2 <---- molecular point group blank line Oxygen 8.0 0.0 0.0 0.0 <---- Cartesian coordinates of the O nucleus Hydrogen 1.0 0.0 0.7572157 0.5865358 $END <---- end of the $DATA group $VEC <----initial molecular orbitals (obtained in the RHF calculation) 1 1 0.98323195E+00 0.95883436E-01 0.00000000E+00 0.00000000E+00 0.35370268E-02 1 2-0.38015713E-01 0.00000000E+00 0.00000000E+00-0.67933232E-02 0.26157699E-02 1 3 0.69075022E-02 0.26157699E-02 0.69075022E-02 2 1-0.22915183E+00 0.21751680E+00 0.00000000E+00 0.00000000E+00 0.83482416E-01 2 2 0.70627255E+00 0.00000000E+00 0.00000000E+00 0.93448600E-01 0.11715069E+00 2 3 0.19083329E-01 0.11715069E+00 0.19083329E-01 3 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.39852684E+00 0.00000000E+00 3 2 0.00000000E+00 0.00000000E+00 0.36975524E+00 0.00000000E+00-0.23386378E+00 3 3-0.18332401E+00 0.23386378E+00 0.18332401E+00 4 1-0.88424758E-01 0.82203534E-01 0.00000000E+00 0.00000000E+00-0.44197156E+00 4 2 0.40499817E+00 0.00000000E+00 0.00000000E+00-0.50792220E+00-0.13089427E+00 4 3-0.10523065E+00-0.13089427E+00-0.10523065E+00 5 1 0.00000000E+00 0.00000000E+00 0.52129122E+00 0.00000000E+00 0.00000000E+00 5 2 0.00000000E+00 0.63210541E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 5 3 0.00000000E+00 0.00000000E+00 0.00000000E+00 6 1-0.10921346E+00 0.34847757E-01 0.00000000E+00 0.00000000E+00 0.20920102E+00 6 2 0.10449784E+01 0.00000000E+00 0.00000000E+00 0.46616469E+00-0.46425782E-01 6 3-0.86310980E+00-0.46425782E-01-0.86310980E+00 7 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.30311516E+00 0.00000000E+00 7 2 0.00000000E+00 0.00000000E+00 0.77474462E+00 0.00000000E+00 0.36159920E-01 7 3 0.11766731E+01-0.36159920E-01-0.11766731E+01 8 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.18247792E+00 0.00000000E+00 8 2 0.00000000E+00 0.00000000E+00 0.45271854E+00 0.00000000E+00 0.96497497E+00 8 3-0.68407554E+00-0.96497497E+00 0.68407554E+00 9 1-0.68462918E-01 0.98778424E-01 0.00000000E+00 0.00000000E+00 0.27668306E+00 9 2 0.11645921E+00 0.00000000E+00 0.00000000E+00 0.30171282E+00-0.98500862E+00 9 3 0.48555609E+00-0.98500862E+00 0.48555609E+00 10 1 0.00000000E+00 0.00000000E+00 0.10292728E+01 0.00000000E+00 0.00000000E+00 10 2 0.00000000E+00-0.96518900E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 10 3 0.00000000E+00 0.00000000E+00 0.00000000E+00 11 1-0.45193228E-01 0.13566837E+00 0.00000000E+00 0.00000000E+00-0.10100340E+01 11 2 0.17234151E+00 0.00000000E+00 0.00000000E+00 0.11527420E+01-0.26046385E+00 11 3-0.92175886E-01-0.26046385E+00-0.92175886E-01 12 1 0.00000000E+00 0.00000000E+00 0.00000000E+00-0.10670424E+01 0.00000000E+00 12 2 0.00000000E+00 0.00000000E+00 0.13962359E+01 0.00000000E+00 0.13746917E+00 12 3 0.50761817E+00-0.13746917E+00-0.50761817E+00 13 1-0.84642669E-01 0.16413752E+01 0.00000000E+00 0.00000000E+00 0.16053837E+00 13 2-0.19938626E+01 0.00000000E+00 0.00000000E+00-0.49752222E+00 0.28728587E+00 13 3 0.35961579E+00 0.28728587E+00 0.35961579E+00 $END
To learn more about the NQS queue system running in the department, go here.