Aspects of Computer Architecture

T V Atkinson, Ph D
Senior Academic Specialist
Department of Chemistry
Michigan State University
East Lansing, MI 48824

Table of Contents

IS A0 B 1=] 2SS 3
IS o) T U =SSR 3
I [oo [FTox 1 o] OSSOSO TP PSRRI 6
1.1. Why should Chemists care about this mateial?cccooeveiiieiiennnns 6
1.2. How can we characterize the people who use computers?............cc.cecvnee. 6
1.2.1. By the TYPe Of USE ..ccveiiiieiece e 6
1.2.2. By frequency of use of a particular program or facility 6
1.2.3. By level of expertise for a given program or facility.................... 6
2. NUMDEE SYSTEIMS ...ttt nb b 7
2.1. Range of NUMDEIScooiiiecece e 8
2.2. Converting Between Different Moduli...........ccccoeviiiiiieiiiie e 8
2.2.1. Binary to/from Hexadecimal............cccooveriniiiinniiniecieneee e 8
2.2.2. Binary to/from OCtalccoiiiiiiiiiiieeeee e 10
2.3, SIGNEU INTEYEIS ...vveivieie ettt ettt e e e e sreaneenneenae s 12
2.3.1. SIgN/Magnitude..........coveiieiieieiec e 12
2.3.2. ONe's COMPIEMENT ..o s 13
2.3.3. TWO'S COMPIEMENT ... 14
2.4. Floating PoiNt NUMDEIScceiieiiee e 16
2.5. Useful Tables of NUMDEIS ... 19
2.5.1. POWEIS OF TWO ..ccuviiiiiiiiie e 19
T O g = Tox (=] o O 0o [OSSP 25
3.1. Six Bit CharaCter COUES.coviuiiiiiiiiieie e 25
3.2. ASCII CharaCter COUESc.eieiviriiriiiieierie ettt 26
3.3. ANSI CharaCter COUES.coiieieiierieeiesee sttt nee s 28
3.4. Unicode CharaCter COUBSccouviierieiiiiieie et 29
R o T oSSR 31
4.1. Single Bit Logic Truth TabIescccccoveiieiiceceece e 31
4.2. Multibit LogiC EXaMPIESocviiiiiiiie s 31
5. Gates aNd LALCESooeiiiieiieie ettt 33
6. SIMPIE COMPULET ...ttt e et e esraenteeneesreeee e 35
6.1, DigItal BUSES......eeivieiicieciecte ettt 35
6.1.1. A Simple EXample ... 36
6.1.2. Ad-BIt BUS...coccocieiciieieiese et 39
6.1.3. AN 8-Bit BUS SYSIEMcoiviiiiiiiieee e 41
6.1.4. A Simple Input/Output SYSteMccccvveveiiieiiere e 43

November 2, 2004 -1-

Aspects of Computer Architecture

List of Tables
6.1.5. A More Complete I/O Bus Architecture..........cccoceeveieeneniennenne. 44
6.1.5.1. REAUS.....ceiiieiieiecierie e 48
B.1.5.2. WIITESeiitiiiiiiiieeeeie e 49
6.2. Post Office (Programmers) Model of Computingcccccveveviieieciciiennn, 50
6.3. Uses of collections of n binary DItS..........ccooeiiiiiiiiiii e 51
6.4, INSTIUCLION SEIS ...veeviiiieiiieiiieie ettt sre e sneenre e 51
6.5, AUAIESSING ...vveveeiieiiieie ettt e e et e are e s e e ee e e nreenee s 53
T T @ oL -1 o] o U STOPPSRSSN 53
6.7. An EXample COMPULET ...oc.eoiiieiiiie e 54
B.7. 1. REQISIEIS. ...t 54
6.7.2. INSErUCtion FOrMALccoviiiiiiieci e, 55
6.7.3. INSEIUCLION SEL....cc.iiviiiiiiiiieiieieie e 56
6.7.4. AN EXample Program..........ccooeeeieeneiienienesee e 57
6.7.5. EXample Program 2.........ccccoeiiiiniienininieeee e 61
6.7.6. An Example Application of Hardware and Software 64
6.7.7. SaMPIe Program..........cccccveiveiieiie it 67
7. Computer Architecture TaXONOMYccoieeiiiieiieie et 72
7.1, SPECIAI BUSES ..ottt 72
7.2, COPIOCESSONS ..eeuvvieiuteeessteeessteeessteeessbeeessbeeasbbeessbbeeanbeeesbeeesnbeeesnbeeesnbeeesnneeens 73
7.3. MUILIPIE I/O DUSES ...ttt 74
7.3.1. ProbIemsccooi s 76
7.3.2. EXAMPIES ... 76
8. MUILIPIE PrOCESSOIS. ... eeuviiiieiieeie et sttt ste ettt e st e e e et eaneesraeaeeneesraenee e 77
0. DISK DIFIVES ...ttt ettt bbb bbbttt st st nreane s 80
9.1. General ArChITECIUIE.oiviiieiie e 80
9.2, DISK FOIMALeeeiiieie ettt nne s 83
9.3. Mapping Sectors into Logical BIOCKS...........cccevveieiiieiieic e 85
9.4. Figures of Merit fOr @ DiSKccceviiiiiiiiiie e 86
9.5. CombiInNAtioNS OF DISKS........cciiiiiiieieiie e 87
9.5.1. Combinations of Simple DiSKSc.ccccrvimieieienencien e 88
10. MemOry ULHHZALION.........oiiieieee ettt sne e 93
I = 10T]] 1= o1 RSP PPTPR 9
110 SIMPIE et 94
11.2. Typical of Modern Machines with a VVolatile Executive................cc.co...... 95
11.3. Machines with a ROM based Operating SYStemccccevvvervrieniiveriennens 97
12, MEMOTY SYSTEIMS .iiiiiiiie ettt e e b e et e e s b e e et e e e nnbe e e e 98
13. InCreasing PerfOrMANCEcoouiiiiiieiiiie e 100
13.1. CONCUITENT TASKS ...oveeieeiiiie ittt nee e ste e e sneenee s 102
13.1.1. Tasks are completely independent............cccccevviieiiienicieiiiennnn, 102
13.1.2. Pipelines (Tasks are somewhat independent)ccccevevveenen. 103
13.1.3. CACNC....ii e 103
13.1.4. Direct Memory ACCeSS (DMA) ..ot 106
13.1.4.1. Programmed 1/O (Example: reading a block of data)..106
13.1.4.2. Asynchronous I/O (Interrupt Structures) 107
13.2.4.2.1. INterrupt STFUCTUE L....coueiiiee e

November 2, 2004 -2-

Aspects of Computer Architecture

List of Tables

13.1.4.3. DMA 1/0O (Example: Write a block to disk) 109

14, MemMOry ManagEMENT........ccoviiiiiiiieiee e 110

It T 1 o [N 4 o o OSSOSO 110

14.2. Motivations for Memory Management...........cccocveveereeiieiieeieeneseeseennens 112

14.3. SOTtWAre SOIULIONS.ccueiiiiie e 112

14.3.1. CRAININGciiiieieie e 112

14.3.2. OVErIAYING ..eeveieieiieie e ste e nne s 113

14.4. Hardware/Software SOIULIONSccceeiiiiiiieieec e 115

14.4.1. Bank SWILChINGcccciiiiiiiiiiieie e 116

14.4.2. Bank Switching (Partial)...........cccooeiiiininiiniiicie e, 118

14.4.3. SEOMENTALION.......ciiiieiieiie e cee e se et e e nae s 121

14.4.4, PAQING ..iovviiieeie ettt sttt sne e ne 123

14.4.5. Virtual MEMOIYcoviiiiiiiie et 128

14.4.6. Memory ProteCtionccooivirieieiene st 133

15. Value of a Particular Computing ENVIrONMENtccccvveeiieieiieseese e 133

16. Measurement of PerfOrmancCe........c.cccueiiieiie e 134

16.1. BENCAMAIKS.......eiiitiiiiciiie ettt eare e 134

17. CISC VS RISC ..ottt ettt tenre e anaeneas 134

17.1. Main Attributes OF RISCccvviiiiii e 134

List of Tables

Table 1 NUMDEr FOIMALSccoiieieiieieeie ettt sae e sneenne s 17
Table 2 Symbol DefiNItioNSccviiiiieii e 18
Table 3 POWEIS OF 2 ...ttt re e sre et 19
Table 4 Counting in Different MOAUI...........cooooiiiiiiii e 20
Table 5 0 to 65536 in Multiple MOdUi...........cccooiiiiiiicec e 21
Table 6 Six Bit CharaCter COUES.........civeiiiieiieie e se e reeae e nnes 25
Table 7 ASCI Character COUESciveiuiiieiieeiecie st ese st ste e e e ste e sreesre e sneenne s 26
Table 8 ASCII Control CharaCters........ccouiiieiieiiiie e 27
Table 9 ANSI CharaCter SEL........coviieiieeieie e nae s 28
Table 10 UNICODE Character COUES........ccueiieiieeieieesieeiesiaesieseesaesiesseesseessesseessesseens 30
Table 11 LogiC Truth TADIESc..cveiieeee et 31
Table 12 LOgiC EXAMPIESc.coiiiiiiieiieie et 31
Table 15 Disks: Mapping Physical Sectors into Logical BIocks............ccccccevvvriiinennnnn 86
Table 16 Disks: EXaMPIE DIIVEScccoveiiiieiieie e 87
Table 17 Powers of 2 (Abbreviated)...........ccovveiiiiiiecic e 98
Table 18 Representative Examples of DRAM ChipsSccocoviiiiiiiiinnieeseseee e 99

Table 19 Representative Examples of SIMMS ... 100

List of Figures

Figure 1 Intel Number Representationsccoceieiieiieieeiie e 16
Figure 2 Intel FIoating POINE STOTage.......ccuviveiiieiiie et 17
Figure 3 Intel INteger STOrAgEcveieeieeie et ns 18

November 2, 2004 -3-

Aspects of Computer Architecture

List of Figures

Figure 4 Generic Gate, Switch, and LatCh..........ccccooiiiiiiii e 33
Figure 6 Von Neumann Model of COMPULETc.ooveiiiiiiiiiiiieeeee e 35
1o UL (o] oSSR 37
Figure 8 A Digital Bus With Three DEVICEScccecvveiieiieieiicseee e 37
Figure 9 A 1-Bit Bus with Three Devices (Equivalent Schemat)...........cccccooeveiinnenne 37
Figure 10 Timing - Transfer Contents of A (1) 10 C ...oooviiviiiiiiiiieeec e, 38
Figure 11 Timing - Transfer Contents of A (0) t0 C ...ooovvevviieiieie e 39
FIQUIE 12 4-BiIt BUS.....cviiiieiiieie ettt ta et te e e e e ste e nns 40
Figure 13 Simple 8-Bit Bus and Slave RegISerccooieiiiiiiiiie e 41
Figure 14 - Simple 8-Bit Bus and Master RegiSter...........cccooeiiieriiinieeeie e 42
Figure 15 Simple 8-Bit Bus and Master REQISLErcccvvverieeiieeie e 43
Figure 16 Simple 8-Bit Bus and Master RegiSter.........cccvvviiveviiiieiie v 43
Figure 17 Simple 1/0O BUS: BUS IMASEETcoiieiiiieiie it 45
Figure 18 Simple I/O BUS: SIAVEooviiiiiiiee e 46
Figure 19 Simple 1/0 Bus: Slave (Continued).........cccoverveieiiieiice e 47
Figure 20 Post Office Model of COMPULINGc.ccveiiviiiiieie e 50
Figure 21 Bit Byte Word RelationsShipc.cooveiiiiiiiiiie e 55
Figure 22 Laser EXPEriMENTcooiiiiiiiiiiseeeseee e 64
Figure 23 Laser Experiment Interface (Software VIeW)cccccvevevieiveiesieneese e 66
Figure 24 Laser Experiment Timing (MiCroSECONS)ccevvevverieieerieeriesieseesie s 71
Figure 25 Special MemOrY BUSccoiiiiiiieiieesie et 72
Figure 26 SPeCial CPU BUSccuoiuiiiiiiiiiiesiesie et 73
Figure 27 Floating POiNt COPIOCESSON L.......ccueiieieiieieesie e sie e 73
Figure 28 COmMPIEX /Ouviiice et 74
Figure 29 Complex 1/0: AN EXAMPIEcoiiiiiiiieiice e 75
Figure 30 Multiple Processors: Very Loosely Coupled.........ccooiiiiiiiiiiinencienee, 77
Figure 31 Multiple Processors: Loosely Coupled..........cccoovvvieiiiieiiciicc e 78
Figure 32 Multiple Processors: Parallel............ccccooeiiiiiciciiccce e 79
Figure 33 Multiple Processors: Connection TOPOIOGIEScceeerieieriiniienienieie e 79
Figure 34 Generalized Drive (CroSS SECLIONcccveierieiiiiiisiisieee e 80
Figure 35 Head POSITIONEIS........ccueiiiiieieeie et sne e ns 81
Figure 36 Generalized CONIOIIErccvcviiiiieee e 82
Figure 37 Track SeCtor LayOUL: CAVottt 83
Figure 38 Track Sector Layout: CLV ..ot 84
Figure 39 Track SKEW - INTEIEAVEc.ccuvvieiiee et 85
Figure 40 Disk SYStEM StrateQieS........civeiiiiiieiieiieieseese e ee et ens 88
Figure 41 Disk Groupings - RAIA O......cceoiiiiiiiiiiiie e s 90
Figure 42 Disk Groupings - RaIA L.........cccooiiiiiiiiiiieie e 90
Figure 43 Disk Groupings - Raid 1 AIErnative.........cccocveieieesesieseese e 91
Figure 44 Disk Groupings - RAIA 3........c.coviiiiiieiicie et 91
Figure 45 Disk Groupings - RAIA 5.......ccooiiiiiiiiiiie e s 92
Figure 46 Memory ULHIZAtIONooviiiiiiiieiee e 93
Figure 47 BOOt StraPPING......ecveiierieeie e e etesee e ee e se e et eesae e e sreetesseesneeaeeneenns 94
Figure 48 Front Panel EMUIALON...........c.cooiiii i 96
Figure 49 Booting a ROM Based OScooiiiiiiiiiiie st 97

November 2, 2004 -4 -

Aspects of Computer Architecture

Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75

CONCUITENT TASKS.eitiiiie ittt sttt 102
Concurrent Tasks (Partial Dependence).........cccevererereriniieieiese e 103
Cache and RAM DiSK.......coiiiiiiiiiieiee e 104
Memory Cache CoNtrOlIEr..........vcoviiiiie e 104
Program 1O ..o et 106
DIMA EXAMPIE.....eiiiiiiiiie e 109
Program Exceeds Memory Available...........c.ccccooviiiiicic e 111
Memory Limited Programming (Chaining)ccccccevvveviiieieene e, 113
Memory Limited Programming (OVerlaying)cccocveveriennennenienieenennnn 114
Overlaying (Memory LaYOUL)coceiirieieieienie s 115
MemOory ManagemeNtcooiuiiiiiii it 116
Bank Switching: Mapping........cccccvviiiiieiice e 117
Bank Switching: MemOry SPACE.........cccviieiiriiiieie e 118
Bank Switching (Partial)ccooiiiiiiiiiie e 119
Bank Switching (Partial): Memory SPacescccocvvveveiieieene e 120
Bank Switching(Partial): Mapping.........cccceveiiieiieie e 121
Segmentation: MapPINGcooeoieiieee e e 122
Segmentation: MEemOrY SPACESccviiriiieieie e 123
Yo 1o LY F=T o] o1 T SRS 124
Paging: MEMOIY SPACES........ccviiieiieeiecie st esre e sttt se e nre e 125
Paging: Page Table ..o 125
Paging: AN EXAMPIE.......ccooiiiiiiieieee e 128
Virtual Memory: Page Table........cccoveiieiiieseee e 129
Virtual Memory: AN EXamMPIe........ccoveiviiiiieiieie e 130
COMMON SECLIONS.....cuviiiiiiie ettt sttt ers 132
MEMOTY PrOTECTIONcviiiiiiieiieee s 133

November 2, 2004 -5-

Aspects of Computer Architecture
Introduction

1. Introduction

1.1. Why should Chemists care about this mateial?

1. Typically, the chemistry professionals will encounter many different computer
environments during their careers.
2. We (want to, need to, have to) use computers to do our work and have fun.

1.2. How can we characterize the people who use computers?

1.2.1. By the Type of Use

Application user

Operator

System manager

Application programmer

System programmer

Hardware developer

Software maintainer

Hardware maintainer

Hardware and software documentor
0. User support

RO ~NoOR~WNE

1.2.2. By frequency of use of a particular program or facility

1. Occasional
2. Frequent

1.2.3. By level of expertise for a given program or facility

1. Novice
2. Versed
3. Expert/wizard/guru

November 2, 2004 -6-

Aspects of Computer Architecture
Number Systems

2. Number Systems

An integer is represented in our system of writing by a string of symbols, digits, (dj) from the
set {0, 1, 2, ... b-1} as shown below where "b" is the base of the representation.

number = d, dn-1--- dz di dop

Numerically, the above notation represents the following sum.

number = Zn:di b’

i=0
As an example, the following are different representations of the same number.

number = 1010001110110010.,, = 121662, = 41906, , = A3B2

2 8 10 16

Fractional numbers can also be represented.

number = d.;1d2--d-mudom
number=>" db

i=—1

The following are different representations of the same numbers.

number = 0.12 = 0.48 = 0.510 = 0.816
number = 0.012 = 0.28 = 0.2510 = 0.416
number = 0.112 = 0. 78 = 0.7510 = 0'016

The general notation is as follows where "'s" is the sign of the number and may be though of as
being either +1 or -1.

number = sd,dido.d-1d2-+ d_mu d-m

number = s - _Zdi b

i=n

Scientific notation can be generalized as follows. In the following "sy" is the sign of the
mantissa, "sg" is the sign of the exponent, and "B" is a symbol characteristic of the base.

number = sd>dido.d-1d2 - d-mu d-m BS, €n€n1---€2€160

number = (smjidi -bij-[bSe' Eoe,- : b’j

November 2, 2004 -7-

Aspects of Computer Architecture
Number Systems
2.1. Range of Numbers

A given modulus, b, and a fixed number, n, of digits can express b" numbers that range from 0 to
bN - 1. For example, in base 10, 5 digits can represent 100000 numbers from 0 to 99999. For
base 2, 16 digits can represent 65536 (216) numbers from 0 to 65535.

2.2. Converting Between Different Moduli
Conversion of a number from one power of two modulus to another power of two modulus is
fairly simple and very useful. The following discussion will assume unsigned integers that can
be expressed in 16 binary digits (bits).

number = bys by b1z bio br1bio be bs b7 bs bs ba bs b2 b1bo

number = b, -2 +b, -2 + b, - 2% +b, - 2% +b, - 2" + Db, -2 + b, -2° + by, - 2°

+b, 2" +b,-2°+b, - 2° +b, -2 +b, - 2° + b, - 2° + b, - 2" + Dy, - 2°

2.2.1. Binary to/from Hexadecimal

Notice that the terms can be grouped in subsets of 4 as follows.

number = (b - 2° +1y, - 2" + by - 2° + by, - 22)+ (b, - 2 + by - 20+, - 2° + by - 2°)
+(b7-27+b6-26+b5-25+b4-24)+(b3-23+b2-22+b1-21+b0-20)

Various powers of two can be factored out of the individual groups of 4 terms.

number = (b,; - 22+, - 2%+, - 2 +by, -2°)- 22 + (b, - 2° +by, - 22 + by - 2+ by - 2°)-2°
b, 2% +10,-2% +b, -2 +b,-2°)- 2% + (b, - 2° +b, - 22 + b, -2 + b, - 2°)

Realizing that 2* = 16, the above can be transformed as follows.

number = (byg - 2° +1y, - 2% +1y; - 24+, - 2°)-16° + (by, - 2° +1yy - 2%+, - 2* + by - 2°)-167
(b, - 2% +10,- 22 + b, -2 +b, -2°)-16" + (b, - 2° +b, - 22 + b, - 2* + b, - 2°)-16°

The traditional decimal number system (base = 10) has the ten symbols (0, 1, 2, 3,4, 5, 6,
7, 8, 9). The hexadecimal system (base = 16) does not have a corresponding traditional
set of 16 symbols. The set (0, 1, 2, 3,4, 5, 6, 7, 8, 9,A ,B, C, D, E, F) has been adopted.

November 2, 2004 -8-

Aspects of Computer Architecture
Number Systems

Binary | Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 5
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

10000 10 16

The factors of the powers of 16 can be replaced with the symbols h;
number = h, -16° + h, - 16 + h, - 16" + h, - 16°
number = hzh, hiho
Thus, the binary number has been converted to the corresponding hexadecimal number with out

any excessive arithmetic. Conversion of a hexadecimal number to the corresponding binary
number is the inverse process.

November 2, 2004 -9-

Aspects of Computer Architecture
Number Systems

As an example the following binary number will be converted to hexadecimal. First, the binary
number is grouped into sets of 4 bits.

number = 0001000010101011000111002

number = 0001 0000 1010 1011 0001 11002

Then, each set of four bits is replaced with the corresponding hexadecimal symbol. The number
can then be regrouped.

number =10 AB1C

16
number = 10ABlC16

As a second example the following hexadecimal number will be converted to binary.

number = C73016

number = C 7 3 O16

Each hexadecimal symbol is then replaced with the corresponding set of four binary bits. The
number can then be regrouped.

number = 1100 0111 0011 0000
number = 1100011100110000

2
2

2.2.2. Binary to/from Octal

In this case the terms in the binary representation are grouped into groups of three terms.

number = (0-27 +0-2° +by, - 2%)+ by, - 2 + by, -2° + by, -2?)
+(b11-2“+b10-210+b9-29)+(b8-28+b7-27+b6-26)
+(b5-25+b4~24+b3~23)+(b2-22+bl.21+b0-2°)

Now factor the appropriate power of two out of each group.

number = (0'22+0'21+b15'20)'215+(b14'22+b13'21+b12'20)'212
oy 27 +byy 2"+, -2°)- 2+ (b, 22+, 214D, -2°)-2°
+(bs 2%+, -2 +b,-2°)-2° +(b, - 27 +b, -2 +b, - 2°)-2°

Given that 2° = 8, the following transformation is made.

November 2, 2004 -10 -

Aspects of Computer Architecture
Number Systems

number = (0-22+0-2" +by;-2°)-8 + (b, - 2> + by, -2 + by, -2°)- 8
by, 22 by -2+, 2°)- 8 + (b, - 2% + b, - 2" + by -2°)-82
by 22 +1, - 2" +b,-2°)-8" + (b, - 22 +10, - 2+, - 2°)- 8°

The coefficients of the powers of 8 can be replaced by the octal symbols defined below.

