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1.  Introduction  

1.1.  Why should Chemists care about this mateial?  

1. Typically, the chemistry professionals will encounter many different computer 
environments during their careers.  
2. We (want to, need to, have to) use computers to do our work and have fun.  

1.2.  How can we characterize the people who use computers?  

1.2.1.  By the Type of Use  

1. Application user  
2. Operator  
3. System manager  
4. Application programmer  
5. System programmer  
6. Hardware developer  
7. Software maintainer  
8. Hardware maintainer  
9. Hardware and software documentor  
10. User support  

1.2.2.  By frequency of use of a particular program or facility  

1. Occasional  
2. Frequent  

1.2.3.  By level of expertise for a given program or facility  

1. Novice  
2. Versed  
3. Expert/wizard/guru  
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2.  Number Systems 

An integer is represented in our system of writing by a string of symbols, digits, ( di) from the 
set {0, 1, 2, …  b-1} as shown below where "b" is the base of the representation.  

number b⇒ −n nd d d d d1 2 1 0L  

Numerically, the above notation represents the following sum.  

number = ⋅
=
∑ d bi

i

i

n

0

 

As an example, the following are different representations of the same number. 

number = = = =10100011101100102 1216628 4190610 3 216A B  

Fractional numbers can also be represented.  

number ⇒ − − − + −1 2 1d d d dm mL  

∑
−

−=

=
m

i

i
ibd

1
number  

The following are different representations of the same numbers. 

number

number

number C

= = = =

= = = =

= = = =

0 12 0 48 0 510 0 816
0 012 0 28 0 2510 0 416
0 112 0 78 0 7510 0 16

. . . .

. . . .

. . . .

 

The general notation is as follows where "s" is the sign of the number and may be though of as 
being either +1 or -1.  

number ⇒ − − − + −2 1 0 1 2 1sd d d d d d dm m. L  

number s d bi
i

i n

m

= ⋅ ⋅
=

−

∑  

Scientific notation can be generalized as follows. In the following "sm" is the sign of the 
mantissa, "se" is the sign of the exponent, and "B" is a symbol characteristic of the base.  

number ⇒ − − − + − −2 1 0 1 2 1 1 2 1 0sd d d d d d d Bs e e e e em m e n n. L L  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑ ⋅⋅⋅⎟
⎠
⎞⎜

⎝
⎛ ∑ ⋅⋅=

=−=
b besbdsnumber

n

j

j
je

n
i

im
mi 0
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2.1.  Range of Numbers 

A given modulus, b, and a fixed number, n, of digits can express bn numbers that range from 0 to 
bn - 1. For example, in base 10, 5 digits can represent 100000 numbers from 0 to 99999. For 
base 2, 16 digits can represent 65536 (216) numbers from 0 to 65535.  

2.2.  Converting Between Different Moduli 

Conversion of a number from one power of two modulus to another power of two modulus is 
fairly simple and very useful. The following discussion will assume unsigned integers that can 
be expressed in 16 binary digits (bits). 

number b b b b b b b b b b b b b b b b⇒ 15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0  

number b b b b b b b b

b b b b b b b b

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
15

15
14

14
13

13
12

12
11

11
10

10
9

9
8

8

7
7

6
6

5
5

4
4

3
3

2
2

1
1

0
0

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
 

2.2.1.  Binary to/from Hexadecimal 

Notice that the terms can be grouped in subsets of 4 as follows. 

( ) ( )
( ) ( )0

0
1

1
2

2
3

3
4

4
5

5
6

6
7

7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

22222222

22222222

⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

bbbbbbbb

bbbbbbbbnumber
 

Various powers of two can be factored out of the individual groups of 4 terms. 

( ) ( )
( ) ( )0

0
1

1
2

2
3

3
40

4
1

5
2

6
3

7

80
8

1
9

2
10

3
11

120
12

1
13

2
14

3
15

222222222

2222222222

⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅=

bbbbbbbb

bbbbbbbbnumber
 

Realizing that 24 = 16, the above can be transformed as follows. 

( ) ( )
( ) ( ) 00

0
1

1
2

2
3

3
10

4
1

5
2

6
3

7

20
8

1
9

2
10

3
11

30
12

1
13

2
14

3
15

162222162222

162222162222

⋅⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅=

bbbbbbbb

bbbbbbbbnumber
 

The traditional decimal number system (base = 10) has the ten symbols (0, 1, 2, 3,4, 5, 6, 
7, 8, 9). The hexadecimal system (base = 16) does not have a corresponding traditional 
set of 16 symbols. The set (0, 1, 2, 3,4, 5, 6, 7, 8, 9,A ,B, C, D, E, F) has been adopted. 
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Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 5

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

10000 10 16

The factors of the powers of 16 can be replaced with the symbols hi 

number h h h h= ⋅ + ⋅ + ⋅ + ⋅3
3

2
2

1
1

0
016 16 16 16  

number ⇒ 3 2 1 0h h h h  

Thus, the binary number has been converted to the corresponding hexadecimal number with out 
any excessive arithmetic. Conversion of a hexadecimal number to the corresponding binary 
number is the inverse process. 
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As an example the following binary number will be converted to hexadecimal. First, the binary 
number is grouped into sets of 4 bits. 

number

number

=

=

0001000010101011000111002
0001 0000 1010 1011 0001 11002

 

Then, each set of four bits is replaced with the corresponding hexadecimal symbol. The number 
can then be regrouped. 

number

number

=

=

1 0 1 16
10 1 16

A B C

AB C
 

As a second example the following hexadecimal number will be converted to binary. 

number

number

=

=

C

C

73016
7 3 016

 

Each hexadecimal symbol is then replaced with the corresponding set of four binary bits. The 
number can then be regrouped. 

number

number

=

=

1100 0111 0011 00002
11000111001100002

 

2.2.2.  Binary to/from Octal 

In this case the terms in the binary representation are grouped into groups of three terms. 

( ) ( )
( ) ( )
( ) ( )0

0
1

1
2

2
3

3
4

4
5

5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

1617

222222

222222

22222020

⋅+⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+⋅=

bbbbbb

bbbbbb

bbbbnumber

 

Now factor the appropriate power of two out of each group. 

( ) ( )
( ) ( )
( ) ( ) 00

0
1

1
2

2
30

3
1

4
2

5

60
6

1
7

2
8

90
9

1
10

2
11

120
12

1
13

2
14

150
15

12

22222222

22222222

2222222020

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅=

bbbbbb

bbbbbb

bbbbnumber

 

Given that 23 = 8, the following transformation is made. 
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( ) ( )
( ) ( )
( ) ( ) 00

0
1

1
2

2
10

3
1

4
2

5

20
6

1
7

2
8

30
9

1
10

2
11

40
12

1
13

2
14

50
15

12

82228222

82228222

8222822020

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅+

⋅⋅+⋅+⋅+⋅⋅+⋅+⋅=

bbbbbb

bbbbbb

bbbbnumber

 

The coefficients of the powers of 8 can be replaced by the octal symbols defined below. 

 

Binary Octal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 5

0101 5 5

0110 6 6

0111 7 7

1000 10 8

 

number = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅o o o o o o5
5

4
4

3
3

2
2

1
1

0
08 8 8 8 8 8  

number ⇒ 4 3 2 1 0o o o o o  

As an example the following binary number will be converted to octal. First, the binary number 
is grouped into sets of three bits. 

number

number

=

=

0001000010101011000111002
000 100 001 010 101 100 011 1002

 

Then each set of three bits is replaced with the corresponding octal symbol. The number can then 
be regrouped. 
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number

number

=

=

0 4 1 2 5 4 3 48
041254348

 

The inverse operation will serve as a second example. The following octal number will be 
converted to binary. Begin by separating the octal symbols. 

80 6 4 3 4 1number
8143460number

=

=
 

Each octal symbol is then replaced with the corresponding set of three binary bits. The number 
can then be regrouped. 

number

number

=

=

001 100 011 100 110 0002
11000111001100002

 

2.3.  Signed Integers 

A set of n binary bits, bn-1, bn-2, …, b1, b0, may also be used to represent a signed integer. Three 
different representations have been used. 

2.3.1.  Sign/Magnitude 

This representation uses one bit to represent the sign of the number. The most significant bit is 
used for the sign bit. bs =  bn-1 = 0 for a positive number. bs = bn-1 = 1 for a negative number. The 
absolute value of the number is placed in the remaining bits as an unsigned integer. 
 
Examples, using 16 bit numbers: 
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Signed  Sign/Magnitude Representation  
Number Binary Oct Dec Hex

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10001 32769 8001 

32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 77777 32767 7FFF 

-32767 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 177777 65535 FFFF 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 0000 

2.3.2.  One's Complement 

This representation again uses the most significant bit to represent the sign of the number. bn-1 =  
bs = 0 for a positive number. bn-1 = bs = 1 for a negative number. The absolute value of the 
number to be represented has to be less than 2 n-1 - 1. Convert the absolute value of the number 
to a binary number of n bits. Since the number is less than 2 n-1 - 1, the sign bit, bs = bn-1, will be 
zero. If the number being converted is negative, invert all n bits. Notice that the sign bit will be 
appropriate. 

As an example convert the number 6010 to one's complement. 

0000 0000 0011 11002 = 6010 = 3C16 Convert absolute 
value to binary. 

     Finished. 

Now convert -6010 to one's complement. 

0000 0000 0011 11002 = 6010 = 3C16 Convert absolute 
value to binary. 

1111 1111 1100 00112 = 6547510 = FFC316 Invert all bits. 
Done 

Further examples, using 16 bit numbers: 
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Signed  One's Complement Representation  
Number Binary Oct Dec Hex

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 000001 1 0001 

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 177776 65534 FFFE 

32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 077777 32767 7FFF 

-32767 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100000 32768 8000 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 0000 

-0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 177777 65535 FFFF 

 

2.3.3.  Two's Complement 

This representation again uses the most significant bit to represent the sign of the number. bs =  
bn-1 = 0 for a positive number. bs = bn-1 = 1 for a negative number. Again, the absolute value of 
the number to be represented has to be less than 2 n-1 - 1. Convert the absolute value of the 
number to a binary number of n bits. Since the number is less than 2 n-1 - 1, the sign bit, bs = bn-1, 
will be zero. If the number being converted is negative, invert all n bits. Then add one to the 
resultant. Notice that the sign bit will be appropriate. This representation avoids the problem of 
+0 and -0 of the one's complement representation. This is now the typical representation used. 

As an example convert the number 6010 to two's complement. 

0000 0000 0011 11002 = 6010 = 3C16 Convert absolute 
value to binary. 

     Finished. 

Now convert -6010 to two's complement. 

0000 0000 0011 11002 = 6010 = 3C16 Convert absolute 
value to binary. 

1111 1111 1100 00112 = 6547510 = FFC316 Invert all bits. 

12     Add one. 

      

1111 1111 1100 01002 = 6547610 = FFC416 Done. 
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Further examples, using 16 bit numbers: 
 

Signed  Two's Complement  
Number Binary Oct Dec Hex

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 177777 65535 FFFF 

32766 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 77776 32766 7FFE 

32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 77777 32767 7FFF 

-32766 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 100002 32770 8002 

-32767 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 100001 32769 8001 

-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100000 32768 8000 

 
At this point, a few simple aritmetic examples might be useful. These examples use two's 
complement arithmetic. First there is the binary addition table for adding two binary single bit 
numbers (A + B). Multiple bit additions are performed bit by bit with the adding in of any carry 
from the previous position 
  

A B A+B Carry 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

Add the binary equivalents of -6010 and +6010. 

1 1111 1111 1111 100 2      Carry 

0000 0000 0011 11002 = 6010 = 3C16  First number 

1111 1111 1100 01002 = -6010 = FFC416  Second number 

0000 0000 0000 00002  010  016  Sum 
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2.4.  Floating Point Numbers 

This section summarizes the formats of several of the data types supported by Intel.1 The value 
of a floating point number is given by the following 
 

( ) ( )FBiasES −−= 21number  
 
where “S” is the sign bit, “E” is the exponent, “F” is the fractional mantissa, and “BIAS” is an 
integer that varies with representation and is listed below for these particular representations. 
 

 
 

                                                 
1 “Microprocessors,” page 4-509, Intel Corporation, Literature Sales, PO Box 7641, Mt. Prospect IL 60056-7641, 
1990. 
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Figure 1  Intel Number Representations  
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Table 1  Number Formats  

Data Type Bits Significant 
Digits 

Range 

Word Integer 16 4 -32768 ≤ X ≤ 32767 

Short Integer 32 9 -2x109 ≤ X ≤ 2 x109 

Long Integer 64 18 -9x1018 ≤ X ≤ 9 x1018 

Single Precision 32 6-7 8.43x10-37 ≤ ⏐X⏐ ≤ 3.37 x1038 

Double Precision 64 15-16 4.19x10-307 ≤ ⏐X⏐ ≤ 1.67 x10308 

Extended Precision 80 19 3.4x10-4932 ≤ ⏐X⏐ ≤ 1.2 x104932 
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Figure 2  Intel Floating Point Storage  
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Table 2  Symbol Definitions  

Symbol Description 

A Base address of the stored number 

S Sign of the number (0 = positive, 1 = negative) 

MSB Most Significant Bit of integer 

LSB Least Significant Bit of Integer 

MSF Most Significant Bit of fraction 

LSF Least Significant Bit of fraction 

MSE Most Significant Bit of the exponent 

LSE Least Significant Bit of the exponent 

Bias Single 127 (7F16) 

 Double 1023 (3FF16) 

 Extended 16383 (3FFF16) 
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2.5.  Useful Tables of Numbers 

2.5.1.  Powers of Two 

Table 3  Powers of 2  
n DEC OCT HEX Common Name 

0 1 1 1  

1 2 2 2  

2 4 4 4  

3 8 10 8  

4 16 20 10  

5 32 40 20  

6 64 100 40  

7 128 200 80  

8 256 400 100  

9 512 1000 200  

10 1024 2000 400 1K 

11 2048 4000 800 2K 

12 4096 10000 1000 4K 

13 8192 20000 2000 8K 

14 16384 40000 4000 16K 

15 32768 100000 8000 32K 

16 65536 200000 10000 64K 

17 131072 400000 20000 128K 

18 262144 1000000 40000 256K 

19 524288 2000000 80000 512K 

20 1048576 4000000 100000 1M or 1Meg 

21 2097152 1000000 200000 2M or 2Meg 

22 4194304 20000000 400000 4M or 4Meg 

23 8388608 40000000 800000 8M or 8Meg 

24 16777216 100000000 1000000 16M or 16Meg 

25 33554432 200000000 2000000 32M or 32Meg 

26 67108864 400000000 4000000 64M or 64Meg 

27 134217728 1000000000 8000000 128M or 128Meg 

28 268435456 2000000000 10000000 256M or 256Meg 

29 536870912 4000000000 20000000 512M or 512Meg 

30 1073741824 10000000000 40000000 1G or 1Gig 

31 2147483648 20000000000 80000000 2G or 2Gig 

32 4294967296 40000000000 100000000 4G or 4Gig 
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The above table contains the values of the first 32 powers of 2 expressed in base 10 (decimal or 
DEC), base 8 (octal or Oct), and base 16 (hexadecimal or Hex). The right most column of the 
table contains the common names often given to the corresponding quantities. This nomenclature 
is an artifact of the computer industry which early on chose to use the short hand name “one K” 
to represent the much longer and more appropriate name “One thousand twenty four,” etc. 