Binary Octal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 5
0101) 5
0110 6 6
0111 7 7
1000 10 8

number = o, -8° +0,-8*+0,-8° +0,:8 +0,-8 +0, -8
number = 04 0302 0100

As an example the following binary number will be converted to octal. First, the binary number
is grouped into sets of three bits.

number = OOOlOOOOlOlOlOllOOOlllOO2

number = 000 100 001 010 101 100 011 1002

Then each set of three bits is replaced with the corresponding octal symbol. The number can then
be regrouped.

November 2, 2004 -11 -

Aspects of Computer Architecture
Number Systems

number =04125434
number = 04125434

8
8

The inverse operation will serve as a second example. The following octal number will be
converted to binary. Begin by separating the octal symbols.

number = 1434608

number =1434608

Each octal symbol is then replaced with the corresponding set of three binary bits. The number
can then be regrouped.

number = 001 100 011 100 110 000
number = 1100011100110000

2
2

2.3. Signed Integers

A set of n binary bits, b1, b5, ..., by, by, may also be used to represent a signed integer. Three
different representations have been used.

2.3.1. Sign/Magnitude
This representation uses one bit to represent the sign of the number. The most significant bit is
used for the sign bit. by = b,,.; = 0 for a positive number. b = b,.; = 1 for a negative number. The

absolute value of the number is placed in the remaining bits as an unsigned integer.

Examples, using 16 bit numbers:

November 2, 2004 -12 -

Aspects of Computer Architecture
Number Systems

Signed || Sign/Magnitude Representation
Number Binary Oct Dec Hex
1 00000 00000 0001 1 1 1
-1 10000 00000 0001 10001 32769 8001
32767 01111 11111 1111 77777 32767 7FFF
-32767 11111 11111 1111 177777 65535 FFFF
0 00000 00000 0000 000000 0 0000

2.3.2. One's Complement

This representation again uses the most significant bit to represent the sign of the number. b,.; =
b, = 0 for a positive number. b,_; = bs = 1 for a negative number. The absolute value of the
number to be represented has to be less than 2 ™ - 1. Convert the absolute value of the number
to a binary number of n bits. Since the number is less than 2 " - 1, the sign bit, bg = b,,_;, will be
zero. If the number being converted is negative, invert all n bits. Notice that the sign bit will be
appropriate.

As an example convert the number 60, to one's complement.

0000 0000 0011 1100, =

Now convert -60;, to one's complement.

0000 0000 0011 1100,

1111 1111 1100 0011,

Further examples, using 16 bit numbers:

November 2, 2004

654751,

-13 -

3C,¢, Convert absolute
value to binary.

Finished.

3C,, Convert absolute
value to binary.

FFC3,, Invert all bits.
Done

Aspects of Computer Architecture
Number Systems

Signed || One's Complement Representation
Number Binary Oct Dec Hex
1 00000000O0O0O0O0OCOO0T1 000001 1 0001
-1 111111111111 1110 177776 65534 FFFE
32767 011111111111 1111 077777 32767 7FFF
-32767 1000000000O0O0O0O0OO 100000 32768 8000
0 0000000O0O0O0OO0OOO0OQO 000000 0 0000
-0 111111111111 1111 177777 65535 FFFF

2.3.3. Two's Complement

This representation again uses the most significant bit to represent the sign of the number. b =
by.1 = 0 for a positive number. b = b,_; = 1 for a negative number. Again, the absolute value of
the number to be represented has to be less than 2 ™ - 1. Convert the absolute value of the
number to a binary number of n bits. Since the number is less than 2 "1 - 1, the sign bit, by = b, ;,
will be zero. If the number being converted is negative, invert all n bits. Then add one to the
resultant. Notice that the sign bit will be appropriate. This representation avoids the problem of
+0 and -0 of the one's complement representation. This is now the typical representation used.

As an example convert the number 60, to two's complement.

0000 0000 0011 1100, =

Now convert -60,, to two's complement.

0000 0000 0011 1100,

1111 1111

1111 1111

November 2, 2004

1100 0011,

1

1100 0100,

6019 =

65475,

65476,

-14 -

3C,; Convert absolute
value to binary.

Finished.

3C,¢, Convert absolute
value to binary.

FFC3,, Invert all bits.

Add one.

FFC4,, Done.

Aspects of Computer Architecture

Number Systems

Further examples, using 16 bit numbers:

Signed || Two's Complement
Number Binary Oct Dec Hex
1 0000O0O0OOOO O 00000 1 1 1
-1 111111111 11111 177777 65535 FFFF
32766 011111111 11111 77776 32766 7FFE
32767 011111111 11111 77777 32767 7FFF
-32766 1000000O0O0 00001 100002 32770 8002
-32767 1000000O00O0 00000 100001 32769 8001
-32768 1000000O0O0O 00000 100000 32768 8000

At this point, a few simple aritmetic examples might be useful. These examples use two's

complement arithmetic. First there is the binary addition table for adding two binary single bit
numbers (A + B). Multiple bit additions are performed bit by bit with the adding in of any carry
from the previous position

Add the binary equivalents of -60,, and +60y,.

11111 1111 1111 100 ,

0000

1111

0000

0000

1111

0000

November 2, 2004

0011

1100

0000

1100,
0100,

0000,

-6040 =

- 15 -

A+B Carry
0 0
1 0
1 0
0 1
Carry
3Cy¢ First number
FFC4,, Second number

Sum

Aspects of Computer Architecture
Number Systems

2.4. Floating Point Numbers

This section summarizes the formats of several of the data types supported by Intel.1 The value
of a floating point number is given by the following

number = (_1)5 (ZE—Bias)F

where “S” is the sign bit, “E” is the exponent, “F” is the fractional mantissa, and “BIAS” is an
integer that varies with representation and is listed below for these particular representations.

(ARRRNRRR RN NN NN AR AR RN ARRARARA AR RARRRRARRRA RN ARRRANRRARRRRAED
7 7 6 5 4 3 3 2 1

9 1 3 3 7 9 1 3 5 7 0
Word Integer sl |
1
5 0
ShortInteger H

3
1

Long Ineger H I

3 0
Singdle Preciion lslbiasedexp. fraction |
3 2
1 3 0
Double Preciion ISl biasedexp. fraction I
6 5
3 2 0
ExtendedPrecision
|S| biasedexponent |I| fraction I
7 6
9 3 0

Figure 1 Intel Number Representations

1 “Microprocessors,” page 4-509, Intel Corporation, Literature Sales, PO Box 7641, Mt. Prospect IL 60056-7641,
1990.

November 2, 2004 -16 -

Aspects of Computer Architecture
Number Systems

Table 1 Number Formats

Data Type Bits Significant Range
Digits
Word Integer 16 4 -32768 < X <£32767
Short Integer 32 9 -2x10° < X < 2 x10°
Long Integer 64 18 -9x10%® < X <9 x10™
Single Precision 32 6-7 8.43x10°%" < | X| <3.37 x10%
Double Precision 64 15-16 4.19x10°7 < | X | <1.67 x10°%
Extended Precision | 80 19 3.4x10%9%2 < | X | <1.2 x10%%
7 0
M
A+9 1S s
E
L
7 0 A8 s
E
M M
A+7 |S| s A+7 |]| s
E F
LM
A+6 s|s A+6
ElF
A+5 A+5
7 0 A+4 A+4
M
A+3 S| s A+3 A+3
E
LM
A+2] s| s A+2 At2
E|F
A+1 A+1 A+1
L L L
A+0 S A+0 S A+0 S
F F F
Single Double Extended
Precision Precision Precision

November 2, 2004

Figure 2 Intel Floating Point Storage

-17 -

Aspects of Computer Architecture
Number Systems

o nZ

A+1|S

A+0

-

@ n

Word
Integer

on

A+3 | S

A+2

A+l

A+0

@ n

Short
Integer
Figure 3 Intel Integer Storage

Table 2 Symbol Definitions

A+7

A+6

A+5

A+4

A+3

A+2

A+l

A+0

o n=

@ n

Symbol

Description

Base address of the stored number

Sign of the number (0 = positive, 1 = negative)

MSB

Most Significant Bit of integer

LSB

Least Significant Bit of Integer

MSF

Most Significant Bit of fraction

LSF

Least Significant Bit of fraction

MSE

Most Significant Bit of the exponent

LSE

Least Significant Bit of the exponent

Bias

Single 127 (7Fs)

Double 1023 (3FFy)

Extended 16383 (3FFF5)

November 2, 2004

-18 -

Aspects of Computer Architecture
Number Systems

2.5. Useful Tables of Numbers
2.5.1. Powers of Two

Table 3 Powers of 2

n DEC OCT HEX Common Name
0 1 1 1

1 2 2 2

2 4 4 4

3 8 10 8

4 16 20 10

5 32 40 20

6 64 100 40

7 128 200 80

8 256 400 100

9 512 1000 200
10 1024 2000 400 1K
11 2048 4000 800 2K
12 4096 10000 1000 4K
13 8192 20000 2000 8K
14 16384 40000 4000 16K
15 32768 100000 8000 32K

16 65536 200000 10000 64K

17 131072 400000 20000 128K

18 262144 1000000 40000 256K

19 524288 2000000 80000 512K
20 1048576 4000000 100000 1M or 1Meg
21 2097152 1000000 200000 2M or 2Meg
22 4194304 20000000 400000 4M or 4Meg
23 8388608 40000000 800000 8M or 8Meg
24 16777216 100000000 1000000 16M or 16Meg
25 33554432 200000000 2000000 32M or 32Meg
26 67108864 400000000 4000000 64M or 64Meg
27 134217728 1000000000 8000000 128M or 128Meg
28 268435456 2000000000 10000000 256M or 256Meg
29 536870912 4000000000 20000000 512M or 512Meg
30 1073741824 10000000000 40000000 1G or 1Gig
31 2147483648 20000000000 80000000 2G or 2Gig
32 4294967296 40000000000 100000000 4G or 4Gig

November 2, 2004 -19 -

Aspects of Computer Architecture
Number Systems

The above table contains the values of the first 32 powers of 2 expressed in base 10 (decimal or
DEC), base 8 (octal or Oct), and base 16 (hexadecimal or Hex). The right most column of the
table contains the common names often given to the corresponding quantities. This nomenclature
is an artifact of the computer industry which early on chose to use the short hand name “one K”
to represent the much longer and more appropriate name “One thousand twenty four,” etc.

Table 4 Counting in Different Moduli

DEC Binary oCT HEX | Items being counted

0 0000000000000000 0 0

1 0000000000000001 1 1| *

2 0000000000000010 2 2 | **

3 0000000000000011 3 3| kk*

4 0000000000000100 4 4 | Kk

5 0000000000000101 5 5 | *kkkk

6 0000000000000110 6 6 | Hddkkdk

7 0000000000000111 7 T | **krkkk

8 0000000000001000 10 8 | *hkkkkkk

9 0000000000001001 11 9 | *kkkkkkkk

10 0000000000001010 12 A | *kkkkkkkkk

11 0000000000001011 13 B | *kkkkkkkkkk

12 0000000000001100 14 C | ** *kdkhkhkdrk

13 0000000000001101 15 D | **kkkkkhkhkdk

14 0000000000001110 16 E | **dkdkhknhrhndrsrn

15 0000000000001111 17 F | *kdkdhkdhkdhkrhkrks

16 0000000000010000 20 10 | *kkkkkkkkhhhkhhk

17 0000000000010001 21 11 | *kkkkkdhkdhkdhdhdhd

18 0000000000010010 22 12 | *kkkkkkkkhhhkhkhkhhk

19 0000000000010011 23 13 | *kkkkkkhkkkdhkhkhhkhkk
20 0000000000010100 24 14 | *kkkkkkhkkhkdhhhkhhkhhdk

21 0000000000010101 25 15 | *kkkkkkkdhkdhdkdkhhhkd

22 0000000000010110 26 16 | **kkkkkkkhhkkkkkkhhkhhhh

23 0000000000010111 27 17 | *kkkhkkkkkhhkkkhkhkhkhkkhhhk

24 0000000000011000 30 18 | *kkkkkkhkkkhhkkhkkhhkhkhhhkkk

25 0000000000011001 31 19 kkkhkkhkhkhhkhkhkhkhhkhhkhhkkhhhhkkk

26 0000000000011010 32 TA | **kkkkkhkkhhkhkhhhkhkhhkhkhhhkhd

27 0000000000011011 33 1B | **kkkkkhhhkhhhkhhhkhhhkhhhkhdhk

28 0000000000011100 34 1C | *hkkkkkhhhkkhhhkhhhkhhhkhhhhkhkx
29 0000000000011101 35 1D khkkhkhkkhkhkkhkhkhkhhkhkhkhkkhkhhkhkhkkdhk
30 0000000000011110 36 1E | *%*kkkhkkhhkhhhkhhhkhhhkhhkhkhhkhd
31 0000000000011111 37 IF | *kkkkkkhhhkhkhhhkhhhkhkhhhkhhhkhhhkhdhk
32 0000000000100000 40 20 | **kkkkkkhhhkhhhkhhhkhhhhkhhkhhhkkhkk
33 0000000000100001 41 21 khkkhhkkhkhkkhkhhkhkhhkhkhkhhkhkhhkhhkhhhkhhkhkdhxk

November 2, 2004 -20 -

Aspects of Computer Architecture
Number Systems

Table 5 0 to 65536 in Multiple Moduli

DEC BIN BIN OCT BIN HEX DEC
0 0000000000000000 0 000 000 000 000 000 0 0000 0000 0000 0000 0 0
1 0000000000000001 0 000 000 000 000 001 1 0000 0000 0000 0001 1 1
2 0000000000000010 0 000 000 000 000 010 2 0000 0000 0000 0010 2 2
3 0000000000000011 0 000 000 000 000 011 3 0000 0000 0000 0011 3 3
4 0000000000000100 0 000 000 000 000 100 4 0000 0000 0000 0100 4 4
5 0000000000000101 0 000 000 000 000 101 5 0000 0000 0000 0101 5 5
6 0000000000000110 0 000 000 000 000 110 6 0000 0000 0000 0110 6 6
7 0000000000000111 0 000 000 000 000 111 7 0000 0000 0000 0111 7 7
8 0000000000001000 0 000 000 000 001 000 10 0000 0000 0000 1000 8 8
9 0000000000001001 0 000 000 000 001 001 11 0000 0000 0000 1001 9 9

10 0000000000001010 0 000 000 000 001 010 12 0000 0000 0000 1010 A 10
11 0000000000001011 0 000 000 000 001 011 13 0000 0000 0000 1011 B 11
12 0000000000001100 0 000 000 000 001 100 14 0000 0000 0000 1100 C 12
13 0000000000001101 0 000 000 000 001 101 15 0000 0000 0000 1101 D 13
14 0000000000001110 0 000 000 000 001 110 16 0000 0000 0000 1110 E 14
15 0000000000001111 0 000 000 000 001 111 17 0000 0000 0000 1111 F 15
16 0000000000010000 0 000 000 000 010 000 20 0000 0000 0001 0000 10 16
17 0000000000010001 0 000 000 000 010 001 21 0000 0000 0001 0001 11 17
18 0000000000010010 0 000 000 000 010 010 22 0000 0000 0001 0010 12 18
19 0000000000010011 0 000 000 000 010 011 23 0000 0000 0001 0011 13 19
20 0000000000010100 0 000 000 000 010 100 24 0000 0000 0001 0100 14 20
21 0000000000010101 0 000 000 000 010 101 25 0000 0000 0001 0101 15 21
22 0000000000010110 0 000 000 000 010 110 26 0000 0000 0001 0110 16 22
23 0000000000010111 0 000 000 000 010 111 27 0000 0000 0001 0111 17 23
24 0000000000011000 0 000 000 000 011 000 30 0000 0000 0001 1000 18 24
25 0000000000011001 0 000 000 000 011 001 31 0000 0000 0001 1001 19 25
26 0000000000011010 0 000 000 000 011 010 32 0000 0000 0001 1010 1A 26
27 0000000000011011 0 000 000 000 011 011 33 0000 0000 0001 1011 1B 27
28 0000000000011100 0 000 000 000 011 100 34 0000 0000 0001 1100 1C 28
29 0000000000011101 0 000 000 000 011 101 35 0000 0000 0001 1101 1D 29
30 0000000000011110 0 000 000 000 011 110 36 0000 0000 0001 1110 1E 30
31 0000000000011111 0 000 000 000 011 111 37 0000 0000 0001 1111 1F 31
32 0000000000100000 0 000 000 000 100 000 40 0000 0000 0010 0000 20 32
33 0000000000100001 0 000 000 000 100 001 41 0000 0000 0010 0001 21 33
34 0000000000100010 0 000 000 000 100 010 42 0000 0000 0010 0010 22 34
35 0000000000100011 0 000 000 000 100 011 43 0000 0000 0010 0011 23 35
36 0000000000100100 0 000 000 000 100 100 44 0000 0000 0010 0100 24 36
37 0000000000100101 0 000 000 000 100 101 45 0000 0000 0010 0101 25 37
38 0000000000100110 0 000 000 000 100 110 46 0000 0000 0010 0110 26 38
39 0000000000100111 0 000 000 000 100 111 47 0000 0000 0010 0111 27 39
40 0000000000101000 0 000 000 000 101 000 50 0000 0000 0010 1000 28 40

November 2, 2004 -21-

Aspects of Computer Architecture
Number Systems

DEC BIN BIN OCT BIN HEX DEC
41 0000000000101001 0 000 000 000 101 001 51 0000 0000 0010 1001 29 41
42 0000000000101010 0 000 000 000 101 010 52 0000 0000 0010 1010 2A 42
43 0000000000101011 0 000 000 000 101 011 53 0000 0000 0010 1011 2B 43
44 0000000000101100 0 000 000 000 101 100 54 0000 0000 0010 1100 2C 44
45 0000000000101101 0 000 000 000 101 101 55 0000 0000 0010 1101 2D 45
46 0000000000101110 0 000 000 000 101 110 56 0000 0000 0010 1110 2E 46
47 0000000000101111 0 000 000 000 101 111 57 0000 0000 0010 1111 2F 47
48 0000000000110000 0 000 000 000 110 00O 60 0000 0000 0011 0000 30 48
49 0000000000110001 0 000 000 000 110 001 61 0000 0000 0011 0001 31 49
50 0000000000110010 0 000 000 000 110 010 62 0000 0000 0011 0010 32 50
51 0000000000110011 0 000 000 000 110 011 63 0000 0000 0011 0011 33 51
52 0000000000110100 0 000 000 000 110 100 64 0000 0000 0011 0100 34 52
53 0000000000110101 0 000 000 000 110 101 65 0000 0000 0011 0101 35 53
54 0000000000110110 0 000 000 000 110 110 66 0000 0000 0011 0110 36 54
55 0000000000110111 0 000 000 000 110 111 67 0000 0000 0011 0111 37 55
56 0000000000111000 0 000 000 000 111 00O 70 0000 0000 0011 1000 38 56
57 0000000000111001 0 000 000 000 111 001 71 0000 0000 0011 1001 39 57
58 0000000000111010 0 000 000 000 111 010 72 0000 0000 0011 1010 3A 58
59 0000000000111011 0 000 000 000 111 011 73 0000 0000 0011 1011 3B 59
60 0000000000111100 0 000 000 000 111 100 74 0000 0000 0011 1100 3C 60
61 0000000000111101 0 000 000 000 111 101 75 0000 0000 0011 1101 3D 61
62 0000000000111110 0 000 000 000 111 110 76 0000 0000 0011 1110 3E 62
63 0000000000111111 0 000 000 000 111 111 77 0000 0000 0011 1111 3F 63
64 0000000001000000 0 000 000 001 00O 000 100 0000 0000 0100 0000 40 64
65 0000000001000001 0 000 000 001 000 001 101 0000 0000 0100 0001 41 65
66 0000000001000010 0 000 000 001 000 010 102 0000 0000 0100 0010 42 66
67 0000000001000011 0 000 000 001 000 011 103 0000 0000 0100 0011 43 67
68 0000000001000100 0 000 000 001 000 100 104 0000 0000 0100 0100 44 68
69 0000000001000101 0 000 000 001 000 101 105 0000 0000 0100 0101 45 69
70 0000000001000110 0 000 000 001 000 110 106 0000 0000 0100 0110 46 70
71 0000000001000111 0 000 000 001 000 111 107 0000 0000 0100 0111 47 71
72 0000000001001000 0 000 000 001 001 000 110 0000 0000 0100 1000 48 72
73 0000000001001001 0 000 000 001 001 001 111 0000 0000 0100 1001 49 73
74 0000000001001010 0 000 000 001 001 010 112 0000 0000 0100 1010 4A 74
75 0000000001001011 0 000 000 001 001 011 113 0000 0000 0100 1011 4B 75
76 0000000001001100 0 000 000 001 001 100 114 0000 0000 0100 1100 4C 76
77 0000000001001101 0 000 000 001 001 101 115 0000 0000 0100 1101 4D 77
78 0000000001001110 0 000 000 001 001 110 116 0000 0000 0100 1110 4E 78
79 0000000001001111 0 000 000 001 001 111 117 0000 0000 0100 1111 4F 79
80 0000000001010000 0 000 000 001 010 00O 120 0000 0000 0101 0000 50 80

November 2, 2004 -22 -

Aspects of Computer Architecture
Number Systems

November 2, 2004

DEC BIN BIN OCT BIN HEX DEC
81 0000000001010001 0 000 000 001 010 001 121 0000 0000 0101 0001 51 81
82 0000000001010010 0 000 000 001 010 010 122 0000 0000 0101 0010 52 82
83 0000000001010011 0 000 000 001 010 011 123 0000 0000 0101 0011 53 83
84 0000000001010100 0 000 000 001 010 100 124 0000 0000 0101 0100 54 84
85 0000000001010101 0 000 000 001 010 101 125 0000 0000 0101 0101 55 85
86 0000000001010110 0 000 000 001 010 110 126 0000 0000 0101 0110 56 86
87 0000000001010111 0 000 000 001 010 111 127 0000 0000 0101 0111 57 87
88 0000000001011000 0 000 000 001 011 000 130 0000 0000 0101 1000 58 88
89 0000000001011001 0 000 000 001 011 OO1 131 0000 0000 0101 1001 59 89
90 0000000001011010 0 000 000 001 011 010 132 0000 0000 0101 1010 5A 90
91 0000000001011011 0 000 000 001 011 011 133 0000 0000 0101 1011 5B 91
92 0000000001011100 0 000 000 001 011 100 134 0000 0000 0101 1100 5C 92
93 0000000001011101 0 000 000 001 011 101 135 0000 0000 0101 1101 5D 93
94 0000000001011110 0 000 000 001 011 110 136 0000 0000 0101 1110 5E 94
95 0000000001011111 0 000 000 001 011 111 137 0000 0000 0101 1111 5F 95
96 0000000001100000 0 000 000 001 100 000 140 0000 0000 0110 0000 60 96
97 0000000001100001 0 000 000 001 100 001 141 0000 0000 0110 0001 61 97
98 0000000001100010 0 000 000 001 100 010 142 0000 0000 0110 0010 62 98
99 0000000001100011 0 000 000 001 100 011 143 0000 0000 0110 0011 63 99

100 0000000001100100 0 000 000 001 100 100 144 0000 0000 0110 0100 64 100

101 0000000001100101 0 000 000 001 100 101 145 0000 0000 0110 0101 65 101

102 0000000001100110 0 000 000 001 100 110 146 0000 0000 0110 0110 66 102

103 0000000001100111 0 000 000 001 100 111 147 0000 0000 0110 0111 67 103

104 0000000001101000 0 000 000 001 101 000 150 0000 0000 0110 1000 68 104

105 0000000001101001 0 000 000 001 101 001 151 0000 0000 0110 1001 69 105

106 0000000001101010 0 000 000 001 101 010 152 0000 0000 0110 1010 6A 106

107 0000000001101011 0 000 000 001 101 011 153 0000 0000 0110 1011 6B 107

108 0000000001101100 0 000 000 001 101 100 154 0000 0000 0110 1100 6C 108

109 0000000001101101 0 000 000 001 101 101 155 0000 0000 0110 1101 6D 109

110 0000000001101110 0 000 000 001 101 110 156 0000 0000 0110 1110 6E 110

111 0000000001101111 0 000 000 001 101 111 157 0000 0000 0110 1111 6F 111

112 0000000001110000 0 000 000 001 110 000 160 0000 0000 0111 0000 70 112

113 0000000001110001 0 000 000 001 110 001 161 0000 0000 0111 0001 71 113

114 0000000001110010 0 000 000 001 110 010 162 0000 0000 0111 0010 72 114

115 0000000001110011 0 000 000 001 110 011 163 0000 0000 0111 0011 73 115

116 0000000001110100 0 000 000 001 110 100 164 0000 0000 0111 0100 74 116

117 0000000001110101 0 000 000 001 110 101 165 0000 0000 0111 0101 75 117

118 0000000001110110 0 000 000 001 110 110 166 0000 0000 0111 0110 76 118

119 0000000001110111 0 000 000 001 110 111 167 0000 0000 0111 0111 77 119

120 0000000001111000 0 000 000 001 111 000 170 0000 0000 0111 1000 78 120

-23-

Aspects of Computer Architecture
Number Systems

DEC BIN BIN OCT BIN HEX DEC
121 0000000001111001 0 000 000 001 111 001 171 0000 0000 0111 1001 79 121
122 0000000001111010 0 000 000 001 111 010 172 0000 0000 0111 1010 7A 122
123 0000000001111011 0 000 000 001 111 011 173 0000 0000 0111 1011 7B 123
124 0000000001111100 0 000 000 001 111 100 174 0000 0000 0111 1100 7C 124
125 0000000001111101 0 000 000 001 111 101 175 0000 0000 0111 1101 7D 125
126 0000000001111110 0 000 000 001 111 110 176 0000 0000 0111 1110 7E 126
127 0000000001111111 0 000 000 001 111 111 177 0000 0000 0111 1111 7F 127
128 0000000010000000 0 000 000 010 000 000 200 0000 0000 1000 0000 80 128
129 0000000010000001 0 000 000 010 000 001 201 0000 0000 1000 0001 81 129
130 0000000010000010 0 000 000 010 000 010 202 0000 0000 1000 0010 82 130
65530 1111111111111010 1 111 111 111 111 010 177772 1111 1111 1111 1010 FFFA 65530
65531 1111111111111011 1 111 111 111 111 011 177773 1111 1111 1111 1011 FFFB 65531
65532 1111111111111100 1 111 111 111 111 100 177774 1111 1111 1111 1100 FFFC 65532
65533 1111111111111101 1 111 111 111 111 101 177775 1111 1111 1111 1101 FFFD 65533
65534 1111111111111110 1 111 111 111 111 110 177776 1111 1111 1111 1110 FFFE 65534
65535 1111111111111111 1 111 111 111 111 111 177777 1111 1111 1111 1111 FFFF 65535
65536 0000000000000000 0 000 000 000 000 0OO 0 0000 0000 0000 0000 0 65536
65537 0000000000000001 0 000 000 000 000 001 1 0000 0000 0000 0001 1 65537
65538 0000000000000010 0 000 000 000 000 010 2 0000 0000 0000 0010 2 65538
65539 0000000000000011 0 000 000 000 000 011 3 0000 0000 0000 0011 3 65539
65540 0000000000000100 0 000 000 000 000 100 4 0000 0000 0000 0100 4 65540
November 2, 2004 -24 -

Aspects of Computer Architecture
Character Codes

3. Character Codes
3.1. Six Bit Character Codes

These codes were used in the early days of computing when memory and bandwidth was
very expensive. Notice that there are only upper case characters.

Table 6 Six Bit Character Codes

Char | Octal | Dec Hex Char | Octal | Dec Hex
@ 0 0 0 || space 40 32 20
A 1 1 1 ! 41 33 21
B 2 2 2 " 42 34 22
C 3 3 3 # 43 35 23
D 4 4 all $ 44 | 36| 24
E 5 5 5 % 45 37 25
F 6 6 6 & 46 38 26
G 7 7 7 ' 47 39 27
H 10 8 8 (50 40 28
I 11 9 all) 51| 41| 29
J 12 10 A * 52 42 2A
K 13 11 B + 53 43 2B
L 14 12 c) 54 44 2C
M 15 13 D - 55 45 2D
N 16 14 E . 56 46 2E
(0] 17 15 F / 57 47 2F
P 20 16 10 0 60 48 30
Q 21 17 11 1 61 49 31
R 22 18 12 2 62 50 32
S 23 19 13 3 63 51 33
T 24 20 14 4 64 52 34
U 25 21 15 5 65 53 35
Vv 26 22 16 6 66 54 36
w 27 23 17 7 67 55 37
X 30 24 18 8 70 56 38
Y 31 25 19 9 71 57 39
Z 32 26 1A : 72 58 3A
[33 27 1B ; 73 59 3B
\ 34| 28| 1c|| < 74 | 60| 3cC
] 35 29 in|l = 75 61 3D
A 36 30 1E > 76 62 3E

37 31 1F ? 77 63 3F

November 2, 2004 -25-

Aspects of Computer Architecture
Character Codes

3.2. ASCII Character Codes

Table 7 ASCII Character Codes

Character Octal | Dec Hex Char | Octal | Dec Hex Char [Octal [Dec Hex Char | Octal | Dec Hex
<NULL> 0 0 0 40 32 20 @ 100 64 40 : 140 96 60
<SOH> 1 1 1 ! 41 33 21 A 101 65 41 a 141 97 61
<STX> 2 2 2 " 42 34 22 B 102 66 42 b 142 98 62
<ETX> 3 3 3 # 43 35 23 C 103 67 43 ¢ 143 99 63
<EOT> 4 4 4 $ 44 36 24 D 104 68 44 d 144 | 100 64
<ENQ> 5 5 5 % 45 37 25 E 105 69 45 e 145 | 101 65
<ACK> 6 6 6 & 46 38 26 F 106 70 46 f 146 | 102 66
<BEL> 7 7 7 ' 47 39 27 G 107 71 47 g 147 | 103 67

<BS> 10 8 8 (50 40 28 H 110 72 48 h 150 | 104 68
<HT> 11 9 all) 51| 41| 29| 1 111 73| 49|l i 151 | 105 | 69
<LF> 12 10 A * 52 42 2A J 112 74 4A j 152 | 106 6A
<VT> 13 11 B + 53 43 2B K 113 75 4B k 153 | 107 6B
<FF> 14 12 C , 54 44 2¢C L 114 76 4C | 154 | 108 6C
<CR> 15 13 D - 55 45 2D M 115 77 4D m 155 | 109 6D
<S0O> 16 14 E 56 46 2E N 116 78 4E n 156 | 110 6E
<SI> 17 15 F / 57 47 2F 0] 117 79 4F 0 157 | 111 6F
<DLE> 20 16 10 0 60 48 30 P 120 80 50 p 160 | 112 70
<DC1> 21 17 11 1 61 49 31 Q 121 81 51 q 161 | 113 71
<DC2> 22 18 12 2 62 50 32 R 122 82 52 r 162 | 114 72
<DC3> 23 19 13 3 63 51 33 S 123 83 53 S 163 | 115 73
<DC4> 24 20 14 4 64 52 34 T 124 84 54 t 164 | 116 74
<NAK> 25 21 15 5 65 53 35) 125 85 55 u 165 | 117 75
<SYN> 26 22 16 6 66 54 36 \Y% 126 86 56 \Y 166 | 118 76
<ETB> 27 23 17 7 67 55 37 W 127 87 57 w 167 | 119 77
<CAN> 30 24 18 8 70 56 38 X 130 88 58 X 170 | 120 78
 31 25 19 9 71 57 39 Y 131 89 59 Yy 171 | 121 79
<SuB> 32 26 1A : 72 58 3A Z 132 90 5A z 172 | 122 TA
<ESC> 33 27 1B ; 73 59 3B [133 91 5B { 173 | 123 7B
<FS> 34 28 1C < 74 60 3C \ 134 92 5C | 174 | 124 7C
<GS> 35| 29| 1o}l = 75| 61| 3| 1 |135| 93| spo|| 3 | 175|125 | 7D
<RS> 36 30 1E > 76 62 3E A 136 94 5E ~ 176 | 126 7E
<US> 37 31 1F ? 77 63 3F _ 137 95 SF||DEL | 177 | 127 7F

November 2, 2004 -26 -

Aspects of Computer Architecture
Character Codes

Table 8 ASCII Control Characters

<NUL> Null

<SOH> Start of heading

<STX> Start of text

<ETX> End of text

<EQT> End of transmission
<ENQ> Enquiry

<ACK> Acknowledge

<BEL> Bell (audible signal)
<BS> Backspace

<HT> Horizontal Tabulation
<LF> Line Feed - go to new line
<VT> Vertical tabulation

<FF> Form Feed - go to new page
<CR> Carriage return - return to left margin
<SO> Shift out

<SI> Shift in

<DLE> Data link escape

<DC1> Device Control 1 - XON
<DC2> Device Control 2

<DC3> Device Control 3 - XOFF
<DC4> Device Control 4

<NAK> Negative Acknowledge
<SYN> Synchronous idle

<ETB> End of transmission block
<CAN> Cancel

 End of medium

<SUB> Substitute

<ESC> Escape

<FS> File Separator

<GS> Group Separator

<RS> Record Separator

<US> Unit Separator

 Delete

November 2, 2004 - 27 -

Aspects of Computer Architecture
Character Codes

3.3. ANSI Character Codes

Table 9 ANSI Character Set
The ANSI character set consists of the ASCII character set plus the set of characters in this table.

Char | Octal Dec Hex]| Char | Octal Dec Hex]| Char | Octal Dec Hex]| Char | Octal Dec Hex
200 | 128 80 240 | 160 A0 A 300 | 192 Cco a 340 | 224 EO
201 | 129 81 i 241 | 161 Al A 301 | 193 C1 a 341 | 225 E1l
, 202 | 130 82 ¢ 242 | 162 A2 A 302 | 194 c2 a 342 | 226 E2
f 203 | 131 83 £ 243 | 163 A3 A 303 | 195 C3 a 343 | 227 E3
” 204 | 132 84 a 244 | 164 A4 A 304 | 196 Cc4 a 344 | 228 E4
205 | 133 85 ¥ 245 | 165 A5 A 305 | 197 C5 a 345 | 229 E5
206 | 134 86 : 246 | 166 A6 £ 306 | 198 Cé & 346 | 230 E6
207 | 135 87 8§ 247 | 167 A7 C 307 | 199 c7 c 347 | 231 E7
h 210 | 136 88 250 | 168 A8 E 310 | 200 cs e 350 | 232 E8
%o 211 | 137 89 © 251 | 169 A9 E 311 | 201 C9 é 351 | 233 E9
S | 212|138 sa|l @ | 252|170 | aa|l E | 312|202| call & |352|234| EA
< 213 | 139 8B « 253 | 171 AB E 313 | 203 CB é 353 | 235 EB
E 214 | 140 8C = 254 | 172 AC | 314 | 204 cc i 354 | 236 EC
215 | 141 8D - 255 | 173 AD i 315 | 205 CD i 355 | 237 ED
216 | 142 8E ® 256 | 174 AE 1 316 | 206 CE) 356 | 238 EE
217 | 143 8F - 257 | 175 AF [} 317 | 207 CF T 357 | 239 EF
220 | 144 90 ° 260 | 176 BO b 320 | 208 DO o) 360 | 240 FO
) 221 | 145 91 + 261 | 177 B1 N 321 | 209 D1 fi 361 | 241 F1
’ 222 | 146 92 262 | 178 B2 0 322 | 210 D2 0 362 | 242 F2
“ 223 | 147 93 3 263 | 179 B3 o} 323 | 211 D3 0 363 | 243 F3
” 224 | 148 94 ’ 264 | 180 B4 0 324 | 212 D4 0 364 | 244 F4
. 225 | 149 95 M 265 | 181 B5 0 325 | 213 D5 0 365 | 245 F5
- 226 | 150 96 1 266 | 182 B6 o) 326 | 214 D6 0 366 | 246 Fé6
— 227 | 151 97 267 | 183 B7 X 327 | 215 D7 - 367 | 247 F7
~ 230 | 152 98 s 270 | 184 B8 @ 330 | 216 D8 (7] 370 | 248 F8
™ 231 | 153 99 1 271 | 185 B9 V] 331 | 217 D9 u 371 | 249 F9
§ 232 | 154 9A 0 272 | 186 BA U 332 | 218 DA a 372 | 250 FA
> 233 | 155 9B » 273 | 187 BB 0] 333 | 219 DB a 373 | 251 FB
® 234 | 156 9C Ya 274 | 188 BC U 334 | 220 DC U 374 | 252 FC
235 | 157 9D Y% 275 | 189 BD Y 335 | 221 DD y 375 | 253 FD
236 | 158 9E Ya 276 | 190 BE p 336 | 222 DE b 376 | 254 FE
Y 237 | 159 9F ¢ 277 | 191 BF R 337 | 223 DF y 377 | 255 FF
November 2, 2004 -28 -

Aspects of Computer Architecture
Character Codes

3.4. Unicode Character Codes

In order to deal with the many character sets used in the written languages of the world,
the Unicode Character Codes were developed over the last decade. The standard allows
8, 16, or 32 bit definitions of the characters. The following URL contains the details, and
there are many, of the Unicode effort.

http://www.unicode.org/

The table below contains the lay out of the Unicode Character Sets.

http://www.unicode.org/Public/UNIDATA/Blocks.txt

Unicode Character Database

Copyright (c) 1991-2004 Unicode, Inc.

For terms of use, see http://www.unicode.org/terms_of _use.html
For documentation, see UCD.html

November 2, 2004 -29-

Aspects of Computer Architecture

Character Codes

Table 10 UNICODE Character Codes

0000 |007F |Basic Latin 2070 |209F |Superscripts and 4DCO |4DFF |Yijing Hexagram
0080 [0OFF |[Latin-1 Supplement Subscripts Symbols
0100 |017F |Latin Extended-A 20A0 [20CF |Currency Symbols 4E00 |9FFF |CJK Unified Ideographs
0180 |024F |Latin Extended-B 20D0 [20FF |Combining Diacritical ||AO00 |A48F |Yi Syllables
0250 [02AF [IPA Extensions Marks for Symbols___||A490 |A4CF _|Yi Radicals
02B0 |02FF |Spacing Modifier 2100 |214F |Letterlike Symbols AC00 |D7AF |Hangul Syllables
Letters 2150 |218F |Number Forms D800 |DB7F |[High Surrogates
0300 [036F |Combining Diacritical ||2190 |21FF |Arrows DB80 |DBFF [High Private Use
Marks 2200 |22FF |Mathematical Surrogates
0370 |03FF |Greek and Coptic Operators DCO00 |DFFF |Low Surrogates
0400 [04FF |cCyrillic 2300 |23FF |Miscellaneous E000 |F8FF |Private Use Area
0500 |[052F |Cyrillic Supplement Technlcal. FO900 |FAFF |CJK Compatibility
0530 |058F |Armenian 2400 |243F Cothroll PLctures Ideographs
0590 |OSFF Hebrgw 2440 |245F gggggni(t:ioirader FBOO |FB4F é(l)[:’f;qasbetlc Presentation
0000 |00FF Ar§b|c 2460 |24FF |Enclosed FB50 |FDFF |Arabic Presentation
0700 |074F |Syriac Alphanumerics Forms-A
0780 |07BF |Thaana 2500 |257F |Box Drawing FEOO |FEOF |Variation Selectors
0900 |097F |Devanagari 2580 |259F |Block Elements FE20 |FE2F |Combining Half Marks
0980 |09FF |Bengali 25A0 |[25FF |Geometric Shapes FE30 |FE4F |CJK Compatibility
OA00 |OA7F |Gurmukhi 2600 |26FF |Miscellaneous Symbols Forms
0A80 |OAFF |Gujarati 2700 |27BF |Dingbats FE50 |FE6F |Small Form Variants
0BOO |0B7F |Oriya 27C0 [27EF |Miscellaneous FE70 |FEFF |Arabic Presentation
0B80 |OBFF |Tamil Mathematical Symbols- Forms-B
0C00 |O0C7F |Telugu A FFOO0 |FFEF [Halfwidth and Fullwidth
0C80 |OCFE |Kannada 27F0 |27FF |Supplemental Arrows-A Forms
0D00 |OD7F |Malayalam 2800 |28FF |Braille Patterns FFFO |FFFF |[Specials
0D80 |ODFF |Sinhala 2900 |[297F |Supplemental Arrows-B [[10000 |1007F |Linear B Syllabary
0E00 |0OE7F |Thai 2980 |29FF MiS(r:]eIIane_‘ouls ol 10080 |[100FF |Linear B Ideograms
0E80 |0EFF |Lao "B/'at ematical Symbols- (110100 [1013F Aegean Numbers
OF00 |OFFF |Tibetan 2A00 |2AFF [Supplemental 10399 _|1092F Old It.allc
1000 109F |[Myanmar Mathematical 10330 |1034F |Gothic
10A0 10FF [Georgian Operators 10380 |1039F |Ugaritic
1100 |11FF |Hangul Jamo 2B00 |2BFF |Miscellaneous Symbols ||10400 |1044F |Deseret
1200 137F EthiOpiC and Arrows 10450 |[1047F |Shavian
13A0 |13FF |Cherokee 2E80 |2BFF - |CJK Radicals 10480 |104AF |Osmanya
1400 [167F |Unified Canadian RITT K:sz;r;ear;icals 10800 |1083F |Cypriot Syllabary
Aboriginal Syllabics . — 1D000 [1DOFF |Byzantine Musical
1680 |169F |Ogham 2FF0 |2FFF Igﬁogratphlc Description Symbols
16A0 |16FF |Runic TR CJE“’;C :1rbSo|s — 1D100 [1D1FF |Musical Symbols
1700 [171F |[Tagalog Punctl}lation 1D300 |1D35F |Tai ;(uan Jinglj Symbols
- 1D400 [1D7FF |Mathematica
1;218 i;;’z ;Z\:il;noo 281% 28!2'; Eg;?(‘:;z Alphanumeric Symbols
20000 |[2A6DF |CJK Unified Ideographs
1760 |177F |Tagbanwa 3100 [312F [Bopomofo Extension B
1780 |17FF |Khmer 3130 |[318F |Hangul Compatibility [[2F800 |2FALF |CIK Compatibility
1800 |18AF |Mongolian Jamo Ideographs Supplement
1900 [194F |Limbu 3190 |[319F |Kanbun E0000 |EOO7F |Tags
1950 [197F |Taile 31A0 |[31BF |Bopomofo Extended E0100 |EOL1EF |Variation Selectors
19E0 [19FF |Khmer Symbols 31F0 |31FF |Katakana Phonetic Supplement
1D00 |1D7F |Phonetic Extensions Extensions FO000 |FFFFF |Supplementary Private
1E00 |1EFF |Latin Extended 3200 |[32FF |Enclosed CJK Letters Use Area-A
Additional and Months 100000 |10FFF |Supplementary Private
1F00 |1FFF |Greek Extended 3300 |[33FF |CJK Compatibility F Use Area-B
2000 |206F |General Punctuation ||3400 |4DBF |CJK Unified Ideographs
Extension A
November 2, 2004 -30 -

Aspects of Computer Architecture

Logic

4. Logic

4.1. Single Bit Logic Truth Tables

Table 11 Logic Truth Tables

A Bl A B|l AeB A+B AeB A+B AeB A+B
AAND.B| AORB | AANDB | AORB | AAND.B | AORB
0 0 1 1 0 0 1 1 1 1
0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 0 1 1 0
1 1 0 0 1 1 0 0 0 0
Notice that the following are true.
AeB=A+B
A+B=AeB
4.2. Multibit Logic Examples
Table 12 Logic Examples
Expression Binary Decimal Octal Hexidecimal
A 0000000000000001 1 1 1
B 0000000000000001 1 1 1
A.AND.B | 0000000000000001 1 1 1
A.OR.B|0000000000000001 1 1 1
.NOT.A(1111111111111110 65534 177776 FFFE
.NOT.B(1111111111111110 65534 177776 FFFE
Expression Binary Decimal Octal Hexidecimal
A|1010101111001101 43981 125715 ABCD
B 0000000000000000 0 0 0
A.AND.B | 0000000000000000 0 0 0
A.OR.B|1010101111001101 43981 125715 ABCD
.NOT.A 1 0101010000110010 21554 52062 5432
.NOT.B(1111111111111111 65535 177777 FFFF

November 2, 2004

-31-

Aspects of Computer Architecture
Logic

Expression Binary Decimal Octal Hexidecimal
A|(1010101111001101 43981 125715 ABCD
B|1111111111111111 65535 177777 FFFF

A.AND.B(1010101111001101 43981 125715 ABCD
A.OR.B|1111111111111111 65535 177777 FFFF
.NOT.A | 0101010000110010 21554 52062 5432
.NOT.B | 0000000000000000 0 0 0

Expression Binary Decimal Octal Hexidecimal
A|1010101111001101 43981 125715 ABCD
B|0000111111110000 4080 7760 FFO

A.AND.B| 0000101111000000 3008 5700 BCO
A.OR.B|1010111111111101 45053 127775 AFFD
.NOT.A [0101010000110010 21554 52062 5432
.NOT.B | 1111000000001111 61455 170017 FOOF

Expression Binary Decimal Octal Hexidecimal
A|0000000011111111 255 377 FF
B|1000100110011000 35224 104630 8998

A.AND.B | 0000000010011000 152 230 98
A.OR.B|1000100111111111 35327 104777 89FF
L.NOT.A(1111111100000000 65280 177400 FFO0O
.NOT.B | 0111011001100111 30311 73147 7667

Expression Binary Decimal Octal Hexidecimal
A 0000000011111111 255 377 FF
B| 0000000000010011 19 23 13

A.AND.B | 0000000000010011 19 23 13
A.OR.B|0000000011111111 255 377 FF
.NOT.A(1111111100000000 65280 177400 FFO0O
.NOT.B|1111111111101100 65516 177754 FFEC

Expression Binary Decimal Octal Hexidecimal
A|0000000011111111 255 377 FF
B|0011001100110011 13107 31463 3333

A.AND.B | 0000000000110011 51 63 33
A.OR.B| 0011001111111111 13311 31777 33FF
L.NOT.A(1111111100000000 65280 177400 FFO0O
.NOT.B | 1100110011001100 52428 146314 cccc

Expression Binary Decimal Octal Hexidecimal
A|1111111100000000 65280 177400 FFO0O
B|1000100110011000 35224 104630 8998

A.AND.B|1000100100000000 35072 104400 8900
A.OR.B|1111111110011000 65432 177630 FF98
.NOT.A | 0000000011111111 255 377 FF
.NOT.B|0111011001100111 30311 73147 7667

November 2, 2004 -32-

Aspects of Computer Architecture

Gates and Latches

Expression Binary Decimal Octal Hexidecimal
A(1111111100000000 65280 177400 FFO0O

B| 0000000000010011 19 23 13
A.AND.B | 0000000000000000 0 0 0
A.OR.B|1111111100010011 65299 177423 FF13
.NOT.A | 0000000011111111 255 377 FF
.NOT.B(1111111111101100 65516 177754 FFEC
Expression Binary Decimal Octal Hexidecimal
A|1111111100000000 65280 177400 FFO0O
B|0011001100110011 13107 31463 3333
A.AND.B| 0011001100000000 13056 31400 3300
A.OR.B|1111111100110011 65331 177463 FF33
.NOT.A | 0000000011111111 255 377 FF
.NOT.B | 1100110011001100 52428 146314 CCcccC

5. Gates and Latches

Error! Reference source not found. and Table 13 Generic Gate, Switch, Latch - Definitions

define three generic devices, which may be either analog or digital devices. The devices are
three port devices with two inputs, e.g. e, and a control signal egc, esc, or e.c, and one output,
eout- The devices have two states. The control signal determines in which of the two states the
device is at a particular time.

e

in

GateSwitchLatch_01.cdr 7-Oct-2004

o—| —o o— —o
Gate eout ein Switch eout €
o— o—
b4 L4
eGC eSC
o——v/f'o——o

Switch
Control

R

in

o—
Latch
o—

—o
e

out

]

Figure 4 Generic Gate, Switch, and Latch

The gate nomenclature comes from the barnyard gate, i.e. when the gate is open, the animals can
go through the gate; when the gate is closed then animals can not go through the gate. The latch
is basically a camera, i.e. it captures a snapshot of the value of e;, at the time of the transition of

eLc and holds it for

November 2, 2004

later inspection.