Table 4  Counting in Different Moduli 

DEC Binary OCT HEX Items being counted  

0 0000000000000000 0 0  

1 0000000000000001 1 1 *  

2 0000000000000010 2 2 **  

3 0000000000000011 3 3 ***  

4 0000000000000100 4 4 ****  

5 0000000000000101 5 5 *****  

6 0000000000000110 6 6 ******  

7 0000000000000111 7 7 *******  

8 0000000000001000 10 8 ********  

9 0000000000001001 11 9 *********  

10 0000000000001010 12 A **********  

11 0000000000001011 13 B ***********  

12 0000000000001100 14 C ************  

13 0000000000001101 15 D *************  

14 0000000000001110 16 E **************  

15 0000000000001111 17 F ***************  

16 0000000000010000 20 10 ****************  

17 0000000000010001 21 11 *****************  

18 0000000000010010 22 12 ******************  

19 0000000000010011 23 13 *******************  

20 0000000000010100 24 14 ********************  

21 0000000000010101 25 15 *********************  

22 0000000000010110 26 16 **********************  

23 0000000000010111 27 17 ***********************  

24 0000000000011000 30 18 ************************  

25 0000000000011001 31 19 *************************  

26 0000000000011010 32 1A **************************  

27 0000000000011011 33 1B ***************************  

28 0000000000011100 34 1C ****************************  

29 0000000000011101 35 1D *****************************  

30 0000000000011110 36 1E ******************************  

31 0000000000011111 37 1F *******************************  

32 0000000000100000 40 20 ********************************  

33 0000000000100001 41 21 *********************************  
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Table 5  0 to 65536 in Multiple Moduli 

DEC BIN BIN OCT BIN HEX DEC 
0 0000000000000000 0 000 000 000 000 000 0 0000 0000 0000 0000 0 0 
1 0000000000000001 0 000 000 000 000 001 1 0000 0000 0000 0001 1 1 
2 0000000000000010 0 000 000 000 000 010 2 0000 0000 0000 0010 2 2 
3 0000000000000011 0 000 000 000 000 011 3 0000 0000 0000 0011 3 3 
4 0000000000000100 0 000 000 000 000 100 4 0000 0000 0000 0100 4 4 
5 0000000000000101 0 000 000 000 000 101 5 0000 0000 0000 0101 5 5 
6 0000000000000110 0 000 000 000 000 110 6 0000 0000 0000 0110 6 6 
7 0000000000000111 0 000 000 000 000 111 7 0000 0000 0000 0111 7 7 
8 0000000000001000 0 000 000 000 001 000 10 0000 0000 0000 1000 8 8 
9 0000000000001001 0 000 000 000 001 001 11 0000 0000 0000 1001 9 9 

10 0000000000001010 0 000 000 000 001 010 12 0000 0000 0000 1010 A 10 
11 0000000000001011 0 000 000 000 001 011 13 0000 0000 0000 1011 B 11 
12 0000000000001100 0 000 000 000 001 100 14 0000 0000 0000 1100 C 12 
13 0000000000001101 0 000 000 000 001 101 15 0000 0000 0000 1101 D 13 
14 0000000000001110 0 000 000 000 001 110 16 0000 0000 0000 1110 E 14 
15 0000000000001111 0 000 000 000 001 111 17 0000 0000 0000 1111 F 15 
16 0000000000010000 0 000 000 000 010 000 20 0000 0000 0001 0000 10 16 
17 0000000000010001 0 000 000 000 010 001 21 0000 0000 0001 0001 11 17 
18 0000000000010010 0 000 000 000 010 010 22 0000 0000 0001 0010 12 18 
19 0000000000010011 0 000 000 000 010 011 23 0000 0000 0001 0011 13 19 
20 0000000000010100 0 000 000 000 010 100 24 0000 0000 0001 0100 14 20 
21 0000000000010101 0 000 000 000 010 101 25 0000 0000 0001 0101 15 21 
22 0000000000010110 0 000 000 000 010 110 26 0000 0000 0001 0110 16 22 
23 0000000000010111 0 000 000 000 010 111 27 0000 0000 0001 0111 17 23 
24 0000000000011000 0 000 000 000 011 000 30 0000 0000 0001 1000 18 24 
25 0000000000011001 0 000 000 000 011 001 31 0000 0000 0001 1001 19 25 
26 0000000000011010 0 000 000 000 011 010 32 0000 0000 0001 1010 1A 26 
27 0000000000011011 0 000 000 000 011 011 33 0000 0000 0001 1011 1B 27 
28 0000000000011100 0 000 000 000 011 100 34 0000 0000 0001 1100 1C 28 
29 0000000000011101 0 000 000 000 011 101 35 0000 0000 0001 1101 1D 29 
30 0000000000011110 0 000 000 000 011 110 36 0000 0000 0001 1110 1E 30 
31 0000000000011111 0 000 000 000 011 111 37 0000 0000 0001 1111 1F 31 
32 0000000000100000 0 000 000 000 100 000 40 0000 0000 0010 0000 20 32 
33 0000000000100001 0 000 000 000 100 001 41 0000 0000 0010 0001 21 33 
34 0000000000100010 0 000 000 000 100 010 42 0000 0000 0010 0010 22 34 
35 0000000000100011 0 000 000 000 100 011 43 0000 0000 0010 0011 23 35 
36 0000000000100100 0 000 000 000 100 100 44 0000 0000 0010 0100 24 36 
37 0000000000100101 0 000 000 000 100 101 45 0000 0000 0010 0101 25 37 
38 0000000000100110 0 000 000 000 100 110 46 0000 0000 0010 0110 26 38 
39 0000000000100111 0 000 000 000 100 111 47 0000 0000 0010 0111 27 39 
40 0000000000101000 0 000 000 000 101 000 50 0000 0000 0010 1000 28 40 
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DEC BIN BIN OCT BIN HEX DEC 
41 0000000000101001 0 000 000 000 101 001 51 0000 0000 0010 1001 29 41 
42 0000000000101010 0 000 000 000 101 010 52 0000 0000 0010 1010 2A 42 
43 0000000000101011 0 000 000 000 101 011 53 0000 0000 0010 1011 2B 43 
44 0000000000101100 0 000 000 000 101 100 54 0000 0000 0010 1100 2C 44 
45 0000000000101101 0 000 000 000 101 101 55 0000 0000 0010 1101 2D 45 
46 0000000000101110 0 000 000 000 101 110 56 0000 0000 0010 1110 2E 46 
47 0000000000101111 0 000 000 000 101 111 57 0000 0000 0010 1111 2F 47 
48 0000000000110000 0 000 000 000 110 000 60 0000 0000 0011 0000 30 48 
49 0000000000110001 0 000 000 000 110 001 61 0000 0000 0011 0001 31 49 
50 0000000000110010 0 000 000 000 110 010 62 0000 0000 0011 0010 32 50 
51 0000000000110011 0 000 000 000 110 011 63 0000 0000 0011 0011 33 51 
52 0000000000110100 0 000 000 000 110 100 64 0000 0000 0011 0100 34 52 
53 0000000000110101 0 000 000 000 110 101 65 0000 0000 0011 0101 35 53 
54 0000000000110110 0 000 000 000 110 110 66 0000 0000 0011 0110 36 54 
55 0000000000110111 0 000 000 000 110 111 67 0000 0000 0011 0111 37 55 
56 0000000000111000 0 000 000 000 111 000 70 0000 0000 0011 1000 38 56 
57 0000000000111001 0 000 000 000 111 001 71 0000 0000 0011 1001 39 57 
58 0000000000111010 0 000 000 000 111 010 72 0000 0000 0011 1010 3A 58 
59 0000000000111011 0 000 000 000 111 011 73 0000 0000 0011 1011 3B 59 
60 0000000000111100 0 000 000 000 111 100 74 0000 0000 0011 1100 3C 60 
61 0000000000111101 0 000 000 000 111 101 75 0000 0000 0011 1101 3D 61 
62 0000000000111110 0 000 000 000 111 110 76 0000 0000 0011 1110 3E 62 
63 0000000000111111 0 000 000 000 111 111 77 0000 0000 0011 1111 3F 63 
64 0000000001000000 0 000 000 001 000 000 100 0000 0000 0100 0000 40 64 
65 0000000001000001 0 000 000 001 000 001 101 0000 0000 0100 0001 41 65 
66 0000000001000010 0 000 000 001 000 010 102 0000 0000 0100 0010 42 66 
67 0000000001000011 0 000 000 001 000 011 103 0000 0000 0100 0011 43 67 
68 0000000001000100 0 000 000 001 000 100 104 0000 0000 0100 0100 44 68 
69 0000000001000101 0 000 000 001 000 101 105 0000 0000 0100 0101 45 69 
70 0000000001000110 0 000 000 001 000 110 106 0000 0000 0100 0110 46 70 
71 0000000001000111 0 000 000 001 000 111 107 0000 0000 0100 0111 47 71 
72 0000000001001000 0 000 000 001 001 000 110 0000 0000 0100 1000 48 72 
73 0000000001001001 0 000 000 001 001 001 111 0000 0000 0100 1001 49 73 
74 0000000001001010 0 000 000 001 001 010 112 0000 0000 0100 1010 4A 74 
75 0000000001001011 0 000 000 001 001 011 113 0000 0000 0100 1011 4B 75 
76 0000000001001100 0 000 000 001 001 100 114 0000 0000 0100 1100 4C 76 
77 0000000001001101 0 000 000 001 001 101 115 0000 0000 0100 1101 4D 77 
78 0000000001001110 0 000 000 001 001 110 116 0000 0000 0100 1110 4E 78 
79 0000000001001111 0 000 000 001 001 111 117 0000 0000 0100 1111 4F 79 
80 0000000001010000 0 000 000 001 010 000 120 0000 0000 0101 0000 50 80 
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DEC BIN BIN OCT BIN HEX DEC 
81 0000000001010001 0 000 000 001 010 001 121 0000 0000 0101 0001 51 81 
82 0000000001010010 0 000 000 001 010 010 122 0000 0000 0101 0010 52 82 
83 0000000001010011 0 000 000 001 010 011 123 0000 0000 0101 0011 53 83 
84 0000000001010100 0 000 000 001 010 100 124 0000 0000 0101 0100 54 84 
85 0000000001010101 0 000 000 001 010 101 125 0000 0000 0101 0101 55 85 
86 0000000001010110 0 000 000 001 010 110 126 0000 0000 0101 0110 56 86 
87 0000000001010111 0 000 000 001 010 111 127 0000 0000 0101 0111 57 87 
88 0000000001011000 0 000 000 001 011 000 130 0000 0000 0101 1000 58 88 
89 0000000001011001 0 000 000 001 011 001 131 0000 0000 0101 1001 59 89 
90 0000000001011010 0 000 000 001 011 010 132 0000 0000 0101 1010 5A 90 
91 0000000001011011 0 000 000 001 011 011 133 0000 0000 0101 1011 5B 91 
92 0000000001011100 0 000 000 001 011 100 134 0000 0000 0101 1100 5C 92 
93 0000000001011101 0 000 000 001 011 101 135 0000 0000 0101 1101 5D 93 
94 0000000001011110 0 000 000 001 011 110 136 0000 0000 0101 1110 5E 94 
95 0000000001011111 0 000 000 001 011 111 137 0000 0000 0101 1111 5F 95 
96 0000000001100000 0 000 000 001 100 000 140 0000 0000 0110 0000 60 96 
97 0000000001100001 0 000 000 001 100 001 141 0000 0000 0110 0001 61 97 
98 0000000001100010 0 000 000 001 100 010 142 0000 0000 0110 0010 62 98 
99 0000000001100011 0 000 000 001 100 011 143 0000 0000 0110 0011 63 99 

100 0000000001100100 0 000 000 001 100 100 144 0000 0000 0110 0100 64 100 
101 0000000001100101 0 000 000 001 100 101 145 0000 0000 0110 0101 65 101 
102 0000000001100110 0 000 000 001 100 110 146 0000 0000 0110 0110 66 102 
103 0000000001100111 0 000 000 001 100 111 147 0000 0000 0110 0111 67 103 
104 0000000001101000 0 000 000 001 101 000 150 0000 0000 0110 1000 68 104 
105 0000000001101001 0 000 000 001 101 001 151 0000 0000 0110 1001 69 105 
106 0000000001101010 0 000 000 001 101 010 152 0000 0000 0110 1010 6A 106 
107 0000000001101011 0 000 000 001 101 011 153 0000 0000 0110 1011 6B 107 
108 0000000001101100 0 000 000 001 101 100 154 0000 0000 0110 1100 6C 108 
109 0000000001101101 0 000 000 001 101 101 155 0000 0000 0110 1101 6D 109 
110 0000000001101110 0 000 000 001 101 110 156 0000 0000 0110 1110 6E 110 
111 0000000001101111 0 000 000 001 101 111 157 0000 0000 0110 1111 6F 111 
112 0000000001110000 0 000 000 001 110 000 160 0000 0000 0111 0000 70 112 
113 0000000001110001 0 000 000 001 110 001 161 0000 0000 0111 0001 71 113 
114 0000000001110010 0 000 000 001 110 010 162 0000 0000 0111 0010 72 114 
115 0000000001110011 0 000 000 001 110 011 163 0000 0000 0111 0011 73 115 
116 0000000001110100 0 000 000 001 110 100 164 0000 0000 0111 0100 74 116 
117 0000000001110101 0 000 000 001 110 101 165 0000 0000 0111 0101 75 117 
118 0000000001110110 0 000 000 001 110 110 166 0000 0000 0111 0110 76 118 
119 0000000001110111 0 000 000 001 110 111 167 0000 0000 0111 0111 77 119 
120 0000000001111000 0 000 000 001 111 000 170 0000 0000 0111 1000 78 120 
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DEC BIN BIN OCT BIN HEX DEC 
121 0000000001111001 0 000 000 001 111 001 171 0000 0000 0111 1001 79 121 
122 0000000001111010 0 000 000 001 111 010 172 0000 0000 0111 1010 7A 122 
123 0000000001111011 0 000 000 001 111 011 173 0000 0000 0111 1011 7B 123 
124 0000000001111100 0 000 000 001 111 100 174 0000 0000 0111 1100 7C 124 
125 0000000001111101 0 000 000 001 111 101 175 0000 0000 0111 1101 7D 125 
126 0000000001111110 0 000 000 001 111 110 176 0000 0000 0111 1110 7E 126 
127 0000000001111111 0 000 000 001 111 111 177 0000 0000 0111 1111 7F 127 
128 0000000010000000 0 000 000 010 000 000 200 0000 0000 1000 0000 80 128 
129 0000000010000001 0 000 000 010 000 001 201 0000 0000 1000 0001 81 129 
130 0000000010000010 0 000 000 010 000 010 202 0000 0000 1000 0010 82 130 

65530 1111111111111010 1 111 111 111 111 010 177772 1111 1111 1111 1010 FFFA 65530
65531 1111111111111011 1 111 111 111 111 011 177773 1111 1111 1111 1011 FFFB 65531
65532 1111111111111100 1 111 111 111 111 100 177774 1111 1111 1111 1100 FFFC 65532
65533 1111111111111101 1 111 111 111 111 101 177775 1111 1111 1111 1101 FFFD 65533 
65534 1111111111111110 1 111 111 111 111 110 177776 1111 1111 1111 1110 FFFE 65534 
65535 1111111111111111 1 111 111 111 111 111 177777 1111 1111 1111 1111 FFFF 65535 
65536 0000000000000000 0 000 000 000 000 000 0 0000 0000 0000 0000 0 65536 
65537 0000000000000001 0 000 000 000 000 001 1 0000 0000 0000 0001 1 65537 
65538 0000000000000010 0 000 000 000 000 010 2 0000 0000 0000 0010 2 65538 
65539 0000000000000011 0 000 000 000 000 011 3 0000 0000 0000 0011 3 65539 
65540 0000000000000100 0 000 000 000 000 100 4 0000 0000 0000 0100 4 65540 
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3.  Character Codes 

3.1.  Six Bit Character Codes 

These codes were used in the early days of computing when memory and bandwidth was 
very expensive. Notice that there are only upper case characters. 
 