-33-

Aspects of Computer Architecture
Gates and Latches

Table 13 Generic Gate, Switch, Latch - Definitions

Device State Control Signal Behavior
Gate Open ecc = Open €out = €in
Closed ecc = Closed eout = Cconstant (also may
be disconnected)
Switch Closed esc = Closed €out = €in
Open esc = Open €out = CONStant
Latch Follow e.c = Follow €out = €in
Latched eLc = Latch ?LL‘C“
out = €jn (t = Folow |)

Error! Reference source not found. illustrates a derivative combination, the tri-state gate
which has the characteristics shown in Table 14 Tri-State Gate - Definition Definition

. This device derives its name from the fact that there are essentially three states: high, low, and
disconnected. Such devices have great utility when constructing a “bus,” i.e. a “party line” or
shared communication facility.

TriStateGate_01.cdr 10-Oct-2004

o—H - L1 o
€n Gate Switch €out
o—— S— L
1 1 1 |
s 4 6 6
eGC eSC

Figure 5 Tri-State Gate

Table 14 Tri-State Gate - Definition Definition

Switch Control Gate Control Behavior

esc = Closed ecc = Open €out = €in

esc = Closed ecc = Closed | eyt = constant

esc = Open ecc = Open Device is disconnected
from the following
circuitry.

esc = Open ecc = Closed | Device is disconnected
from the following
circuitry.

November 2, 2004 -34 -

Aspects of Computer Architecture
Simple Computer

These generic concepts have widespread application in both digital and analog electronics. The
remainder of this document will explore how these devices are implemented and applied in the
digital domain.

6. Simple Computer

A common model of a simple computer is the "Von Neumann™ model shown in Figure 6. This
model consists of three types of functional units, Central Processing Unit (CPU), Memory, and
I/0O units of which there can be varying numbers in any real application. The CPU contains four
subsystems, the Command Decoder, CD, arithmetic logical unit, ALU, Control Panel, and the
CPU register set. The CPU is the engine that does the computational work of the system. The
Command Decoder fetches, interprets, and causes the execution of the program instruction steps.
The ALU performs, under the control of the CPU, the integer arithmetic and logical operations
required by the program instructions. The 1/O units provide the interface between the computing
system and the outside world. The Control Panel allows the operator of the system to perform
certain basic operations such as starting and stopping operation, and examining and changing
aspects of the system. The functional units are connected by the 1/0 bus, a communication
facility that allows information to be moved among the various functional units.

CEM 838 CPUL.cdr 17-Apr-2000 TV Atkinson _Department of Chemistry Michigan State University

Panel
Control External External
] Device Device
Registers
CPU i i
Arithmeti i i
e,
Command Memory 1/0 Controller 1/0 Controller
Decoder #1 #1
4 Control Bus >
4 Address Bus >
4 Data Bus >
_
Model of Simple Computer

Figure 6 Von Neumann Model of Computer

6.1. Digital Buses

I/0 buses are actually collections of parallel digital (binary) electrical signals that are
simultaneously observed and/or manipulated by multiple functional units. Hence, a bus is an
example of a "party-line" communication channel with the connected subsystems being peers on

November 2, 2004 -35-

Aspects of Computer Architecture
Simple Computer

the channel. Information is typically moved between two of the participants on the bus. The 1/0
bus is usually considered to consist of three sub buses (Control, Address, and Data) (See Figure
6). The Data Bus is a collection of signals that contain the data being moved from one subsystem
to the other. The Address Bus allows the participants on the bus to identify which subsystem is
sending the information and which subsystem is receiving the information. The Control Bus is
the collection of signals required to affect the transfer of information from one participant to the
other.

The states of the control signals, i. e. the Control Bus, are defined one of the subsystems called
the Bus Master. In simple computers, only the CPU can be master. In more complicated
architectures, other functional units can be bus master. There have been many computer buses,
e.g. Unibus, Qbus, New Bus, VMEbus, XT bus, ISA (ATBUS), SCSI, EISA, Micro Channel
Architecture (MCA) bus, VESA, PCI, IEEE 488. One bus varies from another in the following
ways.

1. Collection of signals (number and definition)

2. Technology used to implement electronics connected to the bus, e.g. TTL,
CMOS, ECL, Optical elements (for optical fiber buses).

3. Physical implementation: connectors, conductors, etc.
4. Speed and timing relationships
5. Sequences of events required to effect transfers of information.

6.1.1. A Simple Example

The simple logic devices, i.e. And, Or, Nor, Nand, gates and latches, discussed in the section on
logic are the atomic elements of digital devices. Real digital devices, e.g. computers, are, in
essence, collections of such elements. As mentioned above, these collections are typically
organized into subsystems. One issue is how information is moved from one subsystem of the
device to another.

Figure 8 and Figure 9 illustrates one such mechanism, a simple digital bus that connects three
single bit devices (registers) A, B, and C. In this example, GC,, LC,, GCy, LCy, GC¢, and LC,
are control signals. L,, Ly, and L. are the contents of the registers. As an example, the following
steps are performed to move the contents of Device A (L) to Device C (L.).

1. All control signals are in the “off” state, i.e. LC; are in the LATCHED state and
GC; are in the CLOSED state. The bus is idle.

2. Assert GC, (GC, = OPEN). BUS is now equal to L,

3. Strobe LC; as in Figure 7. L. now equals L. Transfer is complete.

November 2, 2004 -36 -

Aspects of Computer Architecture
Simple Computer

4. Deassert GC,(Gate A is CLOSED.) Bus is now idle.

Follow
Latch Latch

Figure 7 Strobe

Figure 10 shows the timing of events that would be required to move the contents of Register A
into Register C. The contents of A is assumed to be 1 at the beginning, the contents of B and C
are 0. The timing sequences for the control signals GC,, LC,, GC., and LC. are generated by
some outside intelligence (often called the Bus Master). Figure 11 is a similar example with the
contents of A being 0.

BusA1l.cdr 23-Oct-2002 T V Atkinson Department of Chemistry Michigan State University

t] t B i]
Ar A A
L G L G L G
a 2 Latch b Gate b Latch = Gate &

Latch Gate

1 T 1 T 1

LC, GC, LC, GC, LC, GC,

Figure 8 A Digital Bus with Three Devices

BusAl.cdr 21-Oct-2002 TV Atkinson Department of Chemistry Michigan State University
Bus
A A A
\ 4 A Y
A B C
La Ga L b Gb Lc Gc
Latch Gate Latch Gate Latch Gate
LC, GC, LC, GC, LC, GC,

Figure 9 A 1-Bit Bus with Three Devices (Equivalent Schemat)

November 2, 2004 -37 -

Aspects of Computer Architecture
Simple Computer

Digital Timing Diagrams

GCec 1
Closed
______ L0
Follow
LCc 1
Latch
______ O L.
Gc 1
______ O ...
Lc 1]
0
1 Open
GCa
0 Closed
LCa 1
0 Latch
1,
Ga
______ [e s
1
La
0
1
Bus
______ O T ITiiIiiiiiio
1 1 1
0 5 10 15 20

Time (millisec)

Figure 10 Timing - Transfer Contents of A (1) to C

November 2, 2004 -38 -

Aspects of Computer Architecture
Simple Computer

Digital Timing Diagrams

Gee 17
Closed
...... 0 et
1 - Follow
LCc Latch ﬂ
______ Q e ..
Gc 17
...... O B ey I
Lc 11
0
1 Open
GCa Closed
______ O e A e
1 B
LCa Latch
______ O —
1
Ga
______ s A
1 4
La
0
1 4
Bus
______ e ————
| | |
0 5 10 15 20
Time

Figure 11 Timing - Transfer Contents of A (0) to C

6.1.2. A4-BitBus

Figure 12 illustrates how three 4-bit devices would be connected with the simple bus
discussed above. Notice that the control signals are the same for all bits of a device. Thus
all four bits of information are eached moved as described above at the same time.

November 2, 2004 -39 -

Aspects of Computer Architecture

Simple Computer

T V Atkinson Department of Chemistry Michigan State University

BusAl.cdr 21-Oct-2002

GC,

LC,

Device C

GC,

Data Bus 1
Data Bus 2
Data Bus 3
Device B

Data Bus O
LC,

____DeviceA

It Bus

B

4

Figure 12 4-Bit Bus

-40 -

November 2, 2004

Aspects of Computer Architecture
Simple Computer

6.1.3. An 8-Bit Bus System

Figure 13 and Figure 14 illustrate the next level of complexity. Here, there are two types of
devices, i. e. the Master Register and any number of Slave Registers. All registers are 8-bit
devices. In this system, the Master Register is involved in all transfers. Reading a register is
defined as a transfer that copies information from that register to another. Writing a register is
defined as a transfer that copies information from another to that register. The Address Bus is a
set of signals that identify which Slave Register is involved in the transfer. Decoder is a function
that monitors the Address Bus and goes true when the address of that Slave Register is on the
Address Bus. The Control Bus, i.e. STROBE and WRITE are signals generated by the Bus
Controller which is described here.

RegisterSlave.cdr 7-Dec-2003 T V Atkinson Department of Chemistry Michigan State University

Address of
REGISTER i

ety

REGISTER i Selected
Decoder

[\ WRITE REGISTER i

|

STROBE GC
STROBE LC

YYVY DATA7

=

- 4 g —
Control Bus Data Bus Register i

Address Bus
(n signals)

Simple 8-Bit Bus and Slave REGISTER

Figure 13 - Simple 8-Bit Bus and Slave Register

November 2, 2004 -41 -

Aspects of Computer Architecture
Simple Computer

RegisterMaster .cdr 7-Dec-2003 T V Atkinson Department of Chemistry Michigan State University

Bus Controller

a8

WRITE MASTER REGISTER
LC

STROBE GC
STROBE LC

A

Y

< L P>

Address Bus Control Bus Data Bus Master Register
(n signals)

Simple 8-Bit Bus and MASTER REGISTER

Figure 14 - Simple 8-Bit Bus and Master Register

Transfers of information from Slave Register i to the Master Register are accomplished
with the following sets of steps.

1. The address of Slave Register; is placed on the Address Bus. The output of
Decoder;j goes true.

2. WRITE is set low.

3. STROBE LC and STROBE GC are strobed as indicated in Figure 15. This gates

the contents of Slave Registerj onto the Data Bus. The contents of the Data Bus
are latched into Master Register.

November 2, 2004 -42 -

Aspects of Computer Architecture

Simple Computer

STROBE LC

STROBE GC Closed

Follow

Latch

Open

Latch

Closed

Figure 15 - Simple 8-Bit Bus and Master Register

6.1.4. A Simple Input/Output System

Figure 16 illustrates how one could implement a one bit register that outputs information from
the digital device and a one bit register that would input information to the device from the

outside world.

BuslO .cdr 21-Oct-2002

TV Atkinson Department of Chemistry Michigan State University

Bus

A
L La Ga
Latch Gate
A T
GC,
LC,
- _V ________ T
Loy valid Lout GC

B
L G
Latch b Gate b
|)
LCy GCy
GC.
Digital Device

Outside World

Figure 16 Simple 8-Bit Bus and Master Register

November 2, 2004

-43 -

Aspects of Computer Architecture
Simple Computer

6.1.5. A More Complete 1/0O Bus Architecture
Figure 17, Figure 18, and Figure 19 depict a fairly simple but more complete bus architecture

that illustrates a number of points. This particular architecture was constructed for illustration
and does not match any particular computer system.

November 2, 2004 -44 -

Aspects of Computer Architecture
Simple Computer

TV Atkinson
Dept of Chemistry

BUS1 24-JAN-1993 Michigan State University
Master
‘ thEd p— Address
Driver .
Register
?GC
w
© -
)
‘» -
el @
e g Bus
3 .% Slave Control
2 & 4 ‘ Gated e Address Logic
K e Driver .
21 o Register
o]]
S | o
< %) Ll
= oyl o =)
N = 1= EC < GC
A E
S<fs| o a
Bus Control
ADDRESSI
 _ ’— Decoder —
— \ WRITE REGISTER i
- QO ® §—— to BIT1, BIT2, ...
> -
LC
> Latch to outside world
- < thed
Driver
GC
- N\
- L $—— to BITL, BIT2, ...
— / READ REGISTER i
Master Register i

BITO
A Simple I/O Bus (Master)

Figure 17 Simple 1/0 Bus: Bus Master

November 2, 2004 - 45 -

Aspects of Computer Architecture
Simple Computer

Figure 18 illustrates a slave device on the bus.

BUS 2 10-JUL-1995

T V Atkinson
Dept of Chemistry

Michigan State University

l ADDRESS1
» Decoder
% ﬁ WRITE REGISTER 1
2 > . — B 10BITLBIT2..
c - / l
- LC
@
Q w 'E'.S ot Latch - to outside world
slElg| &
o .
lz|6| & Write Only
— thed {—————— from outside world
Driver
GC
> T
- @ } * ———— to BIT1, BIT2, ...
READ REGISTER 2
Read Only
ADDRESS3
— WRITE REGISTER 3 BITL BIT2
L p— to ,)
> -
LC
— Latch $—— to outside world
Gated
ll_< —
Driver
GC
> T
> '®) P p t0BITL,BIT2, ...
o READ REGISTER 3 .
BITO Read/Write

Figure 18 Simple 1/0O Bus: Slave

November 2, 2004

-46 -

Aspects of Computer Architecture

Simple Computer

Figure 19 shows the remaining bits of the representative registers forming the slave devices.

BUS 3 24-JAN-1993

TV Atkinson
Dept of Chemistry
Michigan State University

WRITE REGISTER 1 _ to BIT3, BIT4,...
l Lc to outside Lc to outside
world world
——— Latch —»— —»—— Latch ——
= ~ Write Only
< G
e o
READ REGISTER 2 . to BIT3, BIT4,...
cc from outside GC from outside
world world
Gated Gated
——aq— - . ——
Driver Driver
Read Only
WRITE REGISTER 3 to BIT3, BIT4,...
l LC) l LC
to OlL:‘tS'de to outside
wor
world
——— Latch ——— Latch
Gated Gated
r—— . .
Driver Driver
GC
GC
READ REGISTER 3 to BIT3, BIT4,...
> . -
Read/Write

A Simple I/O Bus (Slave continued)

November 2, 2004

-47 -

Figure 19 Simple 1/0 Bus: Slave (Continued)

Aspects of Computer Architecture
Simple Computer

6.1.5.1. Reads

For this simple architecture, a "read" is the transfer of information from the slave register to the
master register.

1. The idle state of the bus consists of STROBE being 0. As a result, all WRITE
REGISTER j and READ REGISTER j AND gates will have an output of 0. The
states of all other signals are of no consequence.

2. Bus Master Bus Control Logic gates the address of the referenced master register
onto the Master Address Bus. The output of the decoder for the appropriate Master
Register will now change to 1, indicating selection of that register.

3. Bus Master Bus Control Logic gates the address of the referenced slave register onto
the Address Bus. The output of the decoder for the appropriate slave register will now
change to 1, indicating selection of that register.

4. Bus Master Bus Control Logic gates a 0, i.e. do a read, onto the WRITE line. This
will set up the gating of the selected slave register onto the Data bus and the latches
of the selected master register to follow the state of the Data bus.

5. Atime delay occurs that allows all the above signals to settle and the various
decoding to take place.

6. The Bus Master Bus Control Logic gates a 1 onto the signal STROBE. With
STROBE now one, all inputs will be one for the WRITE REGISTER i AND gate
of the addressed master register and the READ REGISTER j AND gate for the
addressed slave register. Thus, these two signals will go to 1. All other AND gates
will have at least one 0, resulting in outputs of those gates remaining at 0. Thus, the
gate control signal (GC) for the gated driver for each of the bits of the addressed
slave register will go to 1 and these signals will be gated onto the Data bus.
Simultaneously, the latch control signal (LC) for the latches for each of the bits of the
addressed master register will go to 1 and these latches will begin to follow the
corresponding bits on the Data bus.

7. Atime delay occurs that allows all the above signals to settle.

8. The Bus Master Bus Control Logic gates a 0 onto the signal STROBE. As a result,
all WRITE REGISTER j and READ REGISTER j AND gates have an output of 0.
Thus, the latches for the selected master register change to the latched state, freezing
the contents of the selected slave register into the master register. The signals from
the slave register are also removed from the Data bus. The bus is now in the idle
state.

November 2, 2004 -48 -

Aspects of Computer Architecture
Simple Computer

6.1.5.2. Writes

For this simple architecture, a "write™ is the transfer of information from the master register to
the slave register.

1. The idle state of the 1/0 bus consists of STROBE being 0. As a result, all WRITE
REGISTER j and READ REGISTER j AND gates will have an output of 0. The
states of all other signals are of no consequence.

2. Bus Master Bus Control Logic gates the address of the referenced master register
onto the Master Address Bus. The output of the decoder for the appropriate master
register will now change to 1, indicating selection of that register.

3. Bus Master Bus Control Logic gates the address of the referenced slave register onto
the Address Bus. The output of the decoder for the appropriate slave register will now
change to 1, indicating selection of that register.

4. Bus Master Bus Control Logic gates a 1, i.e., do a write, onto the WRITE line. This
will set up the gating of the selected master register onto the Data bus and the latches
of the selected slave register to follow the state of the Data bus.

5. Atime delay occurs that allows all the above signals to settle and the various
decoding to take place.

6. The Bus Master Bus Control Logic gates a 1 onto the signal STROBE. With
STROBE now one, all inputs will be one for the WRITE REGISTER i AND gate
of the addressed slave register and the READ REGISTER i AND gate for the
addressed master register. Thus, these two signals will go to 1. All other AND gates
will have at least one 0, resulting in outputs of those gates remaining at 0. Thus, the
gate control signal (GC) for the gated driver for each of the bits of the addressed
master register will go to 1 and the master register contents will be gated on to the
Data bus. Simultaneously, the latch control signal (LC) for the latches for each of the
bits of the addressed slave register will go to 1 and these latches will begin to follow
the corresponding bits on the Data bus.

7. Atime delay occurs that allows all the above signals to settle.

8. The Bus Master Bus Control Logic gates a 0 onto the signal STROBE. As a result,
all WRITE REGISTER j and READ REGISTER j AND gates have an output of 0.
Thus, the latches for the selected slave register change to the latched state, freezing
the contents of the selected master register into the slave register. The signals from
the master register are also removed from the DATA bus. The bus is now in the idle
state.

November 2, 2004 -49 -

Aspects of Computer Architecture
Simple Computer

6.2. Post Office (Programmers) Model of Computing

CEM838CPU2 14-SEP-1992

m bits k x m bits
| 2 "1 B
' |
' |
n bits : 1/0 :
staws__|N[z|c]o | Registers |
PC
SP
Rj
R3 111 111
R2 110 110
R1 101 101
RO 100 100
11
CPU 1
10 10
1 1
0 0
location .
Memory Disk block
Post Office Model of a Computer System

Figure 20 Post Office Model of Computing

The simple computer can also be modeled as three ranks of different size pigeon holes as
illustrated in Figure 20. As in a post office, each of the boxes is identified by a unique label. For
those boxes in the CPU, these labels are PC, RO, R1, ... In the case of Memory and Disk, the
identifiers are binary numbers. Each box depicted in that figure is capable of containing a single
ordered collection of binary bits each of which can have two states (1 or 0). For a collection of n
bits, there can be 2" unique combinations of zeros and ones. Many different uses can be made of
such collections of binary bits. In fact, most of the boxes described here can have different
meanings at different times. Only a few locations, such as the status register and PC, have
specific meanings impressed on the collection of bits at all times by the hardware.

November 2, 2004 -50 -

Aspects of Computer Architecture
Simple Computer

6.3. Uses of collections of n binary bits

9.
10.

11.

Logical: Each bit can represent a logical variable and the contents of the bit will represent
a true or false.

Flags: Each bit will represent the state of some device or functional unit. Examples: Flags
in the CPU Status Register indicate if the last operand is zero, if the last operation
resulted in an overflow, etc. Status bits in device registers indicate the state of devices,
e.g. is a valve open or closed, is a floppy disk mounted in the drive.

Control bits in device registers: Bits are connected to hardware devices and cause
something to happen in the device, e.g. begin the conversion of a ADC, open/close a
valve, fire a laser.

Character: Codes representing symbols such as the ASCII character sets.

Unsigned binary integer numbers - if each bit is considered to be a coefficient of a power
of two and the collection of bits is considered to be ordered (see the section on number
systems). The 2N numbers will range from 0 to 2N-1.

Unsigned binary fractions - if each bit is considered to be a coefficient of a negative
power of two and the collection of bits is considered to be ordered (see the section on
number systems). The 2" numbers will range from0to 1 - 27N,

Addresses

Sign Magnitude signed binary integer numbers
One's complement signed binary integer numbers
Two's complement signed binary integer numbers

Floating Point numbers

[SEE: the figure titled 8087 Numeric Data Processor]

12.

Instructions

6.4. Instruction Sets

A computer is a machine that performs a sequential set of recipes or instructions on one, two or
three operands. The instructions describe exactly what is to be done for each step. The operands
are the collections of bits located in the CPU registers, memory locations, and/or device
registers. Instruction formats and sizes vary from machine to machine. In many machines
different instructions can be of different sizes, usually in multiples of bytes. The instructions will
contain two main parts. The first is a code identifying the particular instruction. The second is

November 2, 2004 -51-

Aspects of Computer Architecture
Simple Computer

information about which locations in the computer contain the operands upon which the
operations will be executed.
1. Moves (2 Operands)
1.1. Register to Register
1.2. Memory to Register (Load)
1.3. Register to Memory (Store)
14. Memory to Memory
1.5. Register or Memory to a stack (PUSH)
1.6. Stack to Register or Memory (POP)

1.7. Clear operand

2. Logical operations (2 or 3 operands)
Operation | Result Operand | Operator | Operand
2 1
Inverse | Op <--- .not. 01
AND O3 <--- 0))) .and. 01
OR O3 <--- O2 .or. 01
XOR O3 <--- 09 Xor. 01

3. Arithmetic +, -, *, /, negate (2 or 3 Operands)
4, Shifts (1 Operand)
4.1. One bit shifts (left or right)
4.2. Multiple bits shifts (left or right)
4.3. Single register, multiple register
4.4. Simple, circular, arithmetic (pull sign bit along)
5. Test/compare
6. Branches (1 or 2 Operands)

6.1. Unconditional: jumps or branches

November 2, 2004 -52 -

Aspects of Computer Architecture
Simple Computer
6.2. Conditional
6.3. Subroutine call
6.4. Subroutine return
6.5. Traps
6.6. Interrupt returns
7. NOOP (0 Operands)
8. Halt, Pause, Wait (0 Operands)

9. I/0 Instructions (Only in the cases where the 1/O registers are not part of the
memory space).

10. Other special instructions.
6.5. Addressing

Typically, instruction sets deal with three types of operands, CPU registers, memory locations,
and device registers. In many architectures, the memory and device registers are incorporated
into one address space. Each instruction has to specify which operand(s) are to be used in the
execution of that instruction. The instructions have 0 (NOOP, halt, ...), 1, 2, or 3 operands.
Except in the cases with 0 operands, one operand will be the destination operand and receives
the results of the operation. Often the destinations will be one of the input operands and the
instructions effectively have 1 or 2 operands. In all such cases, the contents of the destination
operand are changed as the result of the instruction. Only those source operands that are also
destinations are changed.

6.6. Operation

Any computer does useful work by executing a program, or ordered collection of instructions.

1. Reset the computer to a known initial condition.
2. Deposit the instructions and any operands into appropriate locations within
memory.

3. Deposit the starting point (entry point) of the program into the PC.
4. Press the "GO" button.

5. CPU puts the contents of the PC onto the address bus and causes the contents of
the memory location with that address to be fetched to the command decoder.

November 2, 2004 -53-

Aspects of Computer Architecture
Simple Computer

6. The contents of the PC are incremented by one.

7. The command decoder interprets the instruction code.

8. Any additional bytes of the instruction are fetched. PC is incremented
accordingly.

9. Any operands are fetched.
10. The operation is executed by the ALU.

11. The results of the operation are written into the destination operand (register or
memory).

12. Asaresult of the various increments, the PC now points to the next instruction
and the process loops back to step 5 and the next instruction is fetched, then
executed. This process continues until the CPU is halted or a HALT instruction is
executed.

6.7. An Example Computer

The goal of this example is to illustrate the basic operation of a computer and to impress on you
the simplicity of each aspect of computing, the beauty (it's like a puzzle with a very large
number of pieces that fit together) of the low level workings of computing, and, most
importantly, the tedium involved in doing computing on this level. Professionally, scientists can
not afford to do this level of computing any more. Typically, you buy existing hardware and
software to do these jobs.

This is a description of a simple computer architecture viewed from the software perspective.
This architecture is defined for simplicity not efficiency. No such computer exists, but this
example can be used to illustrate a number of concepts.

6.7.1. Registers

1. PC - 32 bits wide ; Program Counter
2. SP - 32 bits wide ; Stack Pointer
3. R5 - 32 bits wide ; General Registers

4. R4 - 32 bits wide
5. R3 - 32 bits wide

6. R2 - 32 bits wide

November 2, 2004 -54 -

Aspects of Computer Architecture
Simple Computer
7. R1 - 32 bits wide

8. RO - 32 bits wide

CEM 924 BitByte 23-JAN-1993

b7 |bg| ks |bg|b3|bx| b|bg
byteil+3 byteil b7 | bg| % |ba| b3 |b2| B |bo
b7 |bg | b5 [ba] b3 |ba| B [bg
Ib7|b6|bs|b4|bs|b2|';|bol cor [P7]P6[t5 [Pa] ba[ba] *;Ibol 5o T o5 5 (5515 o
b7 [b, b by [B [b
Register viewed as bytes e : > : LI
b7 |be| 5 [bs| b3 |ba]| b|bg
b7 | bg | bs[bg[b3 |bo| B [bg
b7 [bg| s [ba|[b3|ba] B |bg
b7 |bg | bs[bs| b3 bz [b[bo]i+3
b7 | bg | b5 [bs | b3 bz [b [bo]i+2
b7 [bg | b5 [bg|b3[bo] B [bg]i+1
[vaa]ven [woo [wos Jwor Twos [ws e | ... Tw7 [we [ws Jwa [ws Jwa [w Two b7 be |5 |bab[ba| B [bo]i
T b7 [bg| b5 [ba|[b3|ba] B |bg
Register viewed as word :
Memory
bit/byte Relationships (Register - Memory)
Figure 21 Bit Byte Word Relationship
6.7.2. Instruction format
Op code Register(R,) Register(Rp) Direct/Indirect Operand
Addr
B31 t0 Bag Bo7 10 Bys B24 10 By B21 B2o t0 By

B,, is a flag that indicates whether addressing for a given instruction is direct or indirect. If By,
of an instruction is 0, the operand field of the instruction contains the address of the operand. If

B, of an instruction is 1, Ry, contains the address of the operand.

November 2, 2004 -55-

Aspects of Computer Architecture
Simple Computer

6.7.3. Instruction Set

Op Code | Mnem I/D? | Description

0 | HALT N Halt CPU operation

1| NOOP [N Do nothing for one instruction cycle

2| LOAD |Y Load contents of Operand (i.e. Memory Location) into
Register R,

3| STORE |Y Store contents of Register R, into Operand (i.e. Memory
Location)

4| MOVE | N Move the contents of register R, to register R,

5| AND N The logical AND of the contents of registers R, and Ry, is
calculated and stored in Register R,

6 | OR N The logical OR of the contents of registers R, and Ry, is
calculated and stored in Register R,

7| INV N Invert the contents of Register R,

8 | NEG N Negate (take two's complement of) the contents of
Register R,

9 | BNE N Branch to the address of the operand if Register R, is not
equal to zero

A | BEQ Y Branch to the address of the operand if Register R, is
equal to zero

B | IMP Y Branch to the address contained in the Operand

C|RET Y Branch to location after last CALL instruction

D | CALL N Branch to the address contained in the Operand and store
next address for return

E | ADD N Contents of Register R, is added to the contents of Ry, and
the result is stored in Register R,

F | MUL N Contents of Register R, is multiplied by the contents of Ry,
and the result is stored in Register R,

November 2, 2004

- 56 -

Aspects of Computer Architecture
Simple Computer

6.7.4. An Example Program
This section will investigate a simple program using the example architecture. This program will
do the simple calculation shown below and produce a resultant integer A given integers B and
C.

A= (l+B)*3710 -C

The program would be developed and executed using the following steps:

1. Create the symbolic (assembly language) version of the program.

2. Assign memory locations to all the variables and constants (A, B, C, 1, 37).
3. Assign a memory location for the first word of the program.

4. Translate the assembly language into machine language (binary) form that the

computer will actually execute.

5. Deposit the machine language program and constants into memory according to
the memory assignments made.

6. Deposits values for B and C into the appropriate memory locations.
7. Deposit the number 100044 into the PC.
8. "GO". Program executes, halts with the PC containing 1028.

9. Result is now in location 20104.

November 2, 2004 -57 -

Aspects of Computer Architecture
Simple Computer

Location Contents Label Op Code | I/D R, R, Operand | Comments
(word)

00001000 22 00 20 00 START: LOAD D R1 ONE ;Load 1 into R1

00001004 24 00 20 08 LOAD D R2 B ;Load B into R2

00001008 E2 80 00 00 ADD D R1 R2 ;R1 = (1+B)

0000100C 24 00 20 04 LOAD D R2 THSEV ;Load 37 into R2

00001010 F2 80 00 00 MUL R1 R2 ;R1 = (1+B)*37

00001014 24 00 20 OC LOAD D R2 C ;Load C into R2

00001018 84 00 00 00 NEG R2 ;R2 = -C

0000101C E2 80 00 00 ADD R1 R2 ;R1 = (1+B)*37 - C

00001020 32 00 20 10 STORE D R1 A ;Save Results

00001024 00 00 00 00 END: HALT ;End of the Program, stop
November 2, 2004 - 58 -

Aspects of Computer Architecture

Simple Computer

Example translations from assembly language to machine language

(binary).
LOAD DR1 ONE
Instr. Op Code Ra Ry |I/ID Operand
Bit 3|13(2]|2 2 2 2 1(1(11 1
Number 110|918 6 3 1 87|65 1 91817
Contents 0|0|1|0 0 0 0 0(o0|0}|o0 0 0(0}|l0
Hex 2 2 0 0
LOADDR2 B
Instr. Op Code Ra Ry |I/ID Operand
Bit 3|13|2]|2 2 2 2 11111 1
Number 110|918 6 3 1 817165 1 918|7]|6
Contents 0|0|1|0 1 0 0 0(0|0}o0 0 o|0|o0]|0
Hex 2 4 0 0
ADD D R1R2
Instr. Op Code Ra Rp |/D Operand
Bit 3|13(2]|2 2 2 2 11111 1
Number 1/0(9]|8 6 3 1 817165 1 918|7]|6
Contents 111(1]0 0 1 0 0(0|0}|o0 0 0(0|0]|0
Hex E 2 8 0

November 2, 2004

-59-

Aspects of Computer Architecture
Simple Computer

View of Memory before Execution of Program

Location Contents | Logical Name
00002018

00002014

00002010 A
0000200C C
00002008 B
00002004 00 00 00 25 | THSEV (3710)
00002000 00 00 00 01 | One
00001FFC

0000102C

00001028

00001024 00 00 00 00 | END
00001020 34 00 20 10
0000101C E2 80 00 00
00001018 86 00 00 00
00001014 26 00 20 0OC
00001010 F2 80 00 00
0000100C 26 00 20 04
00001008 E2 80 00 00
00001004 26 00 20 08
00001000 24 00 20 00 | START
OOOO0OFFC

November 2, 2004

- 60 -

Aspects of Computer Architecture
Simple Computer

6.7.5. Example Program 2

This section will show how subprograms can be used to repeat multiple occurrences of the same procedure applied to different data.
The formula from Example Program 1 is to be applied to three sets of data (B1, C1), (B2, C2), and (B3, C3) yielding three results A1,
A2, and A3.

Location Contents Label Op Code | 1/D R, R, Operand | Comments
(word)
; Upon entering the subprogram:
; R3 will contain B
R4 will contain C
; Upon return from the subprogram
; R1 will contain the results
00001000 22 00 20 00 SUBPROG: LOAD D R1 ONE ;Load 1 into R1
00001004 E2 CO 00 00 ADD D R1 R3 ;R1 = (1+B)
00001008 24 00 20 04 LOAD D R2 THSEV ;Load 37 into R2
0000100C F2 80 00 00 MUL R1 R2 ;R1 = (1+B)*37
00001010 88 00 00 00 NEG R4 ;R2 = -C
00001014 E3 00 00 00 ADD R1 R4 ;R1 = (1+B)*37 - C
00001018 CO 00 00 00 RET ;Return to calling program
00001100 26 00 20 10 START: LOAD D R3 B1 ;Load B into R3
00001104 28 00 20 1C LOAD D R4 Cl ;Load C into R4
00001108 DO 00 10 00 CALL D SUBPROG ;Go to subprogram
0000110C 32 00 20 28 STORE D R1 Al ;Save Results
00001110 26 00 20 14 LOAD D R3 B2 ;Load B into R3
00001114 28 00 20 20 LOAD D R4 C2 ;Load C into R4
00001118 DO 00 10 00 CALL D SUBPROG ;Go to subprogram
November 2, 2004 -61-

Aspects of Computer Architecture
Simple Computer

Location Contents Label Op Code | I/D R, R, Operand | Comments
(word)

0000111C 32 00 20 2C STORE D R1 A2 ;Save Results

00001120 26 00 20 18 LOAD D R3 B3 ;Load B into R3

00001124 28 00 20 1C LOAD D R4 C3 ;Load C into R4

00001128 DO 00 10 00 CALL D SUBPROG ;Go to subprogram

0000112C 32 00 20 30 STORE D R1 A3 ;Save Results

00001130 00 00 00 00 END: HALT ;End of the Program, stop
November 2, 2004 - 62 -

Aspects of Computer Architecture
Simple Computer

View Of Memory Before Execution of

Program
Location Contents | Logical Name
00002038
00002034
00002030 A3
0000202C A2
00002028 Al
00002024 C3
00002020 c2
0000201C C1
00002018 B3
00002014 B2
00002010 B1
00002008
00002004 | 00 00 00 25 | THSEV (3710)
00002000 | 00 00 00 01 | One
00001FFC
Location Contents | Logical Name
00001138
00001134
00001130 | OO0 00 OO 0O | END
0000112C | 32 00 20 30
00001128 | DO 00 10 0O
00001124 | 28 00 20 1C
00001120 | 26 00 20 18
0000111C | 32 00 20 2C
00001118 | DO 00 10 0O
00001114 | 28 00 20 20
00001110 | 26 00 20 14
0000110C | 32 00 20 28
00001108 | DO 00 10 0O
00001104 | 28 00 20 1C
00001100 | 26 00 20 0O | START
000010FC
00001020

November 2, 2004

Location Contents | Logical Name
0000101C

00001018 | CO 00 OO0 0O

00001014 | E3 00 00 0O

00001010 | 88 00 OO0 0O

0000100C | F2 80 00 00

00001008 | 24 00 20 04

00001004 | E2 CO 00 0O

00001000 | 22 00 20 00 | SUBPROG
OO0O0OOFFC

-63 -

Aspects of Computer Architecture
Simple Computer

6.7.6. An Example Application of Hardware and Software

Consider the example chemical experimental set up shown in Figure 22 where a laser beam is
used to excite a sample. After the laser beam has been extinguished, the sample relaxes back to
the ground state by emitting light. A monochromator and detector can be used to record the

decay of the emitted light of a given wavelength.

LaserExp .cdr 21-Oct-2002

TV Atkinson Department of Chemistry Michigan State University

M
Laser » Sample
T)\'2 ;\’3' C Shutter
FIRE Drive
A
Monochromator SHUTTER
(0 =closed; 1 =open)
As
A 4 iphO(O
V— PMT — o M\

ADC

<«<— CONVERT

—> BUSY

U (0 =idle; 1 = busy)

DATA,-DATA, ,

Figure 22 Laser Experiment

The sequence of events in the experiment are detailed below.

Shutter is closed. Fire laser.
Wait for Laser beam to dissipate.
Open Shutter.

Start ADC.

Read ADC data register.

CoNo~wWNE

then go back to Step 4

November 2, 2004

Wait until ADC has finished conversion.

Store Number in the next element of the data array.
Decrement the count of data points taken.
If more points are needed, delay for the amount of time between acquiring points and

-64 -

Aspects of Computer Architecture
Simple Computer

The interface to this experiment would look like Figure 23 to the software. Figure 24 show the
first several hundred microseconds of the time course of the experiment using the program.

Implementation Steps:

1. Design
a. Design the details of the experiment.
b. Identify signals to be interfaced.
c. ldentify the steps required for execution of the experiment.
d. Build the interface. Decide on the actual physical addresses of the various
registers in the interface.

2. Program Development
a. Decide how the CPU registers are to be utilized by the program.
b. Lay out the logical flow of the program. Generate the actual program steps in
nmemonic form.
c. Layout the utilization of memory.
i. Decide where to put the arrays to receive the data.
ii. Decide where the constants are to be stored.
iii. Decide where the first instruction of the program is to be stored.
iv. Determine the address of each instruction of the program.
d. Translate the mnemonic instructions into machine language (binary). Insert into
the instructions the actuasl physical addresses of operands and branch points.

3. SetUp
a. Assemble all experimental equipment.
b. Install any interface hardware.
c. Make all connections between the interface and the experimental apparatus.
d. Load memory by depositing the machine language form into the appropriate
locations.

4. Debug the facility
a. Deposit the address of the logical entry point of the program into the CPU PC
register.
b. Assert GO.
c. Observe operation during and after the run to insure the facility is working
correctly. You may have to use a known sample to facilitate this operation.
d. Modify the program and repeat the debug process until correct.

5. Production
a. Place the appropriate sample in the apparatus. Select the appropriate wave lenth
to be observed
b. Execute the program
c. Transfer the data to the appropriate place(s) for long term storage, analysis, and
presentation.

November 2, 2004 -65-

Aspects of Computer Architecture
Simple Computer

LaserExpReg.cdr 21-Oct-2002

[b.]b.]b.o.]b.] | Control Register

o —»| 7 —>» CONVERT

~

o —»|.5 —» SHUTTER

i

o —»| 5 —» FIRE

o

)

>

[a]
[o]

[b,{b.|b,[b.]b[b.]b, Status Register

| Intensity Register

Interface Registers

Figure 23 Laser Experiment Interface (software View)

November 2, 2004 - 66 -

Aspects of Computer Architecture
Simple Computer

There are three device controller (interface) registers associated with this interface.

6.7.7. Sample Program

Notice that the program makes the following use of the CPU registers. Assume that each
instruction takes 2.0 microseconds to execute.

Reg | Use

R1 Control word for interface.

R2 Number of points yet to acquire.