Table 6  Six Bit Character Codes 

Char Octal Dec Hex Char Octal Dec Hex 

@ 0 0 0 space 40 32 20

A 1 1 1 ! 41 33 21

B 2 2 2 " 42 34 22

C 3 3 3 # 43 35 23

D 4 4 4 $ 44 36 24

E 5 5 5 % 45 37 25

F 6 6 6 & 46 38 26

G 7 7 7 ' 47 39 27

H 10 8 8 ( 50 40 28

I 11 9 9 ) 51 41 29

J 12 10 A * 52 42 2A

K 13 11 B + 53 43 2B

L 14 12 C , 54 44 2C

M 15 13 D - 55 45 2D

N 16 14 E . 56 46 2E

O 17 15 F / 57 47 2F

P 20 16 10 0 60 48 30

Q 21 17 11 1 61 49 31

R 22 18 12 2 62 50 32

S 23 19 13 3 63 51 33

T 24 20 14 4 64 52 34

U 25 21 15 5 65 53 35

V 26 22 16 6 66 54 36

W 27 23 17 7 67 55 37

X 30 24 18 8 70 56 38

Y 31 25 19 9 71 57 39

Z 32 26 1A : 72 58 3A

[ 33 27 1B ; 73 59 3B

\ 34 28 1C < 74 60 3C

] 35 29 1D = 75 61 3D

^ 36 30 1E > 76 62 3E

 37 31 1F ? 77 63 3F
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3.2.  ASCII Character Codes 

Table 7  ASCII Character Codes 

Character Octal Dec Hex Char Octal Dec Hex Char Octal Dec Hex Char Octal Dec Hex 

<NULL> 0 0 0  40 32 20 @ 100 64 40 ` 140 96 60

<SOH> 1 1 1 ! 41 33 21 A 101 65 41 a 141 97 61

<STX> 2 2 2 " 42 34 22 B 102 66 42 b 142 98 62

<ETX> 3 3 3 # 43 35 23 C 103 67 43 c 143 99 63

<EOT> 4 4 4 $ 44 36 24 D 104 68 44 d 144 100 64

<ENQ> 5 5 5 % 45 37 25 E 105 69 45 e 145 101 65

<ACK> 6 6 6 & 46 38 26 F 106 70 46 f 146 102 66

<BEL> 7 7 7 ' 47 39 27 G 107 71 47 g 147 103 67

<BS> 10 8 8 ( 50 40 28 H 110 72 48 h 150 104 68

<HT> 11 9 9 ) 51 41 29 I 111 73 49 i 151 105 69

<LF> 12 10 A * 52 42 2A J 112 74 4A j 152 106 6A

<VT> 13 11 B + 53 43 2B K 113 75 4B k 153 107 6B

<FF> 14 12 C , 54 44 2C L 114 76 4C l 154 108 6C

<CR> 15 13 D - 55 45 2D M 115 77 4D m 155 109 6D

<SO> 16 14 E . 56 46 2E N 116 78 4E n 156 110 6E

<SI> 17 15 F / 57 47 2F O 117 79 4F o 157 111 6F

<DLE> 20 16 10 0 60 48 30 P 120 80 50 p 160 112 70

<DC1> 21 17 11 1 61 49 31 Q 121 81 51 q 161 113 71

<DC2> 22 18 12 2 62 50 32 R 122 82 52 r 162 114 72

<DC3> 23 19 13 3 63 51 33 S 123 83 53 s 163 115 73

<DC4> 24 20 14 4 64 52 34 T 124 84 54 t 164 116 74

<NAK> 25 21 15 5 65 53 35 U 125 85 55 u 165 117 75

<SYN> 26 22 16 6 66 54 36 V 126 86 56 v 166 118 76

<ETB> 27 23 17 7 67 55 37 W 127 87 57 w 167 119 77

<CAN> 30 24 18 8 70 56 38 X 130 88 58 x 170 120 78

<EM> 31 25 19 9 71 57 39 Y 131 89 59 y 171 121 79

<SUB> 32 26 1A : 72 58 3A Z 132 90 5A z 172 122 7A

<ESC> 33 27 1B ; 73 59 3B [ 133 91 5B { 173 123 7B

<FS> 34 28 1C < 74 60 3C \ 134 92 5C | 174 124 7C

<GS> 35 29 1D = 75 61 3D ] 135 93 5D } 175 125 7D

<RS> 36 30 1E > 76 62 3E ^ 136 94 5E ~ 176 126 7E

<US> 37 31 1F ? 77 63 3F _ 137 95 5F DEL 177 127 7F
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Table 8  ASCII Control Characters 

<NUL> Null 
<SOH> Start of heading 
<STX> Start of text 
<ETX> End of text 
<EOT> End of transmission 
<ENQ> Enquiry 
<ACK> Acknowledge 
<BEL> Bell (audible signal) 
<BS> Backspace 
<HT> Horizontal Tabulation 
<LF> Line Feed - go to new line 
<VT> Vertical tabulation 
<FF> Form Feed - go to new page 
<CR> Carriage return - return to left margin 
<SO> Shift out 
<SI> Shift in 
<DLE> Data link escape 
<DC1> Device Control 1 - XON 
<DC2> Device Control 2 
<DC3> Device Control 3 - XOFF 
<DC4> Device Control 4 
<NAK> Negative Acknowledge 
<SYN> Synchronous idle 
<ETB> End of transmission block 
<CAN> Cancel 
<EM> End of medium 
<SUB> Substitute 
<ESC> Escape 
<FS> File Separator 
<GS> Group Separator 
<RS> Record Separator 
<US> Unit Separator 
<DEL> Delete 
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3.3.  ANSI Character Codes 

Table 9  ANSI Character Set 
The ANSI character set consists of the ASCII character set plus the set of characters in this table.  

Char Octal Dec Hex Char Octal Dec Hex Char Octal Dec Hex Char Octal Dec Hex

� 200 128 80  240 160 A0 À 300 192 C0 à 340 224 E0

� 201 129 81 ¡ 241 161 A1 Á 301 193 C1 á 341 225 E1

‚ 202 130 82 ¢ 242 162 A2 Â 302 194 C2 â 342 226 E2

ƒ 203 131 83 £ 243 163 A3 Ã 303 195 C3 ã 343 227 E3

„ 204 132 84 ¤ 244 164 A4 Ä 304 196 C4 ä 344 228 E4

… 205 133 85 ¥ 245 165 A5 Å 305 197 C5 å 345 229 E5

† 206 134 86 ¦ 246 166 A6 Æ 306 198 C6 æ 346 230 E6

‡ 207 135 87 § 247 167 A7 Ç 307 199 C7 ç 347 231 E7

ˆ 210 136 88 ¨ 250 168 A8 È 310 200 C8 è 350 232 E8

‰ 211 137 89 © 251 169 A9 É 311 201 C9 é 351 233 E9

Š 212 138 8A ª 252 170 AA Ê 312 202 CA ê 352 234 EA

‹ 213 139 8B « 253 171 AB Ë 313 203 CB ë 353 235 EB

Œ 214 140 8C ¬ 254 172 AC Ì 314 204 CC ì 354 236 EC

� 215 141 8D - 255 173 AD Í 315 205 CD í 355 237 ED

� 216 142 8E ® 256 174 AE Î 316 206 CE î 356 238 EE

� 217 143 8F ¯ 257 175 AF Ï 317 207 CF ï 357 239 EF

� 220 144 90 ° 260 176 B0 Ð 320 208 D0 ð 360 240 F0

‘ 221 145 91 ± 261 177 B1 Ñ 321 209 D1 ñ 361 241 F1

’ 222 146 92 ² 262 178 B2 Ò 322 210 D2 ò 362 242 F2

“ 223 147 93 ³ 263 179 B3 Ó 323 211 D3 ó 363 243 F3

” 224 148 94 ´ 264 180 B4 Ô 324 212 D4 ô 364 244 F4

• 225 149 95 µ 265 181 B5 Õ 325 213 D5 õ 365 245 F5

– 226 150 96 ¶ 266 182 B6 Ö 326 214 D6 ö 366 246 F6

— 227 151 97 · 267 183 B7 × 327 215 D7 ÷ 367 247 F7

˜ 230 152 98 ¸ 270 184 B8 Ø 330 216 D8 ø 370 248 F8

™ 231 153 99 ¹ 271 185 B9 Ù 331 217 D9 ù 371 249 F9

š 232 154 9A º 272 186 BA Ú 332 218 DA ú 372 250 FA

› 233 155 9B » 273 187 BB Û 333 219 DB û 373 251 FB

œ 234 156 9C ¼ 274 188 BC Ü 334 220 DC ü 374 252 FC

� 235 157 9D ½ 275 189 BD Ý 335 221 DD ý 375 253 FD

� 236 158 9E ¾ 276 190 BE Þ 336 222 DE þ 376 254 FE

Ÿ 237 159 9F ¿ 277 191 BF ß 337 223 DF ÿ 377 255 FF
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3.4.  Unicode Character Codes 

In order to deal with the many character sets used in the written languages of the world, 
the Unicode Character Codes were developed over the last decade. The standard allows 
8, 16, or 32 bit definitions of the characters. The following URL contains the details, and 
there are many, of the Unicode effort. 
 

http://www.unicode.org/ 
 
The table below contains the lay out of the Unicode Character Sets. 
 
 http://www.unicode.org/Public/UNIDATA/Blocks.txt 
 
# Unicode Character Database 
# Copyright (c) 1991-2004 Unicode, Inc. 
# For terms of use, see http://www.unicode.org/terms_of_use.html 
# For documentation, see UCD.html 
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Table 10  UNICODE Character Codes 

0000 007F Basic Latin 
0080 00FF Latin-1 Supplement 
0100 017F Latin Extended-A 
0180 024F Latin Extended-B 
0250 02AF IPA Extensions 
02B0 02FF Spacing Modifier 

Letters 
0300 036F Combining Diacritical 

Marks 
0370 03FF Greek and Coptic 
0400 04FF Cyrillic 
0500 052F Cyrillic Supplement 
0530 058F Armenian 
0590 05FF Hebrew 
0600 06FF Arabic 
0700 074F Syriac 
0780 07BF Thaana 
0900 097F Devanagari 
0980 09FF Bengali 
0A00 0A7F Gurmukhi 
0A80 0AFF Gujarati 
0B00 0B7F Oriya 
0B80 0BFF Tamil 
0C00 0C7F Telugu 
0C80 0CFF Kannada 
0D00 0D7F Malayalam 
0D80 0DFF Sinhala 
0E00 0E7F Thai 
0E80 0EFF Lao 
0F00 0FFF Tibetan 
1000 109F Myanmar 
10A0 10FF Georgian 
1100 11FF Hangul Jamo 
1200 137F Ethiopic 
13A0 13FF Cherokee 
1400 167F Unified Canadian 

Aboriginal Syllabics 
1680 169F Ogham 
16A0 16FF Runic 
1700 171F Tagalog 
1720 173F Hanunoo 
1740 175F Buhid 
1760 177F Tagbanwa 
1780 17FF Khmer 
1800 18AF Mongolian 
1900 194F Limbu 
1950 197F Tai Le 
19E0 19FF Khmer Symbols 
1D00 1D7F Phonetic Extensions 
1E00 1EFF Latin Extended 

Additional 
1F00 1FFF Greek Extended 
2000 206F General Punctuation 

2070 209F Superscripts and 
Subscripts 

20A0 20CF Currency Symbols 
20D0 20FF Combining Diacritical 

Marks for Symbols 
2100 214F Letterlike Symbols 
2150 218F Number Forms 
2190 21FF Arrows 
2200 22FF Mathematical 

Operators 
2300 23FF Miscellaneous 

Technical 
2400 243F Control Pictures 
2440 245F Optical Character 

Recognition 
2460 24FF Enclosed 

Alphanumerics 
2500 257F Box Drawing 
2580 259F Block Elements 
25A0 25FF Geometric Shapes 
2600 26FF Miscellaneous Symbols
2700 27BF Dingbats 
27C0 27EF Miscellaneous 

Mathematical Symbols-
A 

27F0 27FF Supplemental Arrows-A
2800 28FF Braille Patterns 
2900 297F Supplemental Arrows-B
2980 29FF Miscellaneous 

Mathematical Symbols-
B 

2A00 2AFF Supplemental 
Mathematical 
Operators 

2B00 2BFF Miscellaneous Symbols 
and Arrows 

2E80 2EFF CJK Radicals 
Supplement 

2F00 2FDF Kangxi Radicals 
2FF0 2FFF Ideographic Description 

Characters 
3000 303F CJK Symbols and 

Punctuation 
3040 309F Hiragana 
30A0 30FF Katakana 
3100 312F Bopomofo 
3130 318F Hangul Compatibility 

Jamo 
3190 319F Kanbun 
31A0 31BF Bopomofo Extended 
31F0 31FF Katakana Phonetic 

Extensions 
3200 32FF Enclosed CJK Letters 

and Months 
3300 33FF CJK Compatibility 
3400 4DBF CJK Unified Ideographs 

Extension A 

4DC0 4DFF Yijing Hexagram 
Symbols 

4E00 9FFF CJK Unified Ideographs
A000 A48F Yi Syllables 
A490 A4CF Yi Radicals 
AC00 D7AF Hangul Syllables 
D800 DB7F High Surrogates 
DB80 DBFF High Private Use 

Surrogates 
DC00 DFFF Low Surrogates 
E000 F8FF Private Use Area 
F900 FAFF CJK Compatibility 

Ideographs 
FB00 FB4F Alphabetic Presentation 

Forms 
FB50 FDFF Arabic Presentation 

Forms-A 
FE00 FE0F Variation Selectors 
FE20 FE2F Combining Half Marks 
FE30 FE4F CJK Compatibility 

Forms 
FE50 FE6F Small Form Variants 
FE70 FEFF Arabic Presentation 

Forms-B 
FF00 FFEF Halfwidth and Fullwidth 

Forms 
FFF0 FFFF Specials 
10000 1007F Linear B Syllabary 
10080 100FF Linear B Ideograms 
10100 1013F Aegean Numbers 
10300 1032F Old Italic 
10330 1034F Gothic 
10380 1039F Ugaritic 
10400 1044F Deseret 
10450 1047F Shavian 
10480 104AF Osmanya 
10800 1083F Cypriot Syllabary 
1D000 1D0FF Byzantine Musical 

Symbols 
1D100 1D1FF Musical Symbols 
1D300 1D35F Tai Xuan Jing Symbols 
1D400 1D7FF Mathematical 

Alphanumeric Symbols 
20000 2A6DF CJK Unified Ideographs 

Extension B 
2F800 2FA1F CJK Compatibility 

Ideographs Supplement
E0000 E007F Tags 
E0100 E01EF Variation Selectors 

Supplement 
F0000 FFFFF Supplementary Private 

Use Area-A 
100000 10FFF

F 
Supplementary Private 
Use Area-B 
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4.  Logic  

4.1.  Single Bit Logic Truth Tables  

Table 11  Logic Truth Tables 

A B A  B  
A.AND.B

BA •
A.OR.B

BA +

B.AND.A

BA •

B.OR.A

BA +  
A.AND.B

BA •

A.OR.B

BA +

0 0 1 1 0 0 1 1 1 1 
0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 0 1 1 0 
1 1 0 0 1 1 0 0 0 0 

Notice that the following are true. 

   
BABA

BABA

•=+

+=•  

4.2.  Multibit Logic Examples  

Table 12  Logic Examples 

Expression Binary Decimal Octal Hexidecimal
A 0000000000000001 1 1 1 
B 0000000000000001 1 1 1 

A.AND.B 0000000000000001 1 1 1 
A.OR.B 0000000000000001 1 1 1 
.NOT.A 1111111111111110 65534 177776 FFFE 
.NOT.B 1111111111111110 65534 177776 FFFE 

 
Expression Binary Decimal Octal Hexidecimal

A 1010101111001101 43981 125715 ABCD 
B 0000000000000000 0 0 0 

A.AND.B 0000000000000000 0 0 0 
A.OR.B 1010101111001101 43981 125715 ABCD 
.NOT.A 0101010000110010 21554 52062 5432 
.NOT.B 1111111111111111 65535 177777 FFFF 

 



Aspects of Computer Architecture 
Logic 

November 2, 2004 - 32 - 

Expression Binary Decimal Octal Hexidecimal
A 1010101111001101 43981 125715 ABCD 
B 1111111111111111 65535 177777 FFFF 

A.AND.B 1010101111001101 43981 125715 ABCD 
A.OR.B 1111111111111111 65535 177777 FFFF 
.NOT.A 0101010000110010 21554 52062 5432 
.NOT.B 0000000000000000 0 0 0 

 
Expression Binary Decimal Octal Hexidecimal

A 1010101111001101 43981 125715 ABCD 
B 0000111111110000 4080 7760 FF0 

A.AND.B 0000101111000000 3008 5700 BC0 
A.OR.B 1010111111111101 45053 127775 AFFD 
.NOT.A 0101010000110010 21554 52062 5432 
.NOT.B 1111000000001111 61455 170017 F00F 

 
Expression Binary Decimal Octal Hexidecimal

A 0000000011111111 255 377 FF 
B 1000100110011000 35224 104630 8998 

A.AND.B 0000000010011000 152 230 98 
A.OR.B 1000100111111111 35327 104777 89FF 
.NOT.A 1111111100000000 65280 177400 FF00 
.NOT.B 0111011001100111 30311 73147 7667 

 
Expression Binary Decimal Octal Hexidecimal

A 0000000011111111 255 377 FF 
B 0000000000010011 19 23 13 

A.AND.B 0000000000010011 19 23 13 
A.OR.B 0000000011111111 255 377 FF 
.NOT.A 1111111100000000 65280 177400 FF00 
.NOT.B 1111111111101100 65516 177754 FFEC 

 
Expression Binary Decimal Octal Hexidecimal

A 0000000011111111 255 377 FF 
B 0011001100110011 13107 31463 3333 

A.AND.B 0000000000110011 51 63 33 
A.OR.B 0011001111111111 13311 31777 33FF 
.NOT.A 1111111100000000 65280 177400 FF00 
.NOT.B 1100110011001100 52428 146314 CCCC 

 
Expression Binary Decimal Octal Hexidecimal

A 1111111100000000 65280 177400 FF00 
B 1000100110011000 35224 104630 8998 

A.AND.B 1000100100000000 35072 104400 8900 
A.OR.B 1111111110011000 65432 177630 FF98 
.NOT.A 0000000011111111 255 377 FF 
.NOT.B 0111011001100111 30311 73147 7667 
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Expression Binary Decimal Octal Hexidecimal
A 1111111100000000 65280 177400 FF00 
B 0000000000010011 19 23 13 

A.AND.B 0000000000000000 0 0 0 
A.OR.B 1111111100010011 65299 177423 FF13 
.NOT.A 0000000011111111 255 377 FF 
.NOT.B 1111111111101100 65516 177754 FFEC 

 
Expression Binary Decimal Octal Hexidecimal

A 1111111100000000 65280 177400 FF00 
B 0011001100110011 13107 31463 3333 

A.AND.B 0011001100000000 13056 31400 3300 
A.OR.B 1111111100110011 65331 177463 FF33 
.NOT.A 0000000011111111 255 377 FF 
.NOT.B 1100110011001100 52428 146314 CCCC

5.  Gates and Latches 

Error! Reference source not found. and Table 13  Generic Gate, Switch, Latch - Definitions  

 define three generic devices, which may be either analog or digital devices. The devices are 
three port devices with two inputs, e.g. ein and a control signal eGC, eSC, or eLC, and one output, 
eout. The devices have two states. The control signal determines in which of the two states the 
device is at a particular time. 
 