R3 Next storage location in the array to hold the data points.
R4 | ADC value
R5 Delay counter

November 2, 2004 - 67 -

Aspects of Computer Architecture
Simple Computer

Location Contents Label Op Code | I/D R, R, Operand | Comments
(word)
; --- Initialization ---
00001000 24 00 A0 18 START: LOAD D R2 NUMPNT ;Set number of points to acquire
00001004 26 00 A0 20 LOAD D R3 POINT ;Set storage pointer

; --- Excite the sample ---

00001008 22 00 A0 oOC LOAD D R1 #1 ;Fire Laser

0000100C 32 1F FF EC STORE D R1 CONTROL

00001010 10 00 00 00 NOOP ;Kill 8 micro seconds

00001014 10 00 00 00 NOOP ; while laser beam dies

00001018 10 00 00 00 NOOP

0000101C 10 00 00 00 NOOP

00001020 22 00 A0 10 LOAD D R1 #2 ;Open shutter

00001024 32 1F FF EC STORE D R1 CONTROL

00001028 10 00 00 00 NOOP ;Kill 4 microsec while shutter settles
0000102C 10 00 00 00 NOOP

; --- Acquire Data ---

00001030 22 00 A0 14 LOOP1: LOAD D R1 #6

00001034 32 1F FF EC STORE D R1 CONTROL ;Start ADC, keep shutter open
00001038 22 00 A0 10 LOAD D R1 #2 ;Reset ADC trigger, keep shutter open
0000103C 32 1F FF EC STORE D R1 CONTROL

00001040 32 1F FF FO LOOP2: LOAD D R1 STATUS ;Wait until ADC is done

00001044 92 00 10 40 BNE R1 LOOP2

00001048 28 1F FF F4 LOAD D R4 DATA ;Get ADC value

0000104C 38 EO 00 04 STORE I R4 R3 ;Store the value in data array
00001050 E6 00 A0 OC ADD D R3 #1 ;Increment the pointer

00001054 2A 00 AO 0O LOAD D R5 DELAY ;Wait to take the next point
00001058 EA 00 A0 14 LOOP3: ADD D R5 #-1 ;Decrement delay counter. Kill time
0000105C 9A 00 10 58 BNE R5 LOOP3 ;Branch if delay time is not over
00001060 E4 00 A0 14 ADD D R2 #-1 ;Decrement the counter

November 2, 2004 - 68 -

Aspects of Computer Architecture
Simple Computer

Location Contents Label Op Code | I/D R, R, Operand | Comments

(word)
00001064 94 00 10 30 BNE R2 LOOP1 ;Branch if not done
00001068 00 00 00 00 HALT ;All done, stop

November 2, 2004 -69 -

Aspects of Computer Architecture
Simple Computer

View Of Memory Before Execution

Location Contents | Logical Name Location Contents | Logical Name
001FFFFC Last word 00001070
O01FFFF8 0000106C
001FFFF4 DATA 00001068 00 00 00 00
O001FFFFO STATUS 00001064 94 00 10 30
001FFFEC CONTROL 00001060 E4 00 A0 14
O01FFFES8 0000105C 9A 00 10 58
001FFFE4 00001058 EA 00 AOQ 14
001FFFEO 00001054 2A 00 A0 00
00001050 E6 00 A0 0C | Loop3
0000A03C 0000104C 38 EO 00 00
0000A038 00001048 28 1F FF F4
0000A034 00001044 92 00 10 40
0000A030 00001040 32 1F FF FO | LOOP2
0000A02C 0000103C 32 1F FF EC
0000A028 00001038 22 00 A0 10
0000A024 00001034 | 32 1F FF EC
0000A020 data array 00001030 22 00 A0 14 | LOOP1
0000A01C 0000102C 10 00 00 00
0000A018 00 00 03 E8 | NUMPNT (10010) 00001028 10 00 00 00
0000A014 00 00 00 06 | 6 00001024 32 1F FF EC
0000A010 00 00 00 02] 2 00001020 22 00 A0 10
0000A00C 00 00 00 O1 |1 0000101C | 10 00 00 0O
0000A008 FF FF FF FF | -1 00001018 10 00 00 00
0000A004 00 00 AO 20 | POINT 00001014 10 00 00 00
0000A000 00 00 00 OF | DELAY (15m) 00001010 10 00 00 00
00009FFC 0000100C 32 1F FF EC
00009FF8 00001008 22 00 A0 oC
00001004 26 00 A0 20
00001000 24 00 A0 18 | START
00000FFC

November 2, 2004

-70 -

Aspects of Computer Architecture

Digital Timing Diagrams

Laser
InLoop3 | | |
InLoopl | [[]

Busy(SR0) | [[]

Convert(CR2) | [M

Fire(CRO)

Shutter(CR1)
| []
|

Go

-20 0 20 40 60 80 100 120 140 160 180 200 220 240

Time

Figure 24 Laser Experiment Timing (microseconds)

November 2, 2004 -71-

Aspects of Computer Architecture
Computer Architecture Taxonomy

7. Computer Architecture Taxonomy

7.1. Special Buses

CEM924 CPU3 4-APR-1992

External External
Memory Bus Device Device
- y >
\ \ \ i
110 110
CPU Memory Controller Controller
#1 #2
A A
I/O Bus
A A y
- 4 4 A

Computer Architecture - Special Memory Bus

November 2, 2004

Figure 25 Special Memory Bus

-72-

Aspects of Computer Architecture
Computer Architecture Taxonomy

7.2. Coprocessors

CEM 924 CPU4 4-APR-1992

External External
< Memory Bus > Device Device

A A [y [J

\ Y Y \ Y

Floating
CPU Memory Point 1/O #1 1/0 #2
Coprocesso
A A J [
I/O Bus
4 ‘
Computer Architecture - Special CPU Bus
Figure 26 Special CPU Bus

External External
Device Device

A J

A Y

Floating
CPU Memory Point 1/O #1 I/10 #2
Coprocesso
J J J A J
I/O Bus
- \

Computer Architecture - Floating Point Coprocessor

Figure 27 Floating Point CoProcessor |

November 2, 2004 -73-

Aspects of Computer Architecture
Computer Architecture Taxonomy

7.3. Multiple 1/O buses

CEM924 CPUG6 4-APR-1992

CPU Memory 1/O #1 11O #2
Y A A
Main 1/0O Bus Y
< Y Y
Y A
Bus Bus
Adapter Adapter
#1 #2
A /Y
y I/O Bus #2
- A A
I/O Bus #1 v v
- A A A >
' ' Y I/O #5 Memory
I/O #3 I/O #4 Memory
Computer Architecture - Complex I/O

Figure 28 Complex 1/0O

November 2, 2004 -74 -

Aspects of Computer Architecture
Computer Architecture Taxonomy

CEM 924 CPU7 4-APPR-1992

CPU Memory IBM 3090
I Main I/O Bus
Bus Adapter
#1
(Chan. Adapt.)

I/O Bus #1 (Channel)
- ¢ >

Bus Adapter #2
(DACU)

I/0O Bus #2 (Unibus) i >

DEUNA

i Ethernet

Computer Architecture - Complex 1/O
(Example)

Figure 29 Complex I/0: An Example

7.3.1.Motivations

1. Performance -

November 2, 2004 -75-

Aspects of Computer Architecture

Computer Architecture Taxonomy
2. Compatibility with existing equipment
3. Compatibility with other vendors

7.3.1. Problems

1. Complexity of Hardware
2. Timing Delays
3. Extra Software

7.3.2. Examples

1. DEC PDP8: PDP8 <--> PDP8I <--> PDP8SE

2. IBM PC: XT <--> AT <--> EISA, MCA, PClI, or Local Bus
3. DEC VAX: SBI (11/780) <--> MASSBUS

4. DEC VAX: SBI (11/780) <--> UNIBUS

5. DEC VAX: SBI (11/780) <--> QBUS

6. IBM PC - ISA
7. IBM PC - PClI
8. SCSI

9. IEEE 488

November 2, 2004 -76 -

Aspects of Computer Architecture
Multiple Processors

8. Multiple Processors

CEM924 CPU 8 4-APR-1992

Computer A evice. Fevice.
A 4
Y A
110 /O
CPU MEM Interface Interface
I/O Bus
External External
Computer B Device Device
4 A
\ \ 4
I/10 110
CPU MEM Interface Interface
I/O Bus
Multiple Processors:
Very Loosely Coupled
(Sneaker Net)

Figure 30 Multiple Processors: Very Loosely Coupled

November 2, 2004 -77 -

Aspects of Computer Architecture
Multiple Processors

CEM924CPU 9 4-APR-1992

Computer A Device Device
I/0 1/O
CPU MEM Interface Interface
/O Bus
1/O
Interface
Computer B Device
I/0O I/O
CPU MEM Interface Interface
I/O Bus
Multiple Processors: Loosely Coupled

Figure 31 Multiple Processors: Loosely Coupled

November 2, 2004 -78 -

Aspects of Computer Architecture
Multiple Processors

Memory CPU | ¢ | Shared | | CPU Memory /o
#1 #1 Memory #2 #2
I/O BUS

Parallel Processors

Figure 32 Multiple Processors: Parallel

b. Star

a. Fully Connected

5 © 5 OO
‘ f. Daisy Chain
(o)

(®)
O O AP 000000

g. Bus (party line)

d. Arbitrary

e. Ring

Selected Communication Network Topologies

Figure 33 Multiple Processors: Connection Topologies

November 2, 2004 -79 -

Aspects of Computer Architecture
Disk Drives

9. Disk Drives

9.1. General Architecture

Figure 34, Figure 35, and Figure 36 are a generalized depiction of a modern disk drive. This
particular drive has two platters, four surfaces, and 8 heads. In actual practice, a drive may have
one or more platters. One or both surfaces maybe used to contain data. Each surface may have
one, two, or even more heads. Only one head is active at any given time. The head positioner
places the heads over the track to be read or written. Various physical techniques are used to
change (write) or sense (read) the magnetization of small domains of magnetic oxide within a
track. Each bit of information will be encoded into one of these domains.

CEM 924 DISK1A 4-APR-1992

)) Heads
Magnetic Coating /

ILI Surface 0
H1T2 H1T1 H1TO HOT2 HOT1 HOTO
Platter
H3T2 H3T1 H3TO H2T2 H2T1 H2TO
S S S Y S 1 [I [I
ITI ITI Surface 1 1 — - "
Spindle
I 5 I I 4 I Surface 2 1 _ _ _
IS I Y S Y S Y S)) E—
H5T2 H5T1 H5TO H4aT2 H4T1 H4TO
Platter
H7T2 H7T1 H7TO H6T2 H6T1 H6TO
— [T I T
ITI ITI Surface 3
Head Travel
- >
| |<— Coupling Head
Positioner
Motor

Disk Drives: Generalized Drive
(Cross Section)

Figure 34 Generalized Drive (Cross Section

November 2, 2004 - 80 -

Aspects of Computer Architecture
Disk Drives

CEM 924 DISK1E 5-APR-1992

O = |F:D

| O = | Head
\/ Positioner
Head Disk Disk
Positioner
Pseudo Radial Radial

Disk Drives: Head Positioners
(Top View)

Figure 35 Head Positioners

November 2, 2004 -81-

Aspects of Computer Architecture
Disk Drives

CEM 924 DISK1B 4-APR-1992

Read/Write
Driver O

Head 0 @—P»

I
I
o

Analog Electronics | pijgital Electronics
1
I
I
I

Read/Write
Head 1 <@—® piver1 1
1
Read/Write 1
Head 2 <@—®1 pyjyer2 I
I

Read/Write

Head 3 <@—®] pjyer3 : General

1 Control
Logic

Read/Write
Head 4 <4— Driver 4

Read/Write
Head 5 H Driver 5

Head Selector

Read/Write
Head 6 <@ pyivers

Read/Write
Head 7 <@—®1 pyjyer 7

aoeJIalul sng O/l

I
|
[
[
I
1
1
1
|
1
Head Head |
Positioner @] Positioner ! Csﬁgttl;zl,
Control 1 '

: and Data

|

[

[

1

1

1

1

1

Registers

Motor
Motor <¢— Control

Disk Drives: Generalized Controller

sng O/l

Figure 36 Generalized Controller

November 2, 2004 -82-

Aspects of Computer Architecture
Disk Drives

9.2. Disk Format

1. Sectors
Preamble — track address, sector address (overhead)
Data — the user’s data
Postamble - redundancy or error detection data (overhead)

2. Tracks
3. Cylinders
4. Partitions

CEM 924 Disk 1C 5-APR-1992

Track O

Platter

Track

Track Spacing,
Head Parking

Spindle

Disk Drives:
Track, Sector Layout
Constant Angular Velocity (CAV)

Figure 37 Track Sector Layout: CAV

November 2, 2004 -83-

Aspects of Computer Architecture
Disk Drives

Platter

Track

Track Spacing,
=] Head Parking

Spindle

Disk Drives: Track Sector Layout
Constant Linear Velocity (CLV)

Figure 38 Track Sector Layout: CLV

November 2, 2004 -84 -

Aspects of Computer Architecture
Disk Drives

Platter

Track

Track Spacing,
Head Parking

Spindle

Disk Drives:
Track, Sector Layout
Constant Angular Velocity (CAV)

Figure 39 Track Skew - Interleave

9.3. Mapping Sectors into Logical Blocks

A method of increasing performance is to interleave sectors and to skew tracks. Interleaving
sectors changes the formating of the track so that logically ajacent sectors are actually separated
physically, this provides time for the computer to digest one sector of information and get ready
for the next before the next sector arrives below the head. The penalty for not being ready is
waiting for a complete revolution of the disk before the desired sector again appears under the
head.

Track skew is a similar technique. The disk is formatted so that sector 0 of the next track is
located some angle (number of sectors) from the angular position of sector 0 of the previous
track.

Both techniques are based on the fact that most disk read or write operations involve a number of
logically consecutive sectors.

November 2, 2004 -85 -

Aspects of Computer Architecture

Disk Drives

Table 15 Disks: Map

ing Physical Sectors into Logical Blocks

Interleave

0

1

Track Skew

0

0

Logical Track
Block

Sector

Track

Sector

Track

Sector

Track

Sector

()

[EEN

[EEN

N|[Bh RO |W(O

1

o

OO (N[O [WIN|F

(BN
o

[EEN

[BY

[HEN

[EEN

-
N

[EY
w

[HEN
SN

=
(6]

-
(o)

|
\l

[EEN

[EEN

=
(00]

NP O|IO|IW|IO (|01

-
O

[uny
o

N
o

N
=

N
N

[EEN

N
w

[BY

[HEN

[EEN

N
N

[EEN
[EEN
NIN|IF|IFPIFPIFP[FPIFP(FPIFPIPIFPIP(FPIO|OIC|O(OC|IO0|OC|O0|O0(O|0|O

N
(6]

RO ||| |INO|OR[WIN|FP(O(FR([O(O((N[|(OI||[WIN|(F|O

DSRLSRE Rl Nl el el el Ll el el Dl ol Ll (el (o] (o] (o] (o] (o] o] o] e}l [le) [}]

NO|IRP|O|INO|W|FR|[O|o|(o (N[O |[O(N[OI|Ww [k [O|| | [(N|O

NIN|FP|IFRP|IPIFP|IFPIPIFPIPIP(PIP([P[O[O([OO|O|O|O|O|O|O|O|O

WO (|00

NIN|IF|IFPIFPIFP[FPIFP(FPIPIPIFPIP(FPIO|OIC|O0(OC|O0|OC|O0|IO0(OC|0|O

NIO|O|0|O|R~IN|IO|IFR|OIN[OI|W (kR ([([FR([O(N[OI|W k(O || [N|O

9.4. Figures of Merit for a Disk

FCI - Flux changes per inch. Density of flux changes along a track.

BPI - Bits per inch along a track.

TPI - Tracks per inch along the radius of the disk.

Areal Density - Density of data bits per square area.

November 2, 2004

- 86 -

Aspects of Computer Architecture
Disk Drives
Rotational Speed
Track to adjacent track seek time
Seek time (average) - The average time required to seek a given sector. This is the sum of
one half the number of tracks times the track to track seek time plus one half of the time

for one rotation.

Table 16 Disks: Example Drives

Attribute Units Kennedy 5380 | Kennedy 7300 Seagate DEC Rx02
ST-12550W (Floppy)

Platter diameter inches 14in 8in 35 8
Number of platters 3 3 10 1
Number of data surfaces 5 5 19 1
Number of heads 5 5 19 1
Number of cylinders 823 2707 77
Bits per inch 6330 9420 52187
Tracks per inch 430 480 3047 48
Tracks per surface 411 411 77
Capacity (unformatted) Bytes 82M 41.4M 2572M 512K
Head flying heighth uin 20 15
Track to adjacent track seek msec 10 6 0.6
Track to track seek (max) Msec 65 55 18
Track to track (average) Msec 35 30 8.9
Spindle Rotation rate Rpm 3000 3600 7200 360
Rotation times Msec 20 16.7 8.33 166.7
Transfer Rate Bits per sec 9.67TM 35.3M 62.5K
Power consumption Watts 75 13
Mean time between failures (MTBF) Hrs 10000 10000 500000
Drive Size in 7x17x25 4.6x8.5x14.25 1.6x4.0x6
Drive weight 75 lbs 20 Ibs 2.3
Date of information 1982 mid 1980’s 1994 mid 1970’s

9.5. Combinations of Disks

November 2, 2004 - 87 -

Aspects of Computer Architecture
Disk Drives

Groupings.CDR 29-JAN-1997 T V Atkinson - Department of Chemistry - Michigan State University

O Controller Controller
Controller I r'y 7'y I
i P >
- Ll

Controller Controller Controller v I v
Interface Interface Interface Controller

I I I

Controller Controller

Controller Controller Controller Controller
1 2 I 3 7

0

Controller 7]
Interface Controller

I Interface

Disk System Strategies
Figure 40 Disk System Strategies

9.5.1. Combinations of Simple Disks

The computer industry has typicaly sought three goals (performance, reliability, availability, and
low cost) that are often at odds with one another. This is true for complete systems as well as
particular subsystems. This section examines some of the developments centered on using more
than one of the simpler disk drives. Many of these techniques are embodied in a formailization
called Redundant Arrays of Inexpensive Disks (RAID)2.

RAID is a set of techniques to provide higher performance and highly available disk systems
using a number of drives and/or controllers in concert. The original intent was to use a
combination of inexpensive disks to achieve the performance and functionality of large
expensive disks. A number of taxonomies have been identified. Patterson, Gibson, and Katz of
UC Berkeley first proposed RAID in 1987. RAID-1, 3, and 5 have been the most popular so far.

The array of disks appears as one logical drive. A given file is distributed over the drives in a
defined manner. Redundancy is added to allow for recovery of data in the case of failures.
Redundancy is extra data (overhead) that is stored with the data to enhance the probability that
when reading the data back off the disk that two things will happen. First, that any errors in

2«An Introductions to RAID, Redundant Arrays of Inexpensive Disks,” Pete McLean, April 24, 1991, Digital
Equipment Corporation.

November 2, 2004 - 88 -

Aspects of Computer Architecture
Disk Drives

reading the data will be detected. Second, if errors occur, the original data can be reconstructed
using the redundant information. Performance is increased since each drive in the RAID set can
be seeking and reading various pieces of the requested set of data independently and
simultaneously of the other drives.

RAID-0: Simple disk striping where a file is divided into chunks. Each successive chunk is
stored on the same block of the next disk of the set. When the last disk of the set has been used,
the next chunk goes in the next available block on the first drive, ... There is actually no
redundancy in this case.

RAID-1: The original example and is also called disk shadowing or mirroring. As each block of
a file is written to the disk system, a copy of the block is written on each drive of the RAID set.
In case of disk failure, data can be retrieve from the other drives of the set.

RAID-2: Similar to RAID-3 except that a Hamming code is used to generate a number of
redundancy chunks per subset of data chunks.

RAID-3: As in RAID-O0, the file is divided into chunks and stored on n-1 disks of the RAID set.
The nth disk of the RAID set contains a redundancy chunk, i.e., the Xor of the subset of data
chunks, stored on the data disks in the corresponding blocks.

RAID-4: Similar to RAID-5 except that the redundancy chunks are all on one disk.

RAID-5: A redundancy chunk is used as in RAID-3 but any given drive contains both
redundancy blocks and data blocks.

RAID-6: A more complicated redundancy algorithm is used, producing two chunks of
redundancy information for each set of n-2 data chunks. As in RAID-5, data and redundancy
chunks are distributed over all drives.

November 2, 2004 -89 -

Aspects of Computer Architecture

Disk Drives
H 7
G 6
F 5
4 4 4 4 E 4
3 3 3 3 D 3
2 2 2 2 C 2
E 1 F 1 G 1 H 1 B 1
A 0 B 0 C 0 D 0 A 0
DISK 1 DISK 2 DISK 3 DISK 4 Logical
DISK
Disk Groupings - RAID-0 (Disk Striping)
Figure 41 Disk Groupings - Raid 0
H 7 H 7 H 7
G 6 G 6 G 6
F 5 F 5 F 5
E 4 E 4 E 4
D 3 D 3 D 3
C 2 C 2 C 2
B 1 B 1 B 1
A 0 A 0 A 0
DISK 1 DISK 2 Logical
DISK
Disk Groupings - RAID-1 (Shadowing)

Figure 42 Disk Groupings - Raid 1

November 2, 2004 -90 -

Aspects of Computer Architecture

Disk Drives
RAID1a.CDR 29-JAN-1997 T V Atkinson - DeBartment of Chemistw - Michigan State Universiﬁ
7 7 7 7 H 7
6 6 6 6 G 6
5 5 5 5 F 5
4 4 4 4 E 4
G 3 G 3 H 3 H 3 D 3
E 2 E 2 F 2 F 2 C 2
C 1 C 1 D 1 D 1 B 1
A 0 A 0 B 0 B 0 A 0
DISK 1 DISK 2 DISK 3 DISK 4 Logical
DISK
Disk Groupings - RAID-1 (Shadowing/Striping)

Figure 43 Disk Groupings - Raid 1 Alternative

RAIDI.COR Z0AN1007 LV Ancon . Depertment o Chenisty. Michigen Stale Univerity
|
7 7 7 7 H 7
6 6 6 6 G 6
5 5 5 5 F 5
4 4 4 4 E 4
3 3 3 3 D 3
G 2 H 2 | 2 GoOHeal 2 C 2
D 1 E 1 F 1 DOE®F 1 B 1
A 0 B 0 [0 ADBOC 0 A 0
DISK 1 DISK 2 DISK 3 DISK 4 Logical
DISK
Disk Groupings - RAID-3
—

Figure 44 Disk Groupings - Raid 3

November 2, 2004 -91-

Aspects of Computer Architecture

Disk Drives
RAID5.CDR 29-JAN-1997 T V Atkinson - DeBartment of Chemistm - Michiaan State Universig
|
7 7 7 7 H 7
6 6 6 6 G 6
5 5 5 5 F 5
4 4 4 4 E 4
3 3 3 3 D 3
G 2 GOH®I 2 H 2 | 2 C 2
D 1 E 1 DOES®F 1 F 1 B 1
A 0 B 0 C 0 A®BOC 0 A 0
DISK 1 DISK 2 DISK 3 DISK 4 Logical
DISK
Disk Groupings - RAID-5

Figure 45 Disk Groupings - Raid 5

November 2, 2004 -92 -

Aspects of Computer Architecture
Memory Utilization

10. Memory Utilization

November 2, 2004

CEM 924 MEMUTIL 12-APR-1992

Device Reg Device Reg Device Reg
User D 3
User P 3
User
Data Data
User D 2
User P
User 2
Program
UserD1
UserP 1
Program
System System
Data Data
System System
Program Program
0 0 0
Single Single Tasking Multitasking
Application Operating system Operating System

Memory Utilization

Device Reg

u2D1

UulbD2

Uuip2

u2D2

u2p2

u2prPi1

ulbD1

Uulipril

System
Data

Multiuser
Multitasking
Operating
System

Figure 46 Memory Utilization

-03 -

Aspects of Computer Architecture
Boot Straps

11. Boot Straps

CEM924 Bootl 13-APR-1992

Device Device Device Device
Registers Registers Registers Registers
Primary Primary Primary Primary
Bootstrap Bootstrap Bootstrap Bootstrap
Tertiary Tertiary
Bootstrap Bootstrap
Executive
Tertiary Bootstrap
Executive
Secondary Secondary
Bootstrap Bootstrap
. o . Secondary Bootstrap (BSA?CB'T:C‘()
Memory Memory Memory Memory System Disk
Step 1 Step 2 Step 3 Step 4
Bootstrapping the System
Figure 47 Boot Strapping
11.1. Simple
1. Enter the Primary Bootstrap program into memory. (See Figure 47)

2. Enter the address of the entry point of the Primary Bootstrap Program into the PC.

3. Press Reset
4, Press Run
5. Primary Bootstrap reads the boot block of the system disk into memory, usually

starting at address 0. (See Figure 47 Step 2)
6. Jump to the address of the entry point of the Secondary Bootstrap.

7. Secondary Bootstrap reads the Tertiary Bootstrap into a portion of memory that
will not interfere with the loading of the Executive. (See Figure 47 Step 3)

8. Jump to the address of the entry point of the Tertiary Bootstrap.

November 2, 2004 -94 -

Aspects of Computer Architecture

Boot Straps

10.

11.

12.

13.

Load the Executive into memory from the System Disk. (See Figure 47 Step 4)
Jump to the entry point of the Executive.

Executive will do further initialization of system data tables and load in any
system overlays that are appropriate for this point of operation.

Executive executes any System Manager controlled startup scripts. These scripts
perform additional initialization that is specific to the particular installation.