GateSwitchLatch_01.cdr 7-Oct-2004

Gateein

eGC

eout Switchein

eSC

eout Latchein

eLC

eout

eSC

Switch
Control

 
 

Figure 4 Generic Gate, Switch, and Latch  
 
The gate nomenclature comes from the barnyard gate, i.e. when the gate is open, the animals can 
go through the gate; when the gate is closed then animals can not go through the gate. The latch 
is basically a camera, i.e. it captures a snapshot of the value of ein at the time of the transition of 
eLC and holds it for later inspection. 
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Table 13  Generic Gate, Switch, Latch - Definitions  

Device State Control Signal Behavior 

Gate Open eGC = Open eout = ein 

 Closed eGC = Closed eout = constant ( also may 
be disconnected) 

Switch Closed eSC = Closed eout = ein 

 Open eSC = Open eout = constant 

Latch Follow eLC = Follow eout = ein 

 Latched eLC = Latch 
eout = ein (t = 

Latch

Follow ) 

Error! Reference source not found. illustrates a derivative combination, the tri-state gate 
which has the characteristics shown in Table 14  Tri-State Gate - Definition Definition 

. This device derives its name from the fact that there are essentially three states: high, low, and 
disconnected. Such devices have great utility when constructing a “bus,” i.e. a “party line” or 
shared communication facility. 
 

TriStateGate_01.cdr 10-Oct-2004

Gateein

eGC

Switch

eSC

eout

 
Figure 5 Tri-State Gate  

 
Table 14  Tri-State Gate - Definition Definition 

Switch Control Gate Control Behavior 

eSC = Closed eGC = Open eout = ein 

eSC = Closed eGC = Closed eout = constant  

eSC = Open eGC = Open Device is disconnected 
from the following 
circuitry.  

eSC = Open eGC = Closed Device is disconnected 
from the following 
circuitry. 
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These generic concepts have widespread application in both digital and analog electronics. The 
remainder of this document will explore how these devices are implemented and applied in the 
digital domain. 

6.  Simple Computer  

A common model of a simple computer is the "Von Neumann" model shown in Figure 6. This 
model consists of three types of functional units, Central Processing Unit (CPU), Memory, and 
I/O units of which there can be varying numbers in any real application. The CPU contains four 
subsystems, the Command Decoder, CD, arithmetic logical unit, ALU, Control Panel, and the 
CPU register set. The CPU is the engine that does the computational work of the system. The 
Command Decoder fetches, interprets, and causes the execution of the program instruction steps. 
The ALU performs, under the control of the CPU, the integer arithmetic and logical operations 
required by the program instructions. The I/O units provide the interface between the computing 
system and the outside world.  The Control Panel allows the operator of the system to perform 
certain basic operations such as starting and stopping operation, and examining and changing 
aspects of the system. The functional units are connected by the I/O bus, a communication 
facility that allows information to be moved among the various functional units.  

Memory I/O Controller
#1

I/O Controller
#1

Control Bus

Address Bus

Data Bus

External
Device

External
Device

CEM 838 CPU1.cdr 17-Apr-2000 

Model of Simple Computer

T V Atkinson   Department of Chemistry   Michigan State University

CPU

Command
Decoder

Arithmetic 
Logical Unit

Registers

Panel
Control

 

Figure 6  Von Neumann Model of Computer  

6.1.  Digital Buses 

I/O buses are actually collections of parallel digital (binary) electrical signals that are 
simultaneously observed and/or manipulated by multiple functional units. Hence, a bus is an 
example of a "party-line" communication channel with the connected subsystems being peers on 
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the channel. Information is typically moved between two of the participants on the bus. The I/O 
bus is usually considered to consist of three sub buses (Control, Address, and Data) (See Figure 
6). The Data Bus is a collection of signals that contain the data being moved from one subsystem 
to the other. The Address Bus allows the participants on the bus to identify which subsystem is 
sending the information and which subsystem is receiving the information. The Control Bus is 
the collection of signals required to affect the transfer of information from one participant to the 
other. 

The states of the control signals, i. e. the Control Bus, are defined one of the subsystems called 
the Bus Master. In simple computers, only the CPU can be master. In more complicated 
architectures, other functional units can be bus master. There have been many computer buses, 
e.g. Unibus, Qbus, New Bus, VMEbus, XT bus, ISA (ATBUS), SCSI, EISA, Micro Channel 
Architecture (MCA) bus, VESA, PCI, IEEE 488. One bus varies from another in the following 
ways.  

1. Collection of signals (number and definition)  

2. Technology used to implement electronics connected to the bus, e.g. TTL, 
CMOS, ECL, Optical elements (for optical fiber buses).  

3. Physical implementation: connectors, conductors, etc.  

4. Speed and timing relationships  

5. Sequences of events required to effect transfers of information.  

6.1.1.  A Simple Example 

The simple logic devices, i.e. And, Or, Nor, Nand, gates and latches, discussed in the section on 
logic are the atomic elements of digital devices. Real digital devices, e.g. computers, are, in 
essence, collections of such elements. As mentioned above, these collections are typically 
organized into subsystems. One issue is how information is moved from one subsystem of the 
device to another.  

Figure 8 and Figure 9 illustrates one such mechanism, a simple digital bus that connects three 
single bit devices (registers) A, B, and C. In this example, GCa, LCa, GCb, LCb, GCc, and LCc 
are control signals. La, Lb, and Lc are the contents of the registers. As an example, the following 
steps are performed to move the contents of Device A (La) to Device C (Lc). 

1. All control signals are in the “off” state, i.e. LCi are in the LATCHED state and 
GCi are in the CLOSED state. The bus is idle. 

2. Assert GCa (GCa = OPEN). BUS is now equal to La  

3. Strobe LCc as in Figure 7. Lc now equals La. Transfer is complete. 
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4. Deassert GCa (Gate A is CLOSED.) Bus is now idle. 
 
 

Latch Latch
Follow

 
 

Figure 7  Strobe  

Figure 10 shows the timing of events that would be required to move the contents of Register A 
into Register C. The contents of A is assumed to be 1 at the beginning, the contents of B and C 
are 0. The timing sequences for the control signals GCa, LCa, GCc, and LCc are generated by 
some outside intelligence (often called the Bus Master). Figure 11 is a similar example with the 
contents of A being 0. 
 

A

LCa

La

GCa

GaLatch Gate

B
Bus

LCb

Lb

GCb

GbLatch Gate

C

LCc

Lc

GCc

GcLatch Gate

BusA1.cdr 23-Oct-2002 T V Atkinson   Department of Chemistry   Michigan State University

 
Figure 8  A Digital Bus with Three Devices  
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BusA1.cdr 21-Oct-2002 T V Atkinson   Department of Chemistry   Michigan State University

 
Figure 9  A 1-Bit Bus with Three Devices (Equivalent Schemat)  
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Digital Timing Diagrams
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Figure 10  Timing - Transfer Contents of A (1) to C  
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Digital Timing Diagrams
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Figure 11  Timing - Transfer Contents of A (0) to C  

 

6.1.2.  A 4-Bit Bus 

Figure 12 illustrates how three 4-bit devices would be connected with the simple bus 
discussed above. Notice that the control signals are the same for all bits of a device. Thus 
all four bits of information are eached moved as described above at the same time. 
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BusA1.cdr 21-Oct-2002 T V Atkinson   Department of Chemistry   Michigan State University
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Figure 12  4-Bit Bus  
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6.1.3.  An 8-Bit Bus System 

Figure 13 and Figure 14 illustrate the next level of complexity. Here, there are two types of 
devices, i. e. the Master Register and any number of Slave Registers. All registers are 8-bit 
devices. In this system, the Master Register is involved in all transfers. Reading a register is 
defined as a transfer that copies information from that register to another. Writing a register is 
defined as a transfer that copies information from another to that register. The Address Bus is a 
set of signals that identify which Slave Register is involved in the transfer. Decoder is a function 
that monitors the Address Bus and goes true when the address of that Slave Register is on the 
Address Bus. The Control Bus, i.e. STROBE and WRITE are signals generated by the Bus 
Controller which is described here. 

 

b0

b1

b2

b3

b4

b5

b6

b7

WRITE REGISTER i

REGISTER i Selected 

Address of 
REGISTER i 

D
AT

A
7

D
AT

A
6

D
AT

A
5

D
AT

A
4

D
AT

A
3

D
AT

A
2

D
AT

A
1

D
AT

A
0

W
R

IT
E

ST
R

O
BE

 G
C

ST
R

O
BE

 L
C

Address Bus
 (n signals) Control Bus Data Bus Register i

LC

READ REGISTER i

GC

Simple 8-Bit Bus and Slave REGISTER

RegisterSlave.cdr 7-Dec-2003 T V Atkinson   Department of Chemistry   Michigan State University

a 0a 1a 2a n
-1

Decoder

ai,0ai,2ai,n-1

 
 

Figure 13 - Simple 8-Bit Bus and Slave Register  
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Figure 14 - Simple 8-Bit Bus and Master Register  

Transfers of information from Slave Register i to the Master Register are accomplished 
with the following sets of steps. 

1. The address of Slave Registeri is placed on the Address Bus. The output of 
Decoderi goes true. 

2. WRITE is set low.  

3. STROBE LC and STROBE GC are strobed as indicated in Figure 15. This gates 
the contents of Slave Registeri onto the Data Bus. The contents of the Data Bus 
are latched into Master Register. 
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Figure 15 - Simple 8-Bit Bus and Master Register  

6.1.4.  A Simple Input/Output System 

Figure 16 illustrates how one could implement a one bit register that outputs information from 
the digital device and a one bit register that would input information to the device from the 
outside world. 
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Figure 16   Simple 8-Bit Bus and Master Register  
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6.1.5.  A More Complete I/O Bus Architecture 

Figure 17, Figure 18, and Figure 19 depict a fairly simple but more complete bus architecture 
that illustrates a number of points. This particular architecture was constructed for illustration 
and does not match any particular computer system. 
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BUS 1   24-JAN-1993
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Figure 17  Simple I/O Bus: Bus Master   
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Figure 18 illustrates a slave device on the bus. 
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Figure 18  Simple I/O Bus: Slave 
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Figure 19 shows the remaining bits of the representative registers forming the slave devices. 
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Figure 19  Simple I/O Bus: Slave (Continued)   
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6.1.5.1.  Reads 

For this simple architecture, a "read" is the transfer of information from the slave register to the 
master register. 

1. The idle state of the bus consists of STROBE being 0. As a result, all WRITE 
REGISTER j  and READ REGISTER j AND gates will have an output of 0. The 
states of all other signals are of no consequence.  

2. Bus Master Bus Control Logic gates the address of the referenced master register 
onto the Master Address Bus. The output of the decoder for the appropriate Master 
Register will now change to 1, indicating selection of that register. 

3. Bus Master Bus Control Logic gates the address of the referenced slave register onto 
the Address Bus. The output of the decoder for the appropriate slave register will now 
change to 1, indicating selection of that register. 

4. Bus Master Bus Control Logic gates a 0, i.e. do a read, onto the WRITE line. This 
will set up the gating of the selected slave register onto the Data bus and the latches 
of the selected master register to follow the state of the Data bus. 

5. A time delay occurs that allows all the above signals to settle and the various 
decoding to take place. 

6. The Bus Master Bus Control Logic gates a 1 onto the signal STROBE. With 
STROBE now one, all inputs will be one for the WRITE REGISTER i AND gate 
of the addressed master register and the READ REGISTER j AND gate for the 
addressed slave register. Thus, these two signals will go to 1. All other AND gates 
will have at least one 0, resulting in outputs of those gates remaining at 0. Thus, the 
gate control signal (GC) for the gated driver for each of the bits of the addressed 
slave register will go to 1 and these signals will be gated onto the Data bus. 
Simultaneously, the latch control signal (LC) for the latches for each of the bits of the 
addressed master register will go to 1 and these latches will begin to follow the 
corresponding bits on the Data bus. 

7. A time delay occurs that allows all the above signals to settle. 

8. The Bus Master Bus Control Logic gates a 0 onto the signal STROBE. As a result, 
all WRITE REGISTER j and READ REGISTER j AND gates have an output of 0. 
Thus, the latches for the selected master register change to the latched state, freezing 
the contents of the selected slave register into the master register. The signals from 
the slave register are also removed from the Data bus. The bus is now in the idle 
state. 
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6.1.5.2.  Writes 

For this simple architecture, a "write" is the transfer of information from the master register to 
the slave register. 

1. The idle state of the I/O bus consists of STROBE being 0. As a result, all WRITE 
REGISTER j and READ REGISTER j AND gates will have an output of 0. The 
states of all other signals are of no consequence.  

2. Bus Master Bus Control Logic gates the address of the referenced master register 
onto the Master Address Bus. The output of the decoder for the appropriate master 
register will now change to 1, indicating selection of that register. 

3. Bus Master Bus Control Logic gates the address of the referenced slave register onto 
the Address Bus. The output of the decoder for the appropriate slave register will now 
change to 1, indicating selection of that register. 

4. Bus Master Bus Control Logic gates a 1, i.e., do a write, onto the WRITE line. This 
will set up the gating of the selected master register onto the Data bus and the latches 
of the selected slave register to follow the state of the Data bus. 

5. A time delay occurs that allows all the above signals to settle and the various 
decoding to take place. 

6. The Bus Master Bus Control Logic gates a 1 onto the signal STROBE. With 
STROBE now one, all inputs will be one for the WRITE REGISTER i AND gate 
of the addressed slave register and the READ REGISTER i AND gate for the 
addressed master register. Thus, these two signals will go to 1. All other AND gates 
will have at least one 0, resulting in outputs of those gates remaining at 0. Thus, the 
gate control signal (GC) for the gated driver for each of the bits of the addressed 
master register will go to 1 and the master register contents will be gated on to the 
Data bus. Simultaneously, the latch control signal (LC) for the latches for each of the 
bits of the addressed slave register will go to 1 and these latches will begin to follow 
the corresponding bits on the Data bus. 

7. A time delay occurs that allows all the above signals to settle. 

8. The Bus Master Bus Control Logic gates a 0 onto the signal STROBE. As a result, 
all WRITE REGISTER j and READ REGISTER j AND gates have an output of 0. 
Thus, the latches for the selected slave register change to the latched state, freezing 
the contents of the selected master register into the slave register. The signals from 
the master register are also removed from the DATA bus. The bus is now in the idle 
state. 
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6.2.  Post Office (Programmers) Model of Computing  
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Figure 20  Post Office Model of Computing 

The simple computer can also be modeled as three ranks of different size pigeon holes as 
illustrated in Figure 20. As in a post office, each of the boxes is identified by a unique label. For 
those boxes in the CPU, these labels are PC, R0, R1, …  In the case of Memory and Disk, the 
identifiers are binary numbers. Each box depicted in that figure is capable of containing a single 
ordered collection of binary bits each of which can have two states (1 or 0). For a collection of n 
bits, there can be 2n unique combinations of zeros and ones. Many different uses can be made of 
such collections of binary bits. In fact, most of the boxes described here can have different 
meanings at different times. Only a few locations, such as the status register and PC, have 
specific meanings impressed on the collection of bits at all times by the hardware.  
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6.3.  Uses of collections of n binary bits  

1. Logical: Each bit can represent a logical variable and the contents of the bit will represent 
a true or false.  

2. Flags: Each bit will represent the state of some device or functional unit. Examples: Flags 
in the CPU Status Register indicate if the last operand is zero, if the last operation 
resulted in an overflow, etc. Status bits in device registers indicate the state of devices, 
e.g. is a valve open or closed,  is a floppy disk mounted in the drive.  

3. Control bits in device registers:  Bits are connected to hardware devices and cause 
something to happen in the device, e.g. begin the conversion of a ADC, open/close a 
valve, fire a laser.  

4. Character: Codes representing symbols such as the ASCII character sets.  

5. Unsigned binary integer numbers - if each bit is considered to be a coefficient of a power 
of two and the collection of bits is considered to be ordered ( see the section on number 
systems). The 2n numbers will range from 0 to 2n-1.  

6. Unsigned binary fractions - if each bit is considered to be a coefficient of a negative 
power of two and the collection of bits is considered to be ordered ( see the section on 
number systems). The 2n numbers will range from 0 to 1 - 2-n.  

7. Addresses  

8. Sign Magnitude signed binary integer numbers  

9. One's complement signed binary integer numbers  

10. Two's complement signed binary integer numbers  

11. Floating Point numbers  
[SEE: the figure titled 8087 Numeric Data Processor]  

12. Instructions  

6.4.  Instruction Sets  

A computer is a machine that performs a sequential set of recipes or instructions on one, two or 
three operands. The instructions describe exactly what is to be done for each step. The operands 
are the collections of bits located in the CPU registers, memory locations, and/or device 
registers. Instruction formats and sizes vary from machine to machine. In many machines 
different instructions can be of different sizes, usually in multiples of bytes. The instructions will 
contain two main parts. The first is a code identifying the particular instruction. The second is 
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information about which locations in the computer contain the operands upon which the 
operations will be executed.  

1. Moves (2 Operands) 

1.1. Register to Register 

1.2. Memory to Register (Load) 

1.3. Register to Memory (Store)  

1.4. Memory to Memory 

1.5. Register or Memory to a stack (PUSH)  

1.6. Stack to Register or Memory (POP)  

1.7. Clear operand  

2. Logical operations ( 2 or 3 operands)  

Operation Result  Operand 
2 

Operator Operand 
1 

Inverse O2 <---  .not. O1  

AND O3 <--- O2 .and. O1  

OR O3 <--- O2 .or. O1  

XOR O3 <--- O2 .xor. O1  

3. Arithmetic +, -, *, /, negate  (2 or 3 Operands) 

4. Shifts (1 Operand) 

4.1. One bit shifts ( left or right ) 

4.2. Multiple bits shifts ( left or right ) 

4.3. Single register, multiple register  

4.4. Simple, circular, arithmetic (pull sign bit along) 

5. Test/compare  

6. Branches (1 or 2 Operands) 

6.1. Unconditional: jumps or branches  
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6.2. Conditional  

6.3. Subroutine call  

6.4. Subroutine return  

6.5. Traps  

6.6. Interrupt returns  

7. NOOP (0 Operands) 

8. Halt, Pause, Wait (0 Operands) 

9. I/O Instructions (Only in the cases where the I/O registers are not part of the 
memory space).  

10. Other special instructions.  

6.5.  Addressing  

Typically, instruction sets deal with three types of operands, CPU registers, memory locations, 
and device registers. In many architectures, the memory and device registers are incorporated 
into one address space. Each instruction has to specify which operand(s) are to be used in the 
execution of that instruction. The instructions have 0 (NOOP, halt, …), 1, 2, or 3 operands. 
Except in the cases with 0 operands, one operand will be the destination operand and receives 
the results of the operation. Often the destinations will be one of the input operands and the 
instructions effectively have 1 or 2 operands. In all such cases, the contents of the destination 
operand are changed as the result of the instruction. Only those source operands that are also 
destinations are changed. 

6.6.  Operation  

Any computer does useful work by executing a program, or ordered collection of instructions.  

1. Reset the computer to a known initial condition.  

2. Deposit the instructions and any operands into appropriate locations within 
memory.  

3. Deposit the starting point (entry point) of the program into the PC.  

4. Press the "GO" button.  

5. CPU puts the contents of the PC onto the address bus and causes the contents of 
the memory location with that address to be fetched to the command decoder.  
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6. The contents of the PC are incremented by one.  

7. The command decoder interprets the instruction code.  

8. Any additional bytes of the instruction are fetched. PC is incremented 
accordingly.  

9. Any operands are fetched.  

10. The operation is executed by the ALU.  

11. The results of the operation are written into the destination operand (register or 
memory).  

12. As a result of the various increments, the PC now points to the next instruction 
and the process loops back to step 5 and the next instruction is fetched, then 
executed. This process continues until the CPU is halted or a HALT instruction is 
executed.  

6.7.  An Example Computer 

The goal of this example is to illustrate the basic operation of a computer and to impress on you 
the simplicity of each aspect of computing, the beauty ( it's like a puzzle with a very large 
number of pieces that fit together) of the low level workings of computing, and, most 
importantly, the tedium involved in doing computing on this level. Professionally, scientists can 
not afford to do this level of computing any more. Typically, you buy existing hardware and 
software to do these jobs. 

This is a description of a simple computer architecture viewed from the software perspective. 
This architecture is defined for simplicity not efficiency. No such computer exists, but this 
example can be used to illustrate a number of concepts. 

6.7.1.  Registers 

1. PC - 32 bits wide  ; Program Counter 

2. SP - 32 bits wide  ; Stack Pointer 

3. R5 - 32 bits wide  ; General Registers 

4. R4 - 32 bits wide 

5. R3 - 32 bits wide 

6. R2 - 32 bits wide 
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7. R1 - 32 bits wide 

8. R0 - 32 bits wide 

bit/byte  Relationships  (Register - Memory)

CEM 924    BitByte    23-JAN-1993
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Figure 21  Bit Byte Word Relationship  

6.7.2.  Instruction format 

 

Op code Register(Ra) Register(Rb) Direct/Indirect 
Addr 

Operand 

B31 to B28 B27 to B25 B24 to B22 B21 B20 to B0 

B21 is a flag that indicates whether addressing for a given instruction is direct or indirect. If B21 
of an instruction is 0, the operand field of the instruction contains the address of the operand. If 
B21 of an instruction is 1, Rb contains the address of the operand.  
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6.7.3.  Instruction Set 

Op Code Mnem I/D? Description 

0 HALT N Halt CPU operation 

1 NOOP N Do nothing for one instruction cycle 

2 LOAD Y Load contents of Operand (i.e. Memory Location) into 
Register Ra 

3 STORE Y Store contents of Register Ra into Operand (i.e. Memory 
Location) 

4 MOVE N Move the contents of register Ra to register Rb 

5 AND N The logical AND of the contents of registers Ra and Rb is 
calculated and stored in Register Ra 

6 OR N The logical OR of the contents of registers Ra and Rb is 
calculated and stored in Register Ra 

7 INV N Invert the contents of Register Ra 

8 NEG N Negate (take two's complement of) the contents of 
Register Ra 

9 BNE N Branch to the address of the operand if Register Ra is not 
equal to zero 

A BEQ Y Branch to the address of the operand if Register Ra is 
equal to zero 

B JMP Y Branch to the address contained in the Operand  

C RET Y Branch to location after last CALL instruction 

D CALL N Branch to the address contained in the Operand and store 
next address for return 

E ADD N Contents of Register Ra is added to the contents of Rb and 
the result is stored in Register Ra 

F MUL N Contents of Register Ra is multiplied by the contents of Rb 
and the result is stored in Register Ra 
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6.7.4.  An Example Program 

This section will investigate a simple program using the example architecture. This program will 
do the simple calculation shown below and produce a resultant integer A given  integers B and 
C.  
  A = (1+B)*3710 - C   

The program would be developed and executed using the following steps: 

1. Create the symbolic (assembly language) version of the program. 

2. Assign memory locations to all the variables and constants (A, B, C, 1, 3710). 

3. Assign a memory location for the first word of the program. 

4. Translate the assembly language into machine language (binary) form that the 
computer will actually execute. 

5. Deposit the machine language program and constants into memory according to 
the memory assignments made. 

6. Deposits values for B and C into the appropriate memory locations. 

7. Deposit the number 100016 into the PC. 

8. "GO". Program executes, halts with the PC containing 102816.  

9. Result is now in location 201016. 
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Location Contents 
(word) 

Label Op Code I/D Ra Rb Operand Comments 

00001000 22 00 20 00 START: LOAD D R1  ONE ;Load 1 into R1 

00001004 24 00 20 08  LOAD D R2  B ;Load B into R2 

00001008 E2 80 00 00  ADD D R1 R2  ;R1 = (1+B) 

0000100C 24 00 20 04  LOAD D R2  THSEV ;Load 37 into R2 

00001010 F2 80 00 00  MUL  R1 R2  ;R1 = (1+B)*37 

00001014 24 00 20 0C  LOAD D R2  C ;Load C into R2 

00001018 84 00 00 00  NEG  R2   ;R2 = -C 

0000101C E2 80 00 00  ADD  R1 R2  ;R1 = (1+B)*37 - C 

00001020 32 00 20 10  STORE D R1  A ;Save Results 

00001024 00 00 00 00 END: HALT     ;End of the Program, stop 
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Example translations from assembly language to machine language 
(binary). 

LOAD D R1    ONE 

Instr.  Op Code Ra Rb I/D  

Bit 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1
Number 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

Contents 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Hex 2 2 0 0 

LOAD D R2    B 

Instr.  Op Code Ra Rb I/D  

Bit 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1
Number 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

Contents 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Hex 2 4 0 0 

ADD D R1 R2 

Instr.  Op Code Ra Rb I/D  

Bit 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1
Number 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

Contents 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0

Hex E 2 8 0 

 

Operand  

1 1 1 1 1 1           
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 

 

Operand  

1 1 1 1 1 1           
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

2 0 0 8 

 

Operand  

1 1 1 1 1 1           
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 
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View of Memory before Execution of Program 

Location Contents Logical Name 

00002018   

00002014   

00002010  A 

0000200C  C 

00002008  B 

00002004 00 00 00 25 THSEV (3710) 

00002000 00 00 00 01 One 

00001FFC   

 
   

0000102C   

00001028   

00001024 00 00 00 00 END 

00001020 34 00 20 10  

0000101C E2 80 00 00  

00001018 86 00 00 00  

00001014 26 00 20 0C  

00001010 F2 80 00 00  

0000100C 26 00 20 04  

00001008 E2 80 00 00  

00001004 26 00 20 08  

00001000 24 00 20 00 START 

00000FFC   
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6.7.5.  Example Program 2 

This section will show how subprograms can be used to repeat multiple occurrences of the same procedure applied to different data. 
The formula from Example Program 1 is to be applied to three sets of data (B1, C1), (B2, C2), and (B3, C3) yielding three results A1, 
A2, and A3. 
 
Location Contents 

(word) 
Label Op Code I/D Ra Rb Operand Comments 

        ; Upon entering the subprogram: 

        ;    R3 will contain B 

        ;    R4 will contain C 

        ; Upon return from the subprogram 

        ;    R1 will contain the results 

00001000 22 00 20 00 SUBPROG: LOAD D R1  ONE ;Load 1 into R1 

00001004 E2 C0 00 00  ADD D R1 R3  ;R1 = (1+B) 

00001008 24 00 20 04  LOAD D R2  THSEV ;Load 37 into R2 

0000100C F2 80 00 00  MUL  R1 R2  ;R1 = (1+B)*37 

00001010 88 00 00 00  NEG  R4   ;R2 = -C 

00001014 E3 00 00 00  ADD  R1 R4  ;R1 = (1+B)*37 - C 

00001018 C0 00 00 00  RET     ;Return to calling program 

         

         

00001100 26 00 20 10 START: LOAD D R3  B1 ;Load B into R3 

00001104 28 00 20 1C  LOAD D R4  C1 ;Load C into R4 

00001108 D0 00 10 00  CALL D   SUBPROG ;Go to subprogram 

0000110C 32 00 20 28  STORE D R1  A1 ;Save Results 

00001110 26 00 20 14  LOAD D R3  B2 ;Load B into R3 

00001114 28 00 20 20  LOAD D R4  C2 ;Load C into R4 

00001118 D0 00 10 00  CALL D   SUBPROG ;Go to subprogram 
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Location Contents 
(word) 

Label Op Code I/D Ra Rb Operand Comments 

0000111C 32 00 20 2C  STORE D R1  A2 ;Save Results 

00001120 26 00 20 18  LOAD D R3  B3 ;Load B into R3 

00001124 28 00 20 1C  LOAD D R4  C3 ;Load C into R4 

00001128 D0 00 10 00  CALL D   SUBPROG ;Go to subprogram 

0000112C 32 00 20 30  STORE D R1  A3 ;Save Results 

00001130 00 00 00 00 END: HALT     ;End of the Program, stop 
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View Of Memory Before Execution of 
Program 

Location Contents Logical Name 

00002038   

00002034   

00002030  A3 

0000202C  A2 

00002028  A1 

00002024  C3 

00002020  C2 

0000201C  C1 

00002018  B3 

00002014  B2 

00002010  B1 

00002008   

00002004 00 00 00 25 THSEV (3710) 

00002000 00 00 00 01 One 

00001FFC   

 
Location Contents Logical Name 

00001138   

00001134   

00001130 00 00 00 00 END 

0000112C 32 00 20 30  

00001128 D0 00 10 00  

00001124 28 00 20 1C  

00001120 26 00 20 18  

0000111C 32 00 20 2C  

00001118 D0 00 10 00  

00001114 28 00 20 20  

00001110 26 00 20 14  

0000110C 32 00 20 28  

00001108 D0 00 10 00  

00001104 28 00 20 1C  

00001100 26 00 20 00 START 

000010FC   

00001020   

Location Contents Logical Name 

0000101C   

00001018 C0 00 00 00  

00001014 E3 00 00 00  

00001010 88 00 00 00  

0000100C F2 80 00 00  

00001008 24 00 20 04  

00001004 E2 C0 00 00  

00001000 22 00 20 00 SUBPROG 

00000FFC   
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6.7.6.  An Example Application of Hardware and Software 

Consider the example chemical experimental set up shown in Figure 22 where a laser beam is 
used to excite a sample. After the laser beam has been extinguished, the sample relaxes back to 
the ground state by emitting light. A monochromator and detector can be used to record the 
decay of the emitted light of a given wavelength.  
 

-V
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PMT
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3

3

CONVERT

DATA -DATA0 n-1

BUSY
(0 = idle; 1 = busy)

Sample
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. . .

LaserExp .cdr 21-Oct-2002 T V Atkinson   Department of Chemistry   Michigan State University

 

Figure 22  Laser Experiment  

 

The sequence of events in the experiment are detailed below. 
1. Shutter is closed. Fire laser. 
2. Wait for Laser beam to dissipate. 
3. Open Shutter. 
4. Start ADC. 
5. Wait until ADC has finished conversion. 
6. Read ADC data register. 
7. Store Number in the next element of the data array. 
8. Decrement the count of data points taken. 
9. If more points are needed, delay for the amount of time between acquiring points and 

then go back to Step 4 
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The interface to this experiment would look like Figure 23 to the software. Figure 24 show the 
first several hundred microseconds of the time course of the experiment using the program.  

 

Implementation Steps: 

1. Design 
a. Design the details of the experiment. 
b. Identify signals to be interfaced. 
c. Identify the steps required for execution of the experiment. 
d. Build the interface. Decide on the actual physical addresses of the various 

registers in the interface. 

2. Program Development 
a. Decide how the CPU registers are to be utilized by the program. 
b. Lay out the logical flow of the program. Generate the actual program steps in 

nmemonic form. 
c. Layout the utilization of memory. 

i. Decide where to put the arrays to receive the data. 
ii. Decide where the constants are to be stored. 

iii. Decide where the first instruction of the program is to be stored. 
iv. Determine the address of each instruction of the program. 

d. Translate the mnemonic instructions into machine language (binary). Insert into 
the instructions the actuasl physical addresses of operands and branch points. 

3. Set Up 
a. Assemble all experimental equipment. 
b. Install any interface hardware. 
c. Make all connections between the interface and the experimental apparatus. 
d. Load memory by depositing the machine language form into the appropriate 

locations. 

4. Debug the facility 
a. Deposit the address of the logical entry point of the program into the CPU PC 

register. 
b. Assert GO. 
c. Observe operation during and after the run to insure the facility is working 

correctly. You may have to use a known sample to facilitate this operation. 
d. Modify the program and repeat the debug process until correct. 

5. Production 
a. Place the appropriate sample in the apparatus. Select the appropriate wave lenth 

to be observed 
b. Execute the program 
c. Transfer the data to the appropriate place(s) for long term storage, analysis, and 

presentation. 
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Interface Registers

LaserExpReg.cdr    21-Oct-2002

Status Register
B

us
y

b7 b6 b5 b4 b3 b2 b1 b0

D0

Control Register

SH
U

TT
ER

FI
R

E

C
O

N
VE

R
T

b7 b6 b5 b4 b3 b2 b1 b0

D1 D0D2

Intensity Registerb7 b6 b5 b4 b3 b2 b1 b0

D1 D0D2D3D4D5D6D7

A
D

C
7

A
D

C
6

A
D

C
5

A
D

C
4

A
D

C
3

A
D

C
2

A
D

C
1

A
D

C
0

 
 

Figure 23  Laser Experiment Interface (software View) 
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There are three device controller (interface) registers associated with this interface.  