12.1. PC/MS-DOS: \AUTOEXEC.BAT, \CONFIG.SYS
12.2. VMS: SYSSMANAGER:SYSTARTUP_V5.COM
12.3. SYS$STARTUP:SYLOGICALS.COM

12.3. UNIX: /etc/rc*

Accept commands from the user(s)

11.2. Typical of Modern Machines with a Volatile Executive

CEM 924 18-JAN-1991 BOOT 3

Primary
Bootstrap

Other
Utilities

Diagnostics

FPE
Executive

Front Panel Emulator
(ROM)

November 2, 2004 -95-

Aspects of Computer Architecture
Boot Straps
Figure 48 Front Panel Emulator

1. A simple resident Executive, Front Panel Emulator”, which contains the Primary
Bootstrap program is permanently installed in ROM in the CPU's address space.
(See Figure 48)

2. Invoke the Primary Bootstrap by one of the following.
2.1. Power Up
2.2. Press Reset
2.2. "Reset" The system (e.g. <CTRL><ALT>)

2.3. Start execution at the entry point of the Primary Bootstrap (Not usually
done)

3. Typically the Front Panel Emulator will include simple diagnostics that will be
run at this point. These are programs that exercise the hardware and detect some
forms of aberrant behavior. If errors are detected, the boot process stops.

4. In some cases, the Front Panel Emulator will engage in a dialog with the User at
this point, allowing the running of additional diagnostics, disk formatting and/or
other simple chores. The user may be able to specify which of several system
disks will be booted in the next steps.

5. In some cases, a sniffer boot will occur. The Primary Bootstrap will try the
following steps on each of a list of candidate system disks. As soon as one is
found that has an intact boot block, the booting process will continue on that disk.

6. Primary Bootstrap reads the boot block of the system disk into memory, usually
starting at address 0. (See Figure 49 Step 2)

7. Jump to the address of the entry point of the Secondary Bootstrap.

8. From this point on, everything proceeds as in the simple bootstrap.

November 2, 2004 -96 -

Aspects of Computer Architecture

Boot Straps

11.3. Machines with a ROM based Operating System

Device Device
Registers Registers

Primary Primary
Bootstrap Bootstrap

Volatile

Executive
Volatile

Executive

Permanent Permanent
Executive Executive
(ROM) (ROM)

Block 0
0 0 (Boot Block)

Memory Memory System Disk

Step 1 Step 2

Booting ROM Based Operating Systems

Figure 49 Booting a ROM Based OS

1. The Resident part of the Operating System Executive is permanently installed in
ROM in the CPU's address space.

2. Invoke the Primary Bootstrap portion of the Resident Executive by one of the
following.
2.1. Power Up
2.2. Press Reset
2.2. "Reset" The system (e.g. <CTRL><ALT>)
2.3. Start execution at the entry point of the Primary Bootstrap (Not usually
done)
3. Typically simple diagnostics will be run at this point.
4, Executive will do further initialization of system data tables and load in any

system overlays that are appropriate for this point of operation.

5. Executive executes any System Manager controlled startup scripts. These scripts
perform additional initialization that is specific to the particular installation.

November 2, 2004

-97-

Aspects of Computer Architecture

Memory Systems

6. Accept commands from the user(s)

12. Memory Systems

Table 17 Powers of 2 (Abbreviated)

n DEC OCT HEX a.k.a
10 1024 2000 400 1K
11 2048 4000 800 2K
12 4096 10000 1000 4K
13 8192 20000 2000 8K
14 16384 40000 4000 16K
15 32768 100000 8000 32K
16 65536 200000 10000 64K
17 131072 400000 20000 131K
18 262144 1000000 40000 256K
19 524288 2000000 80000 512K
20 1048576 4000000 100000 1M
21 2097152 1000000 200000 2M
22 4194304 20000000 400000 4aM
23 8388608 40000000 800000 8M
24 16777216 100000000 1000000 16M
25 33554432 200000000 2000000 32M
26 67108864 400000000 4000000 64M
27 134217728 1000000000 8000000 128M
28 268435456 2000000000 10000000 256M
29 536870912 4000000000 20000000 512M
30 1073741824 10000000000 40000000 1G
31 2147483648 20000000000 80000000 2G
32 4294967296 40000000000 100000000 4G

November 2, 2004

-08 -

Aspects of Computer Architecture
Memory Systems

Table 18 Representative Examples of DRAM Chips

IPart Number Num Bits Org Power Of 2| Pins | Data Lines | Add lines [Access Data Book
IMCM4027AC-2 4K 4Kx1 12 16 11 6 150 Motorola 1980
IMCM4516C12 16K 16Kx1 14 16 11 7 120 Motorola 1980
IMCM6632L15 32K 32Kx1 15 16 11 8 150 Motorola 1980
IMCM6664L15 64K 64Kx1 16 16 11 8 150 Motorola 1980
IHM48416A-12 64K 16Kx4 14 18 4 8 120 Hitachi 1984
IHM50256-12 256K 256Kx1 18 16 11 9 120 Hitachi 1984
IMCMSllOOOA-?O 1M 1Mx1 20 26 1 10 70 Motorola 1994
IMCM514256A-70 1M 256Kx4 18 26 4 9 70 Motorola 1994
IMCM441008-60 iM 4Mx1 22 26 1 11 60 Motorola 1994
IMCM444OOB-60 4M 1Mx4 20 26 4 10 60 Motorola 1994
IMCM54800A-70 4M 512Kx8 19 28 8 8 70 Motorola 1994
IMCM5417OB-7O 4M 256Kx16 18 40 16 8 70 Motorola 1994
IMCM516160A-60 16M 1Mx16 24 42 16 8 60 Motorola 1994
IMCM541908-70 16M 256Kx18 18 40 18 8 70 Motorola 1994
IMCM516180A-60 16M 1Mx18 20 42 18 8 60 Motorola 1994
IMCM516100-6O 16M 16Mx1 24 28 11 12 60 Motorola 1994
IMCM516400-60 16M 4Mx4 22 28 4 10 60 Motorola 1994
November 2, 2004 -99 -

Aspects of Computer Architecture
Increasing Performance

Table 19 Representative Examples of SIMMS

I Main Chip Second Chip
|PartNumber Num Bits| Org | Pins | Size| Style |# Chips| Data |Add lines|Num Chip Org [[Num| Org
Lines
IMCM81000 8M 1Mx8 | 30x1 SIMM| 8 8 10 8 511000 | 1Mx1
IMCM81430 8M 1Mx8 | 30x1 SIMM 2 8 10 2 54400 1Mx4
IMCM84000 32M 4Mx8 | 30x1 SIMM 8 8 11 8 54100A | 4Mx1
IMCM816OO 64M |16Mx8| 30x1 SIMM 4 8 12 4 517400 |[16Mx1
IMCM91000 oM 1Mx9 | 30x1 SIMM|[9 8 10 9 511000 | 1Mx1
IMCM91430 M 1Mx9 [30x1 SIMM 3 8 10 2 | 54400AN | 1IMx4 [1 [1Mx1
IMCM94000 36M 4Mx9 | 30x1 SIMM 9 9 10 9 54100A | 4Mx1
IMCM91600 144M |16Mx9| 30x1 SIMM 9 9 12 9 517400 |[16Mx1
IMCM32100 32M |1Mx32|72x2| S |DIMM 8 32 10 8 | 54400AN | 1Mx4
IMCM32130 32M [1IMx32(72x1| L |SIMM 8 32 10 8 54400 1Mx4
IMCM32230 64M [2Mx32|72x1| L [SIMM 8 32 10 8 54400 1Mx4
IMCM324OO 128M |4Mx32|72x1| L |SIMM 8 32 11 8 517400 |[16Mx1
IMCM32400D 128M |4Mx32|72x2| S [(DIMM| 8 32 12 8 516400 | 4Mx4
IMCM32800 256M |8Mx32|72x1| L [SIMM 8 32 11 8 517400 |[16Mx1
IMCM36100 36M [1Mx36(72x1| L |SIMM 12 36 10 8 54400 IMx4 || 4 [1Mx1
IMCM36104 36M [1Mx36(72x1| L |SIMM 9 36 10 9 54400 1Mx4
IMCM36200 72M [2Mx36|72x1| L |[SIMM| 24 36 10 16 54400 IMx4 | 8 |1Mx1
IMCM36204 72M |2Mx36|72x1| L [SIMM 18 36 10 18 54400 1Mx4
IMCM364OO 144M |4Mx36|72x1| L |SIMM 12 36 10 8 54400 IMx4 || 4 [4Mx1
IMCM36800 258M |8Mx36|72x1| L [SIMM| 24 36 11 16 517400 |4Mx4 | 8 |4Mx1
IMCM40100 40M |1Mx40]|72x1| L |SIMM 10 40 10 10 54400 4Mx4
IMCM40200 80M [2Mx40(72x1| L |SIMM| 20 40 10 20 54400 4Mx4
IMCM404OO 160M |4Mx40|72x1| L |SIMM 10 40 11 10 517400 | 4Mx4
IMCM40800 320M |8Mx40|72x1| L [SIMM| 20 40 11 20 517400 | 4Mx4
IMCM64100 64M [1Mx64 | 84x2 DIMM| 16 64 11 16 54400 1Mx4
IMCM644OO 128M |4Mx64 | 84x2 DIMM| 16 71(64) 12 16 516400 | 4Mx4
IWPD8M72 256M | 8MXx72| 84x2 DIMM| 36 72 12 36 4Mx4

13. Increasing Performance

1.

Improve program (operating system or application)

November 2, 2004

- 100 -

Aspects of Computer Architecture
Increasing Performance

2. Improve physical implementation (CPU, Memory, and/or Peripherals). This
would entail rebuilding the same architecture with faster components. For
instance, using transistors rather than vacuum tubes, TTL rather than RTL, ECL
rather than TTL, or just be more careful so that things can run faster without

errors.
3. Improve architecture (hardware or software)
4. Add concurrency (actually an example of above)

4.1. Pipe lining (instruction fetch-decode-execution, floating point operations,
vector operations)

4.2. Branch prediction (to optimize instruction pre-fetch)
4.2. Cache (Memory, instruction, data, and disk)

4.3. Memory Interleaving

4.4. Disk interleaving (sector interleaving, track skewing)
4.5. Parallel Processing

4.6. Coprocessors - math, graphics, vector, array

4.7. Multiple CPU's

4.8. DMA device controllers

November 2, 2004 -101 -

Aspects of Computer Architecture
Increasing Performance

13.1. Concurrent Tasks

13.1.1. Tasks are completely independent.

CEM 924 CPU Perf1 12-APR-1992
inson
Department of Chemistry
Michigan State University

[taskq] task, | taskg | task,

'\

time to complete tasks

task2
taskg

tasky

n
=~
=

time to
complete
tasks

Concurrent Tasks
(independent)

Figure 50 Concurrent Tasks

November 2, 2004 -102 -

Aspects of Computer Architecture
Increasing Performance

13.1.2. Pipelines (Tasks are somewhat independent)

CEM 924 CPU Perf 2 12-APR-1992
TV Atki

Department of Chemistry
Michigan State University

taskq tasky taskg tasky
+—>

[A1]B1]|Ca[Ar]B2| Co| A3[B3] Cs| A4 Ba] Cal

<< >

time to complete tasks

Pipe 1
Pipe 2
Pipe 3

time to complete tasks

Concurrent Tasks
(partially dependent)

Figure 51 Concurrent Tasks (Partial Dependence)

13.1.3. Cache

Registers Ram Disk @

Arithmetic
cPu
Memor
Command y /0
Decoder Controller

#1
I_I_I_ AAA I_I_I_
M Toomoy =] ok [
] Lo [
““‘IWH““ “__IWK__
y Control Bus
-
\4 Address Bus \/
-
\ Data Bus 1]
-

vyyy

Memory and Disk Caches

November 2, 2004 -103 -

Aspects of Computer Architecture
Increasing Performance

Figure 52 Cache and RAM Disk

1/0 Bus
I I I (to CPU)

m bits n bits

Regs

Memory Content Physical Address Controller

Cache Store
1/0 Bus
I I I (to Peripherals)

Memory Cache Controller

Figure 53 Memory Cache Controller

The following examples describe the operation of a generalized memory cache. In these
examples, A, B, C, D, E, and F symbolically refer to specific locations within the physical
memory space of the system.

1. CPU issues a read instruction to fetch the contents of memory location A. A copy
of A is not currently being held in the cache. The cache store is not full.

1.1. Cache controller passes reference through to memory subsystem.
1.2. Memory returns the contents of memory location A to the cache
controller.
1.3. Cache controller passes the contents of memory location A onto the CPU.
1.4. Cache controller stores the address of A and the contents of A in the cache
store.
2. CPU issues a read instruction to fetch the current contents of memory location B.

A copy of B is currently being held in the cache. For this case, whether the cache
is full or empty has no effect.

2.1.

November 2, 2004

Cache controller returns the contents of Memory Location B to the CPU
using the copy located in the cache store.

-104 -

Aspects of Computer Architecture
Increasing Performance

3. CPU issues a read instruction to fetch the contents of memory location C. A copy
of C is not currently being held in the cache. The cache store is full.

3.1. Cache controller decides which of the existing set of copies of memory
locations to discard in order to create space for the new reference.

3.2. Cache controller passes the reference through to memory subsystem.
3.3. Memory returns the contents of memory location C to cache controller.
3.4. Cache controller passes the contents of memory location C onto the CPU.

3.5. Cache controller stores the address of C and the contents of memory
location C in the cache store in the newly freed slot.

4. CPU issues an instruction to write a new value into memory location D. A copy
of D is currently not being held in the cache. The cache store is not full.

4.1. Cache controller stores the address of D and the new contents of memory
location D in the cache store.

4.2. Cache controller passes the address of memory location D and the new
contents of memory location D to the memory subsystem which stores the
new value into location D.

5. CPU issues an instruction to write a new value into memory location E. A copy of
E is not currently being held in the cache. The cache store is full.

5.1. Cache controller decides which of the existing set of copies of memory
locations to discard from cache store.

5.2. Cache controller stores the address of memory location E and the contents
of memory location E in the cache store in the newly freed slot.

5.3. Cache controller passes the address of memory location E and the new
contents of memory location E to the memory subsystem which stores the
new value into memory location E.

6. CPU issues an instruction to write a new value into memory location F. A copy of
memory location F is currently being held in the cache. For this case, whether the
cache is full or empty has no effect.

6.1. Cache controller stores the address of F and the contents of memory
location F in the cache store in an empty slot.

November 2, 2004 -105 -

Aspects of Computer Architecture
Increasing Performance

6.2. Cache controller passes the address of memory location F and the new
contents for memory location F to the memory subsystem which stores the
new value into memory location F.

13.1.4. Direct Memory Access (DMA)

DMA is an example of asymmetrical parallel processing where the disk controller is doing work
while the CPU is doing other tasks. The device controller has enough intelligence to manage the
transfer of information to (from) memory from (to) a disk drive once the transfer has been set up
by the CPU (i. e. software). This section is a simplified example of such a device. To begin,
however, the section illustrates the simpler, non-parallel programmed 1/O technique of
controlling a device such as a disk. In addition, this section will investigate some simple
examples of interrupt structures, a necessary part of DMA operations.

13.1.4.1. Programmed I/O (Example: reading a block of data)

CEM 924 101 12-APR-1992
TV Atkinson
Department of Chemistry
Michigan State University

n+4 Data to/from disk

n+3 Block Number (MSB)

n+2 Block Number

n+1 Block Number (LSB)

n B R/W| G | Control/Status Register (CSR)

Physical Memory Space

Programmed I/O

Figure 54 Program 1/O

Figure 54 is a programmer's model of a simple interface to a disk. In this example "G" is the go
bit [=0 stop disk controller, =1 find block and begin transfer], "R/W" is the direction bit [=0

read (information is transferred from disk to cpu), =1 write (information is transferred from the
CPU to the disk)], "B" is the busy bit [=1 busy (next byte is being sought), =0 not busy (byte is

November 2, 2004 -106 -

Aspects of Computer Architecture
Increasing Performance

ready to be transferred from controller to CPU), and "n" is the base address of the register set for
the interface.

1. Write the number of the block on the disk to be fetched into the Block Number
registers (n+1), (n+2), (n+3). Using three successive writes to the three byte
registers will do this.

2. Write a "1" into the GO bit and a "0" into the R/W bit
3. LOOP: Read CSR(n)
4, IF CSR is negative, go to LOOP

5. Read the Data Register (n+4); Get next byte from disk

6. Put the byte away in memory

7. If there are more bytes to get, go to LOOP

8. If there are no more bytes to get, Write a "0" into GO bit of CSR (n); Stop the
controller

13.1.4.2. Asynchronous I/O (Interrupt Structures)

As the next section will illustrate, if two independent devices, e. g. the CPU and the 1/0 device,
are to operate asynchronously there must be mechanisms for the two entities to signal each other
when necessary. The spinning-on-a-bit technique illustrated in the laser experiment is one
example. Spinning-on-a-bit is very simple but inefficient; the CPU does nothing but watch the
flag bit, waiting for the device, in that case the ADC, to finish.

The ability of an 1/0 device to interrupt the processing of the CPU provides another way for this
necessary signaling to occur. In such cases, the program running in the CPU sets up the 1/0
controller for the 1/0 operation. The program then gives the 1/0 controller the command to begin
the operation. At this point, the CPU is no longer needed and may proceed with other processing.
The 1/0 device continues asynchronously until the operation 1/O is completed. Upon completion,
the 1/0 device must signal the program, so that appropriate actions may be taken, for example set
up the next I/O operation. To achieve this signaling the 1/0 device “pulls an interrupt.” This
section examines simplified versions of two strategies of doing interrupts.

13.1.4.2.1. Interrupt Structure 1

Figure xx illustrates this technique. Both the CPU and the 1/O controllers have additional logic to
implement the interrupt structure. Two explicit signals, Interrupt Request and Interrupt Grant
are added to the Control Bus. Notice that Interrupt Request is a single signal bus, but
Interrupt Grant is actually a “daisy chain,” the signal is generated in the CPU and sent to the
first device which then has to repeat the process and sent the signal to the second device.

November 2, 2004 -107 -

Aspects of Computer Architecture
Increasing Performance

The main program sets up the 1/0O device for the desired operation, e. g. read a particular block,
or write a block. The last step of this part of the operation is to enable the 1/0O device to do
interrupts.

When the /O operation is complete, the I/O device asserts Interrupt Request. The CPU
interrupt handler determines if CPU interrupts are enabled. If so, it interrupts CPU operation at
the end of the next instruction. If not, it waits until the current program decides to allow
interrupts and enables them.

The CPU saves the current context, every thing that defines the current state of the program, in
memory. At the minimum, the contents of the PC must be saved so that the program can be
restarted later. Other registers may also be saved at this point. This is all achieved by logic
within the CPU.

The CPU then asserts Interrupt Grant. This signal is passed down the daisy chain until
reaching the first device that has an interrupt pending. That device does not pass the signal down
the daisy chain. Thus priority of interrupt service is determined by the place on the bus.

The 1/0 controller interrupt handler puts an interrupt service address unique to that device onto
the Address Bus. This interrupt service address has been “hard wired” into the 1/0O controller at
the time of installation, often with jumpers.

The CPU interrupt handler reads the interrupt service address and get the contents of the memory
location with that address and loads that number into the PC. In simpler terms, CPU program
execution jumps to the location of the Interrupt Service Routine for that specific 1/0 device.

The Interrupt Service Routine saves any additional context of the interrupted program and then
does any processing that is appropriate at this point for the 1/0 device. At some point the
Interrupt Service Routine will reset the 1/0 controller and thus, clear the interrupt. When done
the Interrupt Service Routine restores any of the context of the interrupted program and executes
an interrupt return.

The CPU finishes restoring the context of the interrupted program. The last step of this is loading
the PC with the address of the next instruction of the interrupted program. Execution then
resumes.

November 2, 2004 -108 -

Aspects of Computer Architecture
Increasing Performance

nnnnn
Department of Chemistry
Michigan State University

b; bg bg by bz by by by
n+9 Byte Count (MSB)
n+8 Byte Count (LSB)
n+7 Memory Address (MSB)
n+6 Memory Address
n+5 Memory Address
n+4 Memory Address (LSB)
n+3 Block Number (MSB)
n+2 Block Number
n+1 Block Number (LSB)
n B RW| G | Control/Status Register (CSR)

Physical Memory Space

Direct Memory Access I/O

Figure 55 DMA Example

13.1.4.3. DMA 1/0 (Example: Write a block to disk)
1. Write the number of the block on the disk that will receive the information into
the Block Number registers (n+1), (n+2), (n+3).

2. Write the physical memory address of the information to be written onto the disk
into the memory address register registers (n+4), (n+5), (n+6), (n+7).

3. Write the number of the bytes to be transferred into the Byte Count Register
(n+8), (n+9).

4, Write a "1" into the GO bit and a "1" into the R/W bit

5. Continue the program from this point

November 2, 2004 -109 -

Aspects of Computer Architecture
Memory Management

When the block has been transferred, the disk controller will signal (interrupt) the
CPU and the CPU will stop executing the current program and execute any code
that is required finish the transfer and then resume processing the interrupted
program at the point of the interruption.

14. Memory Management

14.1. Introduction

The matching of the size of a program and the size of the available memory has always been an
important concern. Often the logical image of a program is larger than the amount of physical
memory that is available to contain it (See Figure 56). Several factors govern the amount of
physical memory available to contain a given program.

1.

Size of the CPU memory address space as defined by the size of the Program
Counter (PC) Register.

Size of the physical memory address space as defined by the size of the memory
address bus. The size of the physical memory address space can be less than,
equal to, or greater than the size of the CPU memory address space. That is, the
number of address signals constituting the Address Bus can be smaller than, equal
to, or larger than the number of bits in the PC. In addition, the actual amount of
physical memory can be less than or equal to the size of the physical memory
address space. The actual amount of physical memory can be less than, equal to,
or greater than the size of the CPU memory address space.

The amount of physical memory required by the operating system.

The amount of physical memory that any given process can expect to enjoy in a
multitasking/user environment where resources are divided among the various
tasks and/or users.

November 2, 2004 -110 -

Aspects of Computer Architecture
Memory Management

CEM 924 Mem 1 12-APR-1992
V Atkinson
Department of Chemistry
Michigan State University

Memory Program
Available

Memory Limited Programming

Figure 56 Program Exceeds Memory Available

A number of possible solutions exist to the problem of a program, code and data, being larger
than the memory available to run it.