6.7.7.  Sample Program 

Notice that the program makes the following use of the CPU registers. Assume that each 
instruction takes 2.0 microseconds to execute. 

 
Reg Use 

R1 Control word for interface. 

R2 Number of points yet to acquire. 

R3 Next storage location in the array to hold the data points. 

R4 ADC value 

R5 Delay counter 
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Location Contents 
(word) 

Label Op Code I/D Ra Rb Operand Comments 

        ; --- Initialization --- 

00001000 24 00 A0 18 START: LOAD D R2  NUMPNT ;Set number of points to acquire 

00001004 26 00 A0 20  LOAD D R3  POINT ;Set storage pointer 

        ; --- Excite the sample --- 

00001008 22 00 A0 0C  LOAD D R1  #1 ;Fire Laser 

0000100C 32 1F FF EC  STORE D R1  CONTROL  

00001010 10 00 00 00  NOOP     ;Kill 8 micro seconds 

00001014 10 00 00 00  NOOP     ;   while laser beam dies 

00001018 10 00 00 00  NOOP      

0000101C 10 00 00 00  NOOP      

00001020 22 00 A0 10  LOAD D R1  #2 ;Open shutter 

00001024 32 1F FF EC  STORE D R1  CONTROL  

00001028 10 00 00 00  NOOP     ;Kill 4 microsec while shutter settles 

0000102C 10 00 00 00  NOOP      

        ; --- Acquire Data --- 

00001030 22 00 A0 14 LOOP1: LOAD D R1  #6  

00001034 32 1F FF EC  STORE D R1  CONTROL ;Start ADC, keep shutter open 

00001038 22 00 A0 10  LOAD D R1  #2 ;Reset ADC trigger, keep shutter open 

0000103C 32 1F FF EC  STORE D R1  CONTROL  

00001040 32 1F FF F0 LOOP2: LOAD D R1  STATUS ;Wait until ADC is done 

00001044 92 00 10 40  BNE  R1  LOOP2  

00001048 28 1F FF F4  LOAD D R4  DATA ;Get ADC value 

0000104C 38 E0 00 04  STORE I R4 R3  ;Store the value in data array 

00001050 E6 00 A0 0C  ADD D R3  #1 ;Increment the pointer 

00001054 2A 00 A0 00  LOAD D R5  DELAY ;Wait to take the next point 

00001058 EA 00 A0 14 LOOP3: ADD D R5  #-1 ;Decrement delay counter. Kill time 

0000105C 9A 00 10 58  BNE  R5  LOOP3 ;Branch if delay time is not over 

00001060 E4 00 A0 14  ADD D R2  #-1 ;Decrement the counter 
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Location Contents 
(word) 

Label Op Code I/D Ra Rb Operand Comments 

00001064 94 00 10 30  BNE  R2  LOOP1 ;Branch if not done 

00001068 00 00 00 00  HALT     ;All done, stop 
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View Of Memory Before Execution 

Location Contents Logical Name 

001FFFFC  Last word 

001FFFF8   

001FFFF4  DATA 

001FFFF0  STATUS 

001FFFEC  CONTROL 

001FFFE8   

001FFFE4   

001FFFE0   

 
0000A03C   

0000A038   

0000A034   

0000A030   

0000A02C   

0000A028   

0000A024   

0000A020  data array 

0000A01C   

0000A018 00 00 03 E8 NUMPNT (10010) 

0000A014 00 00 00 06 6 

0000A010 00 00 00 02 2 

0000A00C 00 00 00 01 1 

0000A008 FF FF FF FF -1 

0000A004 00 00 A0 20 POINT 

0000A000 00 00 00 0F DELAY (1510) 

00009FFC   

00009FF8   

 
 
Location Contents Logical Name 

00001070   

0000106C   

00001068 00 00 00 00  

00001064 94 00 10 30  

00001060 E4 00 A0 14  

0000105C 9A 00 10 58  

00001058 EA 00 A0 14  

00001054 2A 00 A0 00  

00001050 E6 00 A0 0C Loop3 

0000104C 38 E0 00 00  

00001048 28 1F FF F4  

00001044 92 00 10 40  

00001040 32 1F FF F0 LOOP2 

0000103C 32 1F FF EC  

00001038 22 00 A0 10  

00001034 32 1F FF EC  

00001030 22 00 A0 14 LOOP1 

0000102C 10 00 00 00  

00001028 10 00 00 00  

00001024 32 1F FF EC  

00001020 22 00 A0 10  

0000101C 10 00 00 00  

00001018 10 00 00 00  

00001014 10 00 00 00  

00001010 10 00 00 00  

0000100C 32 1F FF EC  

00001008 22 00 A0 0C  

00001004 26 00 A0 20  

00001000 24 00 A0 18 START 

00000FFC   
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Digital Timing Diagrams
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Figure 24  Laser Experiment Timing (microseconds) 
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7.  Computer Architecture Taxonomy  

7.1.  Special Buses  

Figure 25  Special Memory Bus  
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7.2.  Coprocessors  
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Figure 26  Special CPU Bus 
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Figure 27  Floating Point CoProcessor I  
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7.3.  Multiple I/O buses  
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Figure 28  Complex I/O  
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Figure 29  Complex I/O: An Example 
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2. Compatibility with existing equipment  

3. Compatibility with other vendors  

7.3.1.  Problems  

1. Complexity of Hardware  

2. Timing Delays  

3. Extra Software  

7.3.2.  Examples  

1. DEC PDP8: PDP8 <--> PDP8I <--> PDP8E  

2. IBM PC: XT <--> AT <--> EISA, MCA, PCI, or Local Bus 

3. DEC VAX: SBI (11/780) <--> MASSBUS  

4. DEC VAX: SBI (11/780) <--> UNIBUS  

5. DEC VAX: SBI (11/780) <--> QBUS  

6. IBM PC – ISA 

7. IBM PC – PCI 

8. SCSI 

9. IEEE 488 
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8.  Multiple Processors  
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Figure 30  Multiple Processors: Very Loosely Coupled  



Aspects of Computer Architecture 
Multiple Processors 

November 2, 2004 - 78 - 

 

CPU MEM

I/O Bus

External
Device

External
Device

I/O
Interface

I/O
Interface

I/O
InterfaceCPU MEM

I/O Bus

External
Device

I/O
Interface

I/O
Interface

Computer B

Computer A

Multiple Processors:  Loosely Coupled

CEM924CPU 9    4-APR-1992

 
Figure 31  Multiple Processors: Loosely Coupled  
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Figure 32  Multiple Processors: Parallel  

 

C P U
# 1

S h a r e d
M e m o r y

C P U
# 2

Memory
#2

Memory
#1

I/O BUS

I/O

CEM924  CPU 10    4-APR-1992

Parallel Processors

F

B D

E

C

A

d. Arbitrary

b. Star

F

B

DE

C

A

FB D ECA

g.  Bus (party line)

FB D ECA

f.  Daisy Chain

Net Topology     4-APR-1992
T V Atkinson

Department of Chemistry
Michigan State University

B

D

E C

A

a. Fully Connected

F

F B

D

E C

A

A

CB

ED

F c. Tree

Selected Communication Network Topologies

e.  Ring

 
Figure 33  Multiple Processors: Connection Topologies  
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9.  Disk Drives  

9.1.  General Architecture  

Figure 34, Figure 35, and Figure 36 are a generalized depiction of a modern disk drive. This 
particular drive has two platters, four surfaces, and 8 heads. In actual practice, a drive may have 
one or more platters. One or both surfaces maybe used to contain data. Each surface may have 
one, two, or even more heads. Only one head is active at any given time. The head positioner 
places the heads over the track to be read or written. Various physical techniques are used to 
change (write) or sense (read) the magnetization of small domains of magnetic oxide within a 
track. Each bit of information will be encoded into one of these domains. 
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Figure 34  Generalized Drive (Cross Section  
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Figure 35  Head Positioners  
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Figure 36  Generalized Controller  
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9.2.  Disk Format  

1. Sectors  
 Preamble – track address, sector address (overhead) 
 Data – the user’s data 
 Postamble - redundancy or error detection data (overhead) 
2. Tracks  
3. Cylinders  
4. Partitions  

Figure 37  Track Sector Layout: CAV  
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Figure 38  Track Sector Layout: CLV 
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Figure 39  Track Skew - Interleave  

 

9.3.  Mapping Sectors into Logical Blocks  

A method of increasing performance is to interleave sectors and to skew tracks. Interleaving 
sectors changes the formating of the track so that logically ajacent sectors are actually separated 
physically, this provides time for the computer to digest one sector of information and get ready 
for the next before the next sector arrives below the head. The penalty for not being ready is 
waiting for a complete revolution of the disk before the desired sector again appears under the 
head.  

Track skew is a similar technique. The disk is formatted so that sector 0 of the next track is 
located some angle (number of sectors) from the angular position of sector 0 of the previous 
track. 

Both techniques are based on the fact that most disk read or write operations involve a number of 
logically consecutive sectors.



Aspects of Computer Architecture 
Disk Drives 

November 2, 2004 - 86 - 

Table 15  Disks:  Mapping Physical Sectors into Logical Blocks 
Interleave  0 1  2  1

Track Skew  0 0  0  1
Logical 

Block 
Track Sector Track Sector Track Sector Track Sector

0 0 0 0 0 0 0 0 0
1 0 1 0 2 0 3 0 2
2 0 2 0 4 0 6 0 4
3 0 3 0 6 0 9 0 6
4 0 4 0 8 0 1 0 8
5 0 5 0 10 0 4 0 10
6 0 6 0 1 0 7 0 1
7 0 7 0 3 0 10 0 3
8 0 8 0 5 0 2 0 5
9 0 9 0 7 0 5 0 7

10 0 10 0 9 0 8 0 9
11 0 11 0 11 0 11 0 11
12 1 0 1 0 1 0 1 1
13 1 1 1 2 1 3 1 3
14 1 2 1 4 1 6 1 5
15 1 3 1 6 1 9 1 7
16 1 4 1 8 1 1 1 9
17 1 5 1 10 1 4 1 11
18 1 6 1 1 1 7 1 0
19 1 7 1 3 1 10 1 2
20 1 8 1 5 1 2 1 4
21 1 9 1 7 1 5 1 6
22 1 10 1 9 1 8 1 8
23 1 11 1 11 1 11 1 10
24 2 0 2 0 2 0 2 0
25 2 1 2 2 2 3 2 2

     
 

9.4.  Figures of Merit for a Disk 

FCI - Flux changes per inch. Density of flux changes along a track. 

BPI - Bits per inch along a track. 

TPI - Tracks per inch along the radius of the disk. 

Areal Density - Density of data bits per square area. 
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Rotational Speed 

Track to adjacent track seek time 

Seek time (average) - The average time required to seek a given sector. This is the sum of 
one half the number of tracks times the track to track seek time plus one half of the time 
for one rotation. 

Table 16  Disks: Example Drives 
Attribute Units Kennedy 5380 Kennedy 7300 Seagate 

ST-12550W 

DEC Rx02 

(Floppy) 

Platter diameter  inches 14 in 8 in 3.5 8 

Number of platters  3 3 10 1 

Number of data surfaces  5 5 19 1 

Number of heads  5 5 19 1 

Number of cylinders  823  2707 77 

Bits per inch  6330 9420 52187  

Tracks per inch  430 480 3047 48 

Tracks per surface  411 411  77 

Capacity (unformatted) Bytes 82M 41.4M 2572M 512K 

Head flying heighth µin 20 15   

Track to adjacent track seek msec 10 6 0.6  

Track to track seek (max) Msec 65 55 18  

Track to track (average) Msec 35 30 8.9  

Spindle Rotation rate Rpm 3000 3600 7200 360 

Rotation times Msec 20 16.7 8.33 166.7 

Transfer Rate  Bits per sec 9.67M  35.3M 62.5K 

Power consumption Watts  75 13  

Mean time between failures (MTBF) Hrs 10000 10000 500000  

Drive Size in 7x17x25 4.6x8.5x14.25 1.6x4.0x6  

Drive weight  75 lbs 20 lbs 2.3  

Date of information  1982 mid 1980’s 1994 mid 1970’s 

 

9.5.  Combinations of Disks  
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9.5.1.  Combinations of Simple Disks 

The computer industry has typicaly sought three goals (performance, reliability, availability, and 
low cost) that are often at odds with one another. This is true for complete systems as well as 
particular subsystems. This section examines some of the developments centered on using more 
than one of the simpler disk drives. Many of these techniques are embodied in a formailization 
called Redundant Arrays of Inexpensive Disks (RAID)2. 

RAID is a set of techniques to provide higher performance and highly available disk systems 
using a number of drives and/or controllers in concert. The original intent was to use a 
combination of inexpensive disks to achieve the performance and functionality of large 
expensive disks. A number of taxonomies have been identified. Patterson, Gibson, and Katz of 
UC Berkeley first proposed RAID in 1987. RAID-1, 3, and 5 have been the most popular so far. 

The array of disks appears as one logical drive. A given file is distributed over the drives in a 
defined manner. Redundancy is added to allow for recovery of data in the case of failures. 
Redundancy is extra data (overhead) that is stored with the data to enhance the probability that 
when reading the data back off the disk that two things will happen. First, that any errors in 

                                                 
2 “An Introductions to RAID, Redundant Arrays of Inexpensive Disks,” Pete McLean, April 24, 1991, Digital 
Equipment Corporation. 
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Figure 40  Disk System Strategies 
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reading the data will be detected. Second, if errors occur, the original data can be reconstructed 
using the redundant information. Performance is increased since each drive in the RAID set can 
be seeking and reading various pieces of the requested set of data independently and 
simultaneously of the other drives.  

RAID-0:  Simple disk striping where a file is divided into chunks. Each successive chunk is 
stored on the same block of the next disk of the set. When the last disk of the set has been used, 
the next chunk goes in the next available block on the first drive, … There is actually no 
redundancy in this case. 

RAID-1:  The original example and is also called disk shadowing or mirroring. As each block of 
a file is written to the disk system, a copy of the block is written on each drive of the RAID set. 
In case of disk failure, data can be retrieve from the other drives of the set. 

RAID-2:  Similar to RAID-3 except that a Hamming code is used to generate a number of 
redundancy chunks per subset of data chunks. 

RAID-3:  As in RAID-0, the file is divided into chunks and stored on n-1 disks of the RAID set. 
The nth disk of the RAID set contains a redundancy chunk, i.e., the Xor of the subset of data 
chunks, stored on the data disks in the corresponding blocks. 

RAID-4:  Similar to RAID-5 except that the redundancy chunks are all on one disk. 

RAID-5:  A redundancy chunk is used as in RAID-3 but any given drive contains both 
redundancy blocks and data blocks. 

RAID-6:  A more complicated redundancy algorithm is used, producing two chunks of 
redundancy information for each set of n-2 data chunks. As in RAID-5, data and redundancy 
chunks are distributed over all drives. 
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Figure 41  Disk Groupings - Raid 0 
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Figure 42  Disk Groupings - Raid 1 
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Figure 43  Disk Groupings - Raid 1 Alternative 
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Figure 44  Disk Groupings - Raid 3 
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Figure 45  Disk Groupings - Raid 5 
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10.  Memory Utilization  

Figure 46  Memory Utilization  
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11.  Boot Straps  

Figure 47  Boot Strapping 

11.1.  Simple  

1. Enter the Primary Bootstrap program into memory. (See Figure 47)  

2. Enter the address of the entry point of the Primary Bootstrap Program into the PC.  

3. Press Reset  

4. Press Run  

5. Primary Bootstrap reads the boot block of the system disk into memory, usually 
starting at address 0. (See Figure 47 Step 2)  

6. Jump to the address of the entry point of the Secondary Bootstrap.  

7. Secondary Bootstrap reads the Tertiary Bootstrap into a portion of memory that 
will not interfere with the loading of the Executive. (See Figure 47 Step 3)  

8. Jump to the address of the entry point of the Tertiary Bootstrap.  
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9. Load the Executive into memory from the System Disk. (See Figure 47 Step 4)  

10. Jump to the entry point of the Executive.  

11. Executive will do further initialization of system data tables and load in any 
system overlays that are appropriate for this point of operation.  

12. Executive executes any System Manager controlled startup scripts. These scripts 
perform additional initialization that is specific to the particular installation.  

12.1. PC/MS-DOS:  \AUTOEXEC.BAT, \CONFIG.SYS 

12.2. VMS:  SYS$MANAGER:SYSTARTUP_V5.COM 

12.3. SYS$STARTUP:SYLOGICALS.COM 

12.3. UNIX:  /etc/rc* 

13. Accept commands from the user(s)  

11.2.  Typical of Modern Machines with a Volatile Executive  
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Figure 48  Front Panel Emulator  

1. A simple resident Executive, Front Panel Emulator", which contains the Primary 
Bootstrap program is permanently installed in ROM in the CPU's address space. 
(See Figure 48)  

2. Invoke the Primary Bootstrap by one of the following.  

2.1. Power Up  

2.2. Press Reset 

2.2. "Reset" The system (e.g. <CTRL><ALT><DEL>)  

2.3. Start execution at the entry point of the Primary Bootstrap (Not usually 
done)  

3. Typically the Front Panel Emulator will include simple diagnostics that will be 
run at this point. These are programs that exercise the hardware and detect some 
forms of aberrant behavior. If errors are detected, the boot process stops.  

4. In some cases, the Front Panel Emulator will engage in a dialog with the User at 
this point, allowing the running of additional diagnostics, disk formatting and/or 
other simple chores. The user may be able to specify which of several system 
disks will be booted in the next steps.  

5. In some cases, a sniffer boot will occur. The Primary Bootstrap will try the 
following steps on each of a list of candidate system disks. As soon as one is 
found that has an intact boot block, the booting process will continue on that disk.  

6. Primary Bootstrap reads the boot block of the system disk into memory, usually 
starting at address 0. (See Figure 49 Step 2)  

7. Jump to the address of the entry point of the Secondary Bootstrap.  

8. From this point on, everything proceeds as in the simple bootstrap.  
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11.3.  Machines with a ROM based Operating System  

Figure 49  Booting a ROM Based OS 

1. The Resident part of the Operating System Executive is permanently installed in 
ROM in the CPU's address space.  

2. Invoke the Primary Bootstrap portion of the Resident Executive by one of the 
following.  

2.1. Power Up 

2.2. Press Reset 

2.2. "Reset" The system (e.g. <CTRL><ALT><DEL>)  

2.3. Start execution at the entry point of the Primary Bootstrap (Not usually 
done)  

3. Typically simple diagnostics will be run at this point.  

4. Executive will do further initialization of system data tables and load in any 
system overlays that are appropriate for this point of operation.  

5. Executive executes any System Manager controlled startup scripts. These scripts 
perform additional initialization that is specific to the particular installation.  
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6. Accept commands from the user(s)  

12.  Memory Systems  

Table 17  Powers of 2 (Abbreviated)  
n DEC OCT HEX a.k.a. 

10 1024 2000 400 1K 

11 2048 4000 800 2K 

12 4096 10000 1000 4K 

13 8192 20000 2000 8K 

14 16384 40000 4000 16K 

15 32768 100000 8000 32K 

16 65536 200000 10000 64K 

17 131072 400000 20000 131K 

18 262144 1000000 40000 256K 

19 524288 2000000 80000 512K 

20 1048576 4000000 100000 1M 

21 2097152 1000000 200000 2M 

22 4194304 20000000 400000 4M 

23 8388608 40000000 800000 8M 

24 16777216 100000000 1000000 16M 

25 33554432 200000000 2000000 32M 

26 67108864 400000000 4000000 64M 

27 134217728 1000000000 8000000 128M 

28 268435456 2000000000 10000000 256M 

29 536870912 4000000000 20000000 512M 

30 1073741824 10000000000 40000000 1G 

31 2147483648 20000000000 80000000 2G 

32 4294967296 40000000000 100000000 4G 
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Table 18  Representative Examples of DRAM Chips  
Part Number Num Bits Org Power Of 2 Pins Data Lines Add lines Access Data Book 

MCM4027AC-2 4K 4Kx1 12 16 1/1 6 150 Motorola 1980 

MCM4516C12 16K 16Kx1 14 16 1/1 7 120 Motorola 1980 

MCM6632L15 32K 32Kx1 15 16 1/1 8 150 Motorola 1980 

MCM6664L15 64K 64Kx1 16 16 1/1 8 150 Motorola 1980 

HM48416A-12 64K 16Kx4 14 18 4 8 120 Hitachi 1984 

HM50256-12 256K 256Kx1 18 16 1/1 9 120 Hitachi 1984 

MCM511000A-70 1M 1Mx1 20 26 1 10 70 Motorola 1994 

MCM514256A-70 1M 256Kx4 18 26 4 9 70 Motorola 1994 

MCM44100B-60 4M 4Mx1 22 26 1 11 60 Motorola 1994 

MCM44400B-60 4M 1Mx4 20 26 4 10 60 Motorola 1994 

MCM54800A-70 4M 512Kx8 19 28 8 8 70 Motorola 1994 

MCM54170B-70 4M 256Kx16 18 40 16 8 70 Motorola 1994 

MCM516160A-60 16M 1Mx16 24 42 16 8 60 Motorola 1994 

MCM54190B-70 16M 256Kx18 18 40 18 8 70 Motorola 1994 

MCM516180A-60 16M 1Mx18 20 42 18 8 60 Motorola 1994 

MCM516100-60 16M 16Mx1 24 28 1/1 12 60 Motorola 1994 

MCM516400-60 16M 4Mx4 22 28 4 10 60 Motorola 1994 
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Table 19  Representative Examples of SIMMS  
         Main Chip  Second Chip

Part Number Num Bits Org Pins Size Style # Chips Data 
Lines 

Add lines Num Chip Org Num Org 

MCM81000 8M 1Mx8 30x1  SIMM 8 8 10 8 511000 1Mx1   

MCM81430 8M 1Mx8 30x1  SIMM 2 8 10 2 54400 1Mx4   

MCM84000 32M 4Mx8 30x1  SIMM 8 8 11 8 54100A 4Mx1   

MCM81600 64M 16Mx8 30x1  SIMM 4 8 12 4 517400 16Mx1   

MCM91000 9M 1Mx9 30x1  SIMM 9 8 10 9 511000 1Mx1   

MCM91430 9M 1Mx9 30x1  SIMM 3 8 10 2 54400AN 1Mx4 1 1Mx1

MCM94000 36M 4Mx9 30x1  SIMM 9 9 10 9 54100A 4Mx1   

MCM91600 144M 16Mx9 30x1  SIMM 9 9 12 9 517400 16Mx1   

MCM32100 32M 1Mx32 72x2 S DIMM 8 32 10 8 54400AN 1Mx4   

MCM32130 32M 1Mx32 72x1 L SIMM 8 32 10 8 54400 1Mx4   

MCM32230 64M 2Mx32 72x1 L SIMM 8 32 10 8 54400 1Mx4   

MCM32400 128M 4Mx32 72x1 L SIMM 8 32 11 8 517400 16Mx1   

MCM32400D 128M 4Mx32 72x2 S DIMM 8 32 12 8 516400 4Mx4   

MCM32800 256M 8Mx32 72x1 L SIMM 8 32 11 8 517400 16Mx1   

MCM36100 36M 1Mx36 72x1 L SIMM 12 36 10 8 54400 1Mx4 4 1Mx1

MCM36104 36M 1Mx36 72x1 L SIMM 9 36 10 9 54400 1Mx4   

MCM36200 72M 2Mx36 72x1 L SIMM 24 36 10 16 54400 1Mx4 8 1Mx1

MCM36204 72M 2Mx36 72x1 L SIMM 18 36 10 18 54400 1Mx4   

MCM36400 144M 4Mx36 72x1 L SIMM 12 36 10 8 54400 1Mx4 4 4Mx1

MCM36800 258M 8Mx36 72x1 L SIMM 24 36 11 16 517400 4Mx4 8 4Mx1

MCM40100 40M 1Mx40 72x1 L SIMM 10 40 10 10 54400 4Mx4   

MCM40200 80M 2Mx40 72x1 L SIMM 20 40 10 20 54400 4Mx4   

MCM40400 160M 4Mx40 72x1 L SIMM 10 40 11 10 517400 4Mx4   

MCM40800 320M 8Mx40 72x1 L SIMM 20 40 11 20 517400 4Mx4   

MCM64100 64M 1Mx64 84x2  DIMM 16 64 11 16 54400 1Mx4   

MCM64400 128M 4Mx64 84x2  DIMM 16 71(64) 12 16 516400 4Mx4   

WPD8M72 256M 8Mx72 84x2  DIMM 36 72 12 36  4Mx4   

 

13.  Increasing Performance  

1. Improve program (operating system or application)  
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2. Improve physical implementation (CPU, Memory, and/or Peripherals). This 
would entail rebuilding the same architecture with faster components. For 
instance, using transistors rather than vacuum tubes, TTL rather than RTL, ECL 
rather than TTL, or just be more careful so that things can run faster without 
errors.  

3. Improve architecture (hardware or software)  

4. Add concurrency (actually an example of above)  

4.1. Pipe lining (instruction fetch-decode-execution, floating point operations, 
vector operations)  

4.2. Branch prediction (to optimize instruction pre-fetch) 

4.2. Cache (Memory, instruction, data, and disk)  

4.3. Memory Interleaving  

4.4. Disk interleaving (sector interleaving, track skewing)  

4.5. Parallel Processing  

4.6. Coprocessors - math, graphics, vector, array  

4.7. Multiple CPU's  

4.8. DMA device controllers 
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13.1.  Concurrent Tasks  

13.1.1.  Tasks are completely independent.  

Figure 50  Concurrent Tasks  
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13.1.2.  Pipelines (Tasks are somewhat independent)  

Figure 51  Concurrent Tasks (Partial Dependence)  

13.1.3.  Cache  
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Figure 52  Cache and RAM Disk  

Figure 53  Memory Cache Controller  

The following examples describe the operation of a generalized memory cache. In these 
examples, A, B, C, D, E, and F symbolically refer to specific locations within the physical 
memory space of the system. 

1. CPU issues a read instruction to fetch the contents of memory location A. A copy 
of A is not currently being held in the cache. The cache store is not full. 

1.1. Cache controller passes reference through to memory subsystem. 

1.2. Memory returns the contents of memory location A to the cache 
controller. 

1.3. Cache controller passes the contents of memory location A onto the CPU. 

1.4. Cache controller stores the address of A and the contents of A in the cache 
store. 

2. CPU issues a read instruction to fetch the current contents of memory location B. 
A copy of B is currently being held in the cache. For this case, whether the cache 
is full or empty has no effect. 

2.1. Cache controller returns the contents of Memory Location B to the CPU 
using the copy located in the cache store. 
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3. CPU issues a read instruction to fetch the contents of memory location C. A copy 
of C is not currently being held in the cache. The cache store is full. 

3.1. Cache controller decides which of the existing set of copies of memory 
locations to discard in order to create space for the new reference. 

3.2. Cache controller passes the reference through to memory subsystem. 

3.3. Memory returns the contents of memory location C to cache controller. 

3.4. Cache controller passes the contents of memory location C onto the CPU. 

3.5. Cache controller stores the address of C and the contents of memory 
location C in the cache store in the newly freed slot. 

4. CPU issues an instruction to write a new value into memory location D. A copy 
of D is currently not being held in the cache. The cache store is not full. 

4.1. Cache controller stores the address of D and the new contents of memory 
location D in the cache store. 

4.2. Cache controller passes the address of memory location D and the new 
contents of memory location D to the memory subsystem which stores the 
new value into location D. 

5. CPU issues an instruction to write a new value into memory location E. A copy of 
E is not currently being held in the cache. The cache store is full. 

5.1. Cache controller decides which of the existing set of copies of memory 
locations to discard from cache store. 

5.2. Cache controller stores the address of memory location E and the contents 
of memory location E in the cache store in the newly freed slot. 

5.3. Cache controller passes the address of memory location E and the new 
contents of memory location E to the memory subsystem which stores the 
new value into memory location E. 

6. CPU issues an instruction to write a new value into memory location F. A copy of 
memory location F is currently being held in the cache. For this case, whether the 
cache is full or empty has no effect. 

6.1. Cache controller stores the address of F and the contents of memory 
location F in the cache store in an empty slot. 
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6.2. Cache controller passes the address of memory location F and the new 
contents for memory location F to the memory subsystem which stores the 
new value into memory location F. 

13.1.4.  Direct Memory Access (DMA)  

DMA is an example of asymmetrical parallel processing where the disk controller is doing work 
while the CPU is doing other tasks. The device controller has enough intelligence to manage the 
transfer of information to (from) memory from (to) a disk drive once the transfer has been set up 
by the CPU (i. e. software). This section is a simplified example of such a device. To begin, 
however, the section illustrates the simpler, non-parallel programmed I/O technique of 
controlling a device such as a disk. In addition, this section will investigate some simple 
examples of interrupt structures, a necessary part of DMA operations. 

Figure 54  Program I/O  

Figure 54 is a programmer's model of a simple interface to a disk. In this example "G" is the go 
bit [ =0 stop disk controller, =1 find block and begin transfer ], "R/W" is the direction bit [ =0 
read (information is transferred from disk to cpu), =1 write (information is transferred from the 
CPU to the disk)], "B" is the busy bit [ =1 busy (next byte is being sought), =0 not busy (byte is 

13.1.4.1.  Programmed I/O (Example: reading a block of data)  
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CEM 924  IO 1   12-APR-1992
T V Atkinson

Department of Chemistry
Michigan State University

Programmed I/O

GBn

n + 1

n + 2

n + 3

n + 4

Physical Memory Space

Control/Status Register  (CSR)

Block Number (LSB)

Block Number

Block Number (MSB)

Data to/from disk

b7 b6 b5 b4 b3 b2 b1 b0



Aspects of Computer Architecture 
Increasing Performance 

November 2, 2004 - 107 - 

ready to be transferred from controller to CPU), and "n" is the base address of the register set for 
the interface.  

1. Write the number of the block on the disk to be fetched into the Block Number 
registers  (n+1), (n+2), (n+3). Using three successive writes to the three byte 
registers will do this.  

2. Write a "1" into the GO bit and a "0" into the R/W bit  

3. LOOP: Read CSR(n)  

4. IF CSR is negative, go to LOOP  

5. Read the Data Register (n+4); Get next byte from disk  

6. Put the byte away in memory  

7. If there are more bytes to get, go to LOOP  

8. If there are no more bytes to get, Write a "0" into GO bit of CSR (n); Stop the 
controller  

13.1.4.2.  Asynchronous I/O (Interrupt Structures)  

As the next section will illustrate, if two independent devices, e. g. the CPU and the I/O device, 
are to operate asynchronously there must be mechanisms for the two entities to signal each other 
when necessary. The spinning-on-a-bit technique illustrated in the laser experiment is one 
example. Spinning-on-a-bit is very simple but inefficient; the CPU does nothing but watch the 
flag bit, waiting for the device, in that case the ADC, to finish. 

The ability of an I/O device to interrupt the processing of the CPU provides another way for this 
necessary signaling to occur. In such cases, the program running in the CPU sets up the I/O 
controller for the I/O operation. The program then gives the I/O controller the command to begin 
the operation. At this point, the CPU is no longer needed and may proceed with other processing. 
The I/O device continues asynchronously until the operation I/O is completed. Upon completion, 
the I/O device must signal the program, so that appropriate actions may be taken, for example set 
up the next I/O operation. To achieve this signaling the I/O device “pulls an interrupt.” This 
section examines simplified versions of two strategies of doing interrupts. 

 
13.1.4.2.1. Interrupt Structure 1  

Figure xx illustrates this technique. Both the CPU and the I/O controllers have additional logic to 
implement the interrupt structure. Two explicit signals, Interrupt Request and Interrupt Grant 
are added to the Control Bus. Notice that Interrupt Request is a single signal bus, but 
Interrupt Grant is actually a “daisy chain,” the signal is generated in the CPU and sent to the 
first device which then has to repeat the process and sent the signal to the second device. 
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The main program sets up the I/O device for the desired operation, e. g. read a particular block, 
or write a block. The last step of this part of the operation is to enable the I/O device to do 
interrupts. 

When the I/O operation is complete, the I/O device asserts Interrupt Request. The CPU 
interrupt handler determines if CPU interrupts are enabled. If so, it interrupts CPU operation at 
the end of the next instruction. If not, it waits until the current program decides to allow 
interrupts and enables them. 

The CPU saves the current context, every thing that defines the current state of the program, in 
memory. At the minimum, the contents of the PC must be saved so that the program can be 
restarted later. Other registers may also be saved at this point. This is all achieved by logic 
within the CPU. 