1. Trivial (from a programmer's point of view)

1.1. Buy more memory

1.2. Buy a new computer with a larger address space
2. Software solutions

2.1. Rewrite the program to reduce the size.

2.2. Chain
2.3. Overlay
3. Hardware/Software Solutions (Address translations)

3.1. Bank switching

3.2. Segmentation

November 2, 2004 -111 -

Aspects of Computer Architecture
Memory Management

3.3. Paging
3.4. Virtual memory

14.2. Motivations for Memory Management

1. Expand CPU address space

2. Facilitates flexible assignment of memory to process(s). Allows segmentation of a
process.

3. Assists in having multiple tasks in memory (multitasking)

4, Protection of one task from another

5. Allows sharing of data and code among tasks.

6. Augments virtual memory implementation.

14.3. Software solutions

14.3.1. Chaining

This approach requires that the original program be subdivided into a number of smaller stand-
alone programs, each of which is small enough to fit into the available physical memory (See
Figure 57). Operationally, the user invokes p,. At the end of the execution of p,, p, is invoked
either manually or automatically if the operating system allows. At the end of the execution of
P, P5 is invoked, etc. Each stand alone program segment is located in a separate disk file.

Communication among the programs is achieved via reading and writing disk files or, perhaps,
by sharing a section of common physical memory.

Gaussian 86 is an example of such a program. Advantages of this approach: Very large programs
can be built. Disadvantages: More work for the programmer. Some programs may not be easily
segmented.

November 2, 2004 -112 -

Aspects of Computer Architecture
Memory Management

nnnnn
Department of Chemistry
Michigan State University

P4 | PA.EXE
P3 | P3.EXE
P2 | P2.EXE
P1 | P1.EXE
Memory Program Set
Available (on Disk)
Memory Limited Programming
(Chaining)

Figure 57 Memory Limited Programming (Chaining)

14.3.2. Overlaying

The program is again segmented (See Figure 59), but this time into a set of hierarchical
subroutines as shown below (See Figure 58). In this three layer example ROOT calls A, B, and
C. A calls D and E, etc. When the executing program requires a particular module, a subroutine
call is made for that module. The operating system determines if that module is already in
memory. If so, execution immediately branches to the entry point of that module. If not, the
operating system reads that module from disk into the appropriate segment in physical memory.
Execution then branches to the entry point of the newly loaded module. All program segments

are located in a single disk file.

November 2, 2004 -113 -

Aspects of Computer Architecture
Memory Management

CEM 924 Mem 3 12-APR-1992
T V Atkinson
Department of Chemistry
Michigan State University

Memory Limited Programming
(Overlaying)

Figure 58 Memory Limited Programming (Overlaying)

At any one time memory contains one of the following combinations.
1. ROOT, A, D
2. ROOT, A E
3. ROOT, B, F
4, ROOT, C, G
5. ROOT, C, H

6. ROOT, C, |

November 2, 2004 -114 -

Aspects of Computer Architecture
Memory Management

CEM 924 Mem 4 12-APR-1992
TV Atkinson
Department of Chemistry
Michigan State University

|
H
G
F | To Segment 2
E
Seg 2 D
Seg 1 c
B To Segment 1
Root A
Root | To Root
Memory Program File
Available (on Disk)
Memory Limited Programming
(Overlaying)

Figure 59 Overlaying (Memory Layout)
14.4. Hardware/Software Solutions

The introduction of an additional hardware sub-system, i.e. memory management unit (MMU)
(See Figure 60), allows various hardware approaches to solving the problem of memory space.
In addition, other facilities such as memory protection and virtual memory can be included. The
MMU will consist of a set of registers that are accessible to the CPU and some logic. The MMU
translates the memory addresses output from the CPU (logical addresses) during the instruction
and operand fetches stages of instruction execution into the addresses that are actually placed on
the memory address bus (physical addresses).

November 2, 2004 -115 -

Aspects of Computer Architecture
Memory Management

External
perlee
I
ri i
ogical Uni

Memory Memory
Bank Bank Vo

#1 #2 Controller
#1
Y Logiea W AA)
vYYy ¢ Addresses
Memory
Management
Unit
Physical
-
v Addresses Control Bus \
v Address Bus \ 4

yvyy

\ Data Bus v

Memory Management

Figure 60 Memory Management

14.4.1. Bank Switching

In this type of implementation, the physical address space is divided into a group of equal size
banks (See Figure 62). The MMU contains an m bit Bank Register (See Figure 61). The contents
of this Bank Register is concatenated to the left side of the logical address to produce a (m+n) bit
physical address, [i:j] or i*2" +j.

As an example, if n = 16 and m = 4, the logical (CPU) address space would be 65536. With the
bank switching, the physical addresses on the memory address bus can now be 20 bits and
support a physical memory address space of 1048576. At any one time, the program is operating
in one of the sixteen physical banks of memory (B, ... , B;) of length 65536. The program
switches between the banks by changing the contents of the Bank Register in the MMU.
Changing the Bank Register will typically take several instruction times to affect. An
enhancement of this approach would be to have two Bank Registers in the MMU. One would be
used to map addresses of instruction (code). The second would be used to map addresses of data.
This would allow the program to split the code and data into separate banks. In all cases,
overhead would be required to switch the bank registers from one bank to another.

November 2, 2004 -116 -

Aspects of Computer Architecture

Memory Management

November 2, 2004

n bits
I j Logical Address (PC)

m bits

E Bank Register (MMU)

(n + m) bits

[Physical Address

Memory Management (Bank Switching)
Logical/Physical Address Mapping

Figure 61 Bank Switching: Mapping

-117 -

Aspects of Computer Architecture
Memory Management

B7

Be

Bs

Ba

B3

B2

B1

Bo

Bank Switched
Physical Memory
Space

Bank Switching

Figure 62 Bank Switching: Memory Space

14.4.2. Bank Switching (Partial)

A more useful approach is to bank switch only a portion of the CPU memory space (See Figure
64). As before, multiple banks of physical memory of equal size are switched in and out of the
CPU memory space. The physical banks of memory are all, in turn, switched into the same
window of addresses within the CPU logical address space. In this type implementation, there
are two types of memory systems, regular and bank switched, found on the bus as illustrated in
Figure 63.

November 2, 2004 -118 -

Aspects of Computer Architecture
Memory Management

External
Device

Memory Memory
Bank Bank
#1 #2 [le]
Controller
1 + 4 Physical 4 AAA
Addresses
Yvy
Memory
Management
Unit
Logical y
—
Control Bus Addresses i

Address Bus ¥

A A A
yvy

Data Bus Y

Memory Management (Bank Switching)

Figure 63 Bank Switching (Partial)

The bank switched memory subsystem has an internal memory address bus that is isolated from
the regular address bus by the MMU. The CPU memory space is defined by the size of the PC
register (n bits, n = k + I). The regular address bus is n bits wide. The Bank Switched memory
subsystem address bus is m + I bits wide. A portion of the CPU address space between BSW,
and BSW,; is set aside to receive the bank switched memory. Therefore, the regular memory
system must not answer to addresses with in this range. Typically, the bank switched window
will be set to be a integral power of two memory locations wide and the boundaries will also be
integral powers of two. For example:

— ol
BSW,,; - BSW, =2

The MMU contains a m bit wide register that is a regular 1/O device register, i.e. the CPU can
read/write numbers into it. During operation, the MMU takes each logical address, [i:j], on the
regular address bus and partitions it into the most significant k bits, CPU Space window number,
and the least significant | bits (See Figure 65). The CPU Space Window Number is compared
with the most significant | bits of "Bank Switch (Io)". If these two numbers do not match, the
address location of memory is not within the bank switched memory window and a regular
memory or a device register will have to respond to the memory reference. If the two numbers
do match, then the address is within the window and the banked switched memory has to handle
the memory reference. The MMU then concatenates the m bits of the Bank Switch Register to
the left of the | bits of the address within the window to form the m + j bit Bank Switched Space
address, [h:]]. This address is then placed on the internal address bus of the Bank Switched
Memory sub system and the appropriate location answers.

November 2, 2004 -119 -

Aspects of Computer Architecture
Memory Management

CEM 924 MEM 8 14-APR-1992
TV Atkinson
Department of Chemistry
Michigan State University

< BSW;

- BSWo

CPU Memory Space Bank Switched
Physical Memory
Space

Bank Switching (Partial)

Figure 64 Bank Switching (Partial): Memory Spaces

Using this technique, the cpu memory space can be expanded by (2m)*(2') memory locations. As
with regular memory, the Bank Switched Memory Space would not have to be fully populated
with actual memory.

As an example, if k =4, and | = 16, the logical (CPU) address space would be 1048576. The
Bank Switch Window would be 65536 (64K). If the Bank Register were such that m = 9, the
Bank Switched Space would be 2(9+16) = 33554432 (32M). Thus, by switching in the different
banks of memory, the CPU could command 32M of memory. As with other techniques described
here, there is the penalty of time required to switch the Bank Register. If the program must
switch often among the various banks of memory, performance of the program would be
severely decreased.

November 2, 2004 -120 -

Aspects of Computer Architecture
Memory Management

k bits | bits
| i | j Regular Address (PC)

|I| Bank Number (CPU Space)

| j address within window

m bits
Bank Register (MMU)
h - Bank Switched Space
| | ! Physical Address

Bank Switching (Partial)
Logical/Physical Address Mapping

Figure 65 Bank Switching(Partial): Mapping
14.4.3. Segmentation

The MMU contains a Segment Register of m bits(See Figure 66). The MMU receives a memory
reference from the CPU that includes a logical memory address [j]. The contents of the Segment
Register, [i], is shifted to the left by k bits and added to the logical address, [j], to form a (n+k)
physical address,[h], (See Figure 66). Thus, the physical address is i*2K + j. Figure 67 illustrates
how the memory spaces appear for the segmentation case. Figure 67 shows two example
segments, each corresponding to a particular value in the segment register. While the Segment
Register is set to i, the CPU could reference any memory location in physical memory that was
within Segment 1. While the Segment Register is set to i,, the CPU could reference any memory
location in physical memory that was within Segment 2.

Taking the example of n = 16, m = 16, and k = 4, the Logical (CPU) address space would again
be 65536. With segmentation, the physical addresses on the memory address bus can now be 20
bits and support a physical memory address space of 1048576. Now however, the physical
memory space can be divided into a large number of segments, 2™ = 65536 actually, which may
be overlapping. Each segment will be of length 65536. At any one time, the program is operating
in one of the segments. The program switches between the segments by changing the contents of
the Segment Register in the MMU. This process of switching the CPU context takes several

November 2, 2004 -121 -

Aspects of Computer Architecture
Memory Management

instruction times to affect. An enhancement of this approach would be to have two segment
registers in the MMU. One would be used to map addresses of instruction (code). The second
would be used to map addresses of data. This would allow the program to split the code and data
into separate segments. In all cases overhead is required to switch the segment registers from one
to another.

nnnnn
Department of Chemistry
Michigan State University

n bits
j Logical Address (PC)
‘ k bits
m bits
| i | Segment Register (MMU)
(m + K) bits
| h Physical Address

Segmentation
Logical/Physical Address Mapping

Figure 66 Segmentation: Mapping

November 2, 2004 -122 -

Aspects of Computer Architecture
Memory Management

64K

- i
64K

Physical Segment 1 Segment 2

Segmentation (Examples)

Figure 67 Segmentation: Memory Spaces
14.4.4. Paging

This section describes a simplified paging mechanism. In this paging system (See Figure 68, 69,
70), the logical memory space |s divided into 2™ pages (LPy, LP,, ..., LP) of size 2". Physical
memory space is divided into ok pages (PP, PP,, ... , PP) of S|ze 2” (i.e. the same size as
logical pages). The map of the transformatlon of Ioglcal pages into physical pages is contained in
a set of registers called the Page Table that is located in the MMU (See Figure 70). These Page
Table registers are located in the 1/O space of the CPU and their contents are maintained by
system software. Each entry in the Page Table contains a one bit write enable "W" register [W =
0, page is read only. W = 1, page is read/write.] and a k bit physical page number. For example
in Figure 70, logical page LP,, would actually be located on physical page PP..

Thus, to transform (See Figure 68) a given logical address [i:j], the contents of the i'th entry of
the Page Table is concatenated with [j], the offset within the logical page, to form the physical
address [h:]]. If the MMU receives a memory reference to write into a location on a page that is
write protected (W = 0), an exception is declared and the operating system is notified and
appropriate error handling occurs. The memory reference is aborted.

November 2, 2004 -123 -

Aspects of Computer Architecture
Memory Management

nnnnn
Department of Chemistry
Michigan State University

mbits n bits
i] Logical Address (PC)
logical page offset on page
number
k bits n bits
h j Physical Address
physical page number offset on page
Paging
Logical/Physical Address Mapping

Figure 68 Paging: Mapping

The main problem with this paging mechanism is the size of the Page Table that would be
required for modern computer systems. The usual techniques modify the mechanism described

here so that only a portion of the Page Table is maintained in the MMU at any one time. Caching
and other techniques make this possible.

November 2, 2004 -124 -

Aspects of Computer Architecture
Memory Management

November 2, 2004

nnnnn
Department of Chemistry
Michigan State University

LPrq

LPy

LPq

LPo

Logical Space

PPp.2

PP,

PP

PPQ

Physical Space

Paging: Memory Spaces

Figure 69 Paging: Memory Spaces

CEM 924 MEM 14 18-APR-1992

PP,

PP,

PP,

HEBEE

PPy,

PPy

PP¢

PPy

HEHE

PP,

PT,
PT.1
PT, 5
PT, 3

PT3
PTy
PTq1
PTg

Paging: Page Table

Entry for LP,

Entry for LP,_1
Entry for LP,_»
Entry for LP,_3

Entry for LP3
Entry for LP,
Entry for LPq
Entry for LPg

Figure 70 Paging: Page Table

-125 -

Aspects of Computer Architecture
Memory Management

As an example of paging consider the two page program segment shown in Figure 71 where n =
9, making page sizes 512, m = 7 or 128 pages in the logical memory space, k = 11 or 2048 pages
in the physical memory space. The size of the logical memory space is 216 or 65536. The size of
the physical memory space is 200+ K) or 1048576.

A and B are two memory locations within the program (See Figure 71a) and are used to illustrate
details of the translation process that takes place for all memory references. The operating
system in the process of loading the program into memory divides the program into logical pages
(See Figure 71b). Note that locations within a page can be expressed relative to the individual
page. The operating system assigns the program segment space in the logical memory (See
Figure 71c). When the program is actually loaded into memory, the operating system finds the
necessary free space within the physical memory and assigns the logical pages to physical pages
(See Figure 71d) by making the appropriate entries in the Page Table (See Figure 71e). The
actual pages of information can then be loaded into physical memory from the disk file
containing the image of the program segment. Once the loading is complete, execution of the
program segment can begin. Notice that this paging mechanism allows the logical pages to be
distributed arbitrarily through the physical memory space allowing easier mapping for large
collections of processes of different sizes that constantly change.

November 2, 2004 -126 -

Aspects of Computer Architecture
Memory Management

Address of Location A in various Memory Spaces

Memory Space Binary Octal | Decimal Hex
Within Program | 00000000000111011101 | 0000735 477 001DD
Within Page | 00000000000111011101 | 0000735 477 001DD
Logical | 00000001100111011101 | 0014735 6621 019DD
Physical | 11100000001111011101 | 3401735 918493 E03DD
Address of Location B in various Memory Spaces
Memory Space Binary Octal | Decimal Hex
Within Program | 00000000001000110110 | 0000566 1066 00236
Within Page | 00000000000000110110 | 0000066 54 00036
Logical | 00000001110000110110 | 0016066 7222 01C36
Physical | 00001111101000110110 | 0175066 64054 OFA36
November 2, 2004 -127 -

Aspects of Computer Architecture

Memory Management

1] 0000000001111101g = 01755 = 1255 = 007Dy
o | oo0oo0o111000000015 = 34015 = 1793 = 0701y
e. Page Table
B 36y
0
B 236y
A 1DDy
A 1DDy
0
0
a. Program Space b. Individual Pages

PT13
PT12

LP13

LP12

B 12004

A 19DDy

c. Logical Memory

Space

Paging: An Example

PP1793

PP125

B

E03DDy

OFA36y

d. Physical Memory

Space

14.4.5. Virtual Memory

This section describes a simplified virtual memory system that is an extension of the above
paging system. Each entry in the Page Table now contains three one bit registers (R, M, W) and
a k bit physical page number register. The R register indicates whether the page is resident in

Figure 71 Paging: An Example

physical memory. The M register indicates if the resident page has been modified while in

physical memory. The W register indicates, as before, whether the page is to be written into by

the program or not.

For each memory reference the following process is followed to map a logical address into a

physical address.

1. Find the entry for the logical page in the Page Table.

2. If page is resident, form the physical address and place on the memory address

bus.

November 2, 2004

-128 -

Aspects of Computer Architecture
Memory Management

rRImlw PP, PT, Entry for LP,

RImIw PPy PT, 1 Entry for LP,_1

rImlw PPy PT, Entry for LP,_»

rImlw PP, PT, 3 Entry for LP,_3

I I

l |

l |

I I

I I

| I

|

RIM|W PPy PT3 Entry for LP3

RIM|W PP PTy Entry for LP;

RIM|W PPy PTy Entry for LPq

RIM|wW PP4 PTo Entry for LPg
Virtual Memory (Page Table)

Figure 72 Virtual Memory: Page Table

3. If page is not resident, then do a Page Fault.

3.1

3.2.

November 2, 2004

If there is an empty entry in the Page Table indicating a free page of
memory, assign the new logical page to the free physical page and make
the appropriate entry in the Page Table.

3.1.1. Read the requested logical page from disk into the reclaimed
physical page.

3.1.2. Form the physical address and place on the memory access bus.

If there is not an empty entry in the Page Table, indicating a free page of
memory, do the following

3.2.1. Decide which physical page can be reclaimed.

3.2.2. If the physical page that is to be reclaimed has been modified,
write the physical page into the corresponding logical page on
disk.

3.2.3. Read the requested logical page from disk into the reclaimed
physical page.

3.2.4. Form the physical address and place on the memory access bus.

-129 -

Aspects of Computer Architecture
Memory Management

CEM 924 MEM 15a 20-APR-1992

D Write D, E Write E, F Write F, D
Read E Read F Read D
[oy
A £lo to/from toffrom to/from
>lo
P Page Fle Page Fle Page Hle
(%]
— 2 > > Tae g
| |
[c.
F
g |Read/Write Write D, E Write E, E = Write F, D
Data Read E Read F Read B Read D
% c to/ffrom to/from from Page to/from
T g8 D Page File Page File File Page File
b o2 > > >
k = o \ Read only
d £l
3|© Data
ode .
Write D E Write E, E
4 Read E Read F ‘
| | to/from toffrom Physical Memory Space
| | Page File Page File
g g
Virtual Memory
(Disk)
Virtual Memory: An Example

Figure 73 Virtual Memory: An Example

Figure 73 illustrates a simple program in a virtual memory system. The program consists of 6
pages of memory, labeled A, B ..., F and. In this example, Page A contains code that loads an
experimental spectrum into a data array that is contained in pages D, E, and F. The code in page
A also steps through the data correcting the data using constants stored in page C. Page B
contains programming that outputs the corrected spectrum to an output data file. In this example,
the process is allowed three pages of physical memory, the working set. The execution of the
program is as follows.

1. Page A is loaded and requests C and then begins trying to load the data, causing
D to be loaded into the working set. Once D is loaded, the program in page A
begins trying to load into page E. This causes a page fault.

2. The program in page A loads data into page E. Once E is loaded, the program in
page A begins trying to load into page F. This causes a page fault.

3. The program in page A begins to branch to the program in page B. This causes a
page fault.

November 2, 2004 -130 -

Aspects of Computer Architecture
Memory Management

10.

The program in page B begins to process data on page D. This causes a page
fault.

The program in page B processes the data on page D and then begins to process
data on page E. This causes a page fault.

The program in page B processes the data on page E and then begins to process
data on page F. This causes a page fault.

The program in page B processes the data on page F and then begins to write the
data on page D to the output file. This causes a page fault.

The program in page B writes the data on page D to the output file and then
begins to write the data on page E to the output file. This causes a page fault.

The program in page B writes the data on page E to the output file and then
begins to write the data on page F to the output file. This causes a page fault.

The program in page B writes the data on page F to the output file.

14.4.5.1. Common Sections of memory

In multitasking operating systems, when more than one task has read only sections of data
and/or code that are exactly like those of another task that is resident, it is possible for both(or
more) tasks to share one copy of these sections rather than each task demanding a copy. This
will, of course, save memory and perhaps the time needed to load the extra copies of the shared
information into memory. A typical example of this is a run time library of standard math
subroutines for languages like FORTRAN, C, BASIC, etc. This technique is made possible by

paging.

November 2, 2004 -131 -

Aspects of Computer Architecture
Memory Management

November 2, 2004

CEM 924 MEM 16 14-APR-1992
TV Atk

Common
Common
Common P3S3
P1S, P3Sy
P2S1
P3S1
P1S1
Program 1 Program 2 Program 3

Common Sections of Memory

P1S2

P3S3

P3S2

P2S1

Common

P1S1

P3S1

Physical
Memory

Figure 74 Common Sections

-132 -

Aspects of Computer Architecture
Value of a Particular Computing Environment

14.4.6. Memory Protection

Device Reg
Uu2D1la
Page registers loaded UlD2
for these pages only.
Uilp2
uz2bD2
u2p2
U2D1b
U2D1b
Uu2D1la
U2pP1
U2pP1
uibD1
Logical
(Program's UlP1
view)
System
Data
Memory Protection
Physical

Figure 75 Memory Protection

15. Value of a Particular Computing Environment

1. Functionality

2. Compatibility with existing facilities
3. Performance

4. Cost to acquire

5. Cost to own

6. Reliability

7. Expandability

November 2, 2004 -133 -

Aspects of Computer Architecture
Measurement of Performance
8. Ability to be Upgraded
9. Convenience
16. Measurement of Performance

A benchmark is typically a particular program with a given set of input data that is run in a given
computer environment to measure the performance of that environment by comparing the results
to those of other machines and environments. Generally trying to answer the questions:

1. Which computer or operating system or software should | buy?

2. What were the results of trying to improve a given environment with a given set
of software or hardware changes?

16.1. Benchmarks

The following methods of determining the performance of a computing system is listed in the
order of increasing desirability.

1. CPU Clock Speed (almost useless except when comparing examples of same
architecture)

2. Instruction times: MIPS, MFLOPS, 1/O rates, Graphic drawing rates, ...

3. Standard single job benchmark: Linpack, Whetstone, Dhrystone, Livermoore
Loops, Specmark, ...

4, Your single job benchmark

5. Multiple standard jobs running simultaneously

6. Your mix of your jobs running in your environment

7. History of your system over an extended length of time

17. CISC vs RISC
Performance versus Memory

17.1. Main Attributes of RISC

1. Reduce the number of Instructions
2. Load and Store only Memory reference Instructions
3. ALU instructions occur in 1 CPU clock cycle

November 2, 2004 -134 -

Aspects of Computer Architecture

CISC vs RISC
4, Cache !
5. Pipelines !!
6. Lots of registers

November 2, 2004 -135 -