The CPU then asserts Interrupt Grant. This signal is passed down the daisy chain until 
reaching the first device that has an interrupt pending. That device does not pass the signal down 
the daisy chain. Thus priority of interrupt service is determined by the place on the bus. 

The I/O controller interrupt handler puts an interrupt service address unique to that device onto 
the Address Bus. This interrupt service address has been “hard wired” into the I/O controller at 
the time of installation, often with jumpers.  

The CPU interrupt handler reads the interrupt service address and get the contents of the memory 
location with that address and loads that number into the PC. In simpler terms, CPU program 
execution jumps to the location of the Interrupt Service Routine for that specific I/O device. 

The Interrupt Service Routine saves any additional context of the interrupted program and then 
does any processing that is appropriate at this point for the I/O device. At some point the 
Interrupt Service Routine will reset the I/O controller and thus, clear the interrupt. When done 
the Interrupt Service Routine restores any of the context of the interrupted program and executes 
an interrupt return. 

The CPU finishes restoring the context of the interrupted program. The last step of this is loading 
the PC with the address of the next instruction of the interrupted program. Execution then 
resumes. 
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13.1.4.3.  DMA I/O (Example: Write a block to disk)  

1. Write the number of the block on the disk that will receive the information into 
the Block Number registers (n+1), (n+2), (n+3).  

2. Write the physical memory address of the information to be written onto the disk 
into the memory address register registers (n+4), (n+5), (n+6), (n+7).  

3. Write the number of the bytes to be transferred into the Byte Count Register 
(n+8), (n+9).  

4. Write a "1" into the GO bit and a "1" into the R/W bit  

5. Continue the program from this point  
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Figure 55  DMA Example  
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6. When the block has been transferred, the disk controller will signal (interrupt) the 
CPU and the CPU will stop executing the current program and execute any code 
that is required finish the transfer and then resume processing the interrupted 
program at the point of the interruption.  

14.  Memory Management  

14.1.  Introduction  

The matching of the size of a program and the size of the available memory has always been an 
important concern. Often the logical image of a program is larger than the amount of physical 
memory that is available to contain it (See Figure 56). Several factors govern the amount of 
physical memory available to contain a given program.  

1. Size of the CPU memory address space as defined by the size of the Program 
Counter (PC) Register.  

2. Size of the physical memory address space as defined by the size of the memory 
address bus. The size of the physical memory address space can be less than, 
equal to, or greater than the size of the CPU memory address space. That is, the 
number of address signals constituting the Address Bus can be smaller than, equal 
to, or larger than the number of bits in the PC. In addition, the actual amount of 
physical memory can be less than or equal to the size of the physical memory 
address space. The actual amount of physical memory can be less than, equal to, 
or greater than the size of the CPU memory address space.  

3. The amount of physical memory required by the operating system.  

4. The amount of physical memory that any given process can expect to enjoy in a 
multitasking/user environment where resources are divided among the various 
tasks and/or users.  
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Figure 56  Program Exceeds Memory Available  

A number of possible solutions exist to the problem of a program, code and data, being larger 
than the memory available to run it. 

1. Trivial (from a programmer's point of view)  

1.1. Buy more memory  

1.2. Buy a new computer with a larger address space  

2. Software solutions  

2.1. Rewrite the program to reduce the size. 

2.2. Chain  

2.3. Overlay  

3. Hardware/Software Solutions (Address translations)  

3.1. Bank switching  

3.2. Segmentation  
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3.3. Paging  

3.4. Virtual memory  

14.2.  Motivations for Memory Management  

1. Expand CPU address space  

2. Facilitates flexible assignment of memory to process(s). Allows segmentation of a 
process.  

3. Assists in having multiple tasks in memory (multitasking)  

4. Protection of one task from another  

5. Allows sharing of data and code among tasks.  

6. Augments virtual memory implementation.  

14.3.  Software solutions  

14.3.1.  Chaining  

This approach requires that the original program be subdivided into a number of smaller stand-
alone programs, each of which is small enough to fit into the available physical memory (See 
Figure 57). Operationally, the user invokes p1. At the end of the execution of p1, p2 is invoked 
either manually or automatically if the operating system allows. At the end of the execution of 
p2, p3 is invoked, etc. Each stand alone program segment is located in a separate disk file.  

Communication among the programs is achieved via reading and writing disk files or, perhaps, 
by sharing a section of common physical memory. 

Gaussian 86 is an example of such a program. Advantages of this approach: Very large programs 
can be built. Disadvantages:  More work for the programmer. Some programs may not be easily 
segmented.  
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Figure 57  Memory Limited Programming (Chaining)  

14.3.2.  Overlaying  

The program is again segmented (See Figure 59), but this time into a set of hierarchical 
subroutines as shown below (See Figure 58). In this three layer example ROOT calls A, B, and 
C. A calls D and E, etc. When the executing program requires a particular module, a subroutine 
call is made for that module. The operating system determines if that module is already in 
memory. If so, execution immediately branches to the entry point of that module. If not, the 
operating system reads that module from disk into the appropriate segment in physical memory. 
Execution then branches to the entry point of the newly loaded module. All program segments 
are located in a single disk file.  
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Figure 58  Memory Limited Programming (Overlaying)  
 
At any one time memory contains one of the following combinations.  

1. ROOT, A, D  

2. ROOT, A, E  

3. ROOT, B, F  

4. ROOT, C, G  

5. ROOT, C, H  

6. ROOT, C, I  
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Figure 59  Overlaying (Memory Layout)  

14.4.  Hardware/Software Solutions  

The introduction of an additional hardware sub-system, i.e. memory management unit (MMU) 
(See Figure 60), allows various hardware approaches to solving the problem of memory space. 
In addition, other facilities such as memory protection and virtual memory can be included. The 
MMU will consist of a set of registers that are accessible to the CPU and some logic. The MMU 
translates the memory addresses output from the CPU (logical addresses) during the instruction 
and operand fetches stages of instruction execution into the addresses that are actually placed on 
the memory address bus (physical addresses).  

CEM 924  Mem 4    12-APR-1992
T V Atkinson

Department of Chemistry
Michigan State University

Memory
Available

Program File
(on Disk)

Memory Limited Programming
(Overlaying)

Root

Seg 1

Seg 2

Root

A

B

C

D

E

F

G

H

I

To Segment 2

To Segment 1

To Root

 



Aspects of Computer Architecture 
Memory Management 

November 2, 2004 - 116 - 

Figure 60  Memory Management  

14.4.1.  Bank Switching  

In this type of implementation, the physical address space is divided into a group of equal size 
banks (See Figure 62). The MMU contains an m bit Bank Register (See Figure 61). The contents 
of this Bank Register is concatenated to the left side of the logical address to produce a (m+n) bit 
physical address, [i:j] or i*2n + j.  

As an example, if n = 16 and m = 4, the logical (CPU) address space would be 65536. With the 
bank switching, the physical addresses on the memory address bus can now be 20 bits and 
support a physical memory address space of 1048576. At any one time, the program is operating 
in one of the sixteen physical banks of memory (B0, … , B15) of length 65536. The program 
switches between the banks by changing the contents of the Bank Register in the MMU. 
Changing the Bank Register will typically take several instruction times to affect. An 
enhancement of this approach would be to have two Bank Registers in the MMU. One would be 
used to map addresses of instruction (code). The second would be used to map addresses of data. 
This would allow the program to split the code and data into separate banks. In all cases, 
overhead would be required to switch the bank registers from one bank to another.  
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Figure 61  Bank Switching: Mapping  
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14.4.2.  Bank Switching (Partial)  

A more useful approach is to bank switch only a portion of the CPU memory space (See Figure 
64). As before, multiple banks of physical memory of equal size are switched in and out of the 
CPU memory space. The physical banks of memory are all, in turn, switched into the same 
window of addresses within the CPU logical address space. In this type implementation, there 
are two types of memory systems, regular and bank switched, found on the bus as illustrated in 
Figure 63.  
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Figure 62  Bank Switching: Memory Space 
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Figure 63  Bank Switching (Partial)  

The bank switched memory subsystem has an internal memory address bus that is isolated from 
the regular address bus by the MMU. The CPU memory space is defined by the size of the PC 
register (n bits, n = k + l). The regular address bus is n bits wide. The Bank Switched memory 
subsystem address bus is m + l bits wide. A portion of the CPU address space between BSWlo, 
and BSWhi is set aside to receive the bank switched memory. Therefore, the regular memory 
system must not answer to addresses with in this range. Typically, the bank switched window 
will be set to be a integral power of two memory locations wide and the boundaries will also be 
integral powers of two. For example:  

BSWhi - BSWlo = 2l  

The MMU contains a m bit wide register that is a regular I/O device register, i.e. the CPU can 
read/write numbers into it. During operation, the MMU takes each logical address, [i:j], on the 
regular address bus and partitions it into the most significant k bits, CPU Space window number, 
and the least significant l bits (See Figure 65). The CPU Space Window Number is compared 
with the most significant l bits of "Bank Switch (lo)". If these two numbers do not match, the 
address location of memory is not within the bank switched memory window and a regular 
memory or a device register will have to respond to the memory reference. If the two numbers 
do match, then the address is within the window and the banked switched memory has to handle 
the memory reference. The MMU then concatenates the m bits of the Bank Switch Register to 
the left of the l bits of the address within the window to form the m + j bit Bank Switched Space 
address, [h:j]. This address is then placed on the internal address bus of the Bank Switched 
Memory sub system and the appropriate location answers.  
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Figure 64  Bank Switching (Partial): Memory Spaces  

Using this technique, the cpu memory space can be expanded by (2m)*(2l) memory locations. As 
with regular memory, the Bank Switched Memory Space would not have to be fully populated 
with actual memory.  

As an example, if k = 4,  and l = 16, the logical (CPU) address space would be 1048576. The 
Bank Switch Window would be 65536 (64K). If the Bank Register were such that m = 9, the 
Bank Switched Space would be 2(9+16) = 33554432 (32M). Thus, by switching in the different 
banks of memory, the CPU could command 32M of memory. As with other techniques described 
here, there is the penalty of time required to switch the Bank Register. If the program must 
switch often among the various banks of memory, performance of the program would be 
severely decreased.  
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Figure 65  Bank Switching(Partial): Mapping  

14.4.3.  Segmentation  

The MMU contains a Segment Register of m bits(See Figure 66). The MMU receives a memory 
reference from the CPU that includes a logical memory address [j]. The contents of the Segment 
Register, [i], is shifted to the left by k bits and added to the logical address, [j], to form a (n+k) 
physical address,[h], (See Figure 66). Thus, the physical address is i*2k + j. Figure 67 illustrates 
how the memory spaces appear for the segmentation case. Figure 67 shows two example 
segments, each corresponding to a particular value in the segment register. While the Segment 
Register is set to i1, the CPU could reference any memory location in physical memory that was 
within Segment 1. While the Segment Register is set to i2, the CPU could reference any memory 
location in physical memory that was within Segment 2. 

Taking the example of n = 16, m = 16, and k = 4, the Logical (CPU) address space would again 
be 65536. With segmentation, the physical addresses on the memory address bus can now be 20 
bits and support a physical memory address space of 1048576. Now however, the physical 
memory space can be divided into a large number of segments, 2m = 65536 actually, which may 
be overlapping. Each segment will be of length 65536. At any one time, the program is operating 
in one of the segments. The program switches between the segments by changing the contents of 
the Segment Register in the MMU. This process of switching the CPU context takes several 
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instruction times to affect. An enhancement of this approach would be to have two segment 
registers in the MMU. One would be used to map addresses of instruction (code). The second 
would be used to map addresses of data. This would allow the program to split the code and data 
into separate segments. In all cases overhead is required to switch the segment registers from one 
to another.  
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Figure 66  Segmentation: Mapping 
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14.4.4.  Paging  

This section describes a simplified paging mechanism. In this paging system (See Figure 68, 69, 
70), the logical memory space is divided into 2m pages (LP0, LP1, …, LPr) of size 2n. Physical 
memory space is divided into 2k pages (PP0, PP1, …  , PPp) of size 2n (i.e. the same size as 
logical pages). The map of the transformation of logical pages into physical pages is contained in 
a set of registers called the Page Table that is located in the MMU (See Figure 70). These Page 
Table registers are located in the I/O space of the CPU and their contents are maintained by 
system software. Each entry in the Page Table contains a one bit write enable "W" register [W = 
0, page is read only. W = 1, page is read/write.] and a k bit physical page number. For example 
in Figure 70, logical page LP2 would actually be located on physical page PPc.  

Thus, to transform (See Figure 68) a given logical address [i:j], the contents of the i'th entry of 
the Page Table is concatenated with [j], the offset within the logical page, to form the physical 
address [h:j]. If the MMU receives a memory reference to write into a location on a page that is 
write protected ( W = 0), an exception is declared and the operating system is notified and 
appropriate error handling occurs. The memory reference is aborted. 
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Figure 67  Segmentation: Memory Spaces  



Aspects of Computer Architecture 
Memory Management 

November 2, 2004 - 124 - 

Figure 68  Paging: Mapping  

The main problem with this paging mechanism is the size of the Page Table that would be 
required for modern computer systems. The usual techniques modify the mechanism described 
here so that only a portion of the Page Table is maintained in the MMU at any one time. Caching 
and other techniques make this possible. 
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Figure 69  Paging: Memory Spaces  

Figure 70  Paging: Page Table  
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As an example of paging consider the two page program segment shown in Figure 71 where n = 
9, making page sizes 512, m = 7 or 128 pages in the logical memory space, k = 11 or 2048 pages 
in the physical memory space. The size of the logical memory space is 216 or 65536. The size of 
the physical memory space is 2(n + k) or 1048576. 

A and B are two memory locations within the program (See Figure 71a) and are used to illustrate 
details of the translation process that takes place for all memory references. The operating 
system in the process of loading the program into memory divides the program into logical pages 
(See Figure 71b). Note that locations within a page can be expressed relative to the individual 
page. The operating system assigns the program segment space in the logical memory (See 
Figure 71c). When the program is actually loaded into memory, the operating system finds the 
necessary free space within the physical memory and assigns the logical pages to physical pages 
(See Figure 71d) by making the appropriate entries in the Page Table (See Figure 71e). The 
actual pages of information can then be loaded into physical memory from the disk file 
containing the image of the program segment. Once the loading is complete, execution of the 
program segment can begin. Notice that this paging mechanism allows the logical pages to be 
distributed arbitrarily through the physical memory space allowing easier mapping for large 
collections of processes of different sizes that constantly change. 
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Address of Location A in various Memory Spaces 

Memory Space Binary Octal Decimal Hex

Within Program 00000000000111011101 0000735 477 001DD

Within Page 00000000000111011101 0000735 477 001DD

Logical 00000001100111011101 0014735 6621 019DD

Physical 11100000001111011101 3401735 918493 E03DD

Address of Location B in various Memory Spaces 

Memory Space Binary Octal Decimal Hex

Within Program 00000000001000110110 0000566 1066 00236

Within Page 00000000000000110110 0000066 54 00036

Logical 00000001110000110110 0016066 7222 01C36

Physical 00001111101000110110 0175066 64054 0FA36
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Figure 71  Paging: An Example  

14.4.5.  Virtual Memory  

This section describes a simplified virtual memory system that is an extension of the above 
paging system. Each entry in the Page Table now contains three one bit registers (R, M, W) and 
a k bit physical page number register. The R register indicates whether the page is resident in 
physical memory. The M register indicates if the resident page has been modified while in 
physical memory. The W register indicates, as before, whether the page is to be written into by 
the program or not.  

For each memory reference the following process is followed to map a logical address into a 
physical address. 

1. Find the entry for the logical page in the Page Table.  

2. If page is resident, form the physical address and place on the memory address 
bus.  
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Figure 72  Virtual Memory: Page Table 

3. If page is not resident, then do a Page Fault.  

3.1. If there is an empty entry in the Page Table indicating a free page of 
memory, assign the new logical page to the free physical page and make 
the appropriate entry in the Page Table. 

3.1.1. Read the requested logical page from disk into the reclaimed 
physical page.  

3.1.2. Form the physical address and place on the memory access bus.  

3.2. If there is not an empty entry in the Page Table, indicating a free page of 
memory, do the following 

3.2.1. Decide which physical page can be reclaimed.  

3.2.2. If the physical page that is to be reclaimed has been modified, 
write the physical page into the corresponding logical page on 
disk.  

3.2.3. Read the requested logical page from disk into the reclaimed 
physical page.  

3.2.4. Form the physical address and place on the memory access bus.  
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Figure 73  Virtual Memory: An Example 

Figure 73 illustrates a simple program in a virtual memory system. The program consists of 6 
pages of memory, labeled A, B …, F and. In this example, Page A contains code that loads an 
experimental spectrum into a data array that is contained in pages D, E, and F. The code in page 
A also steps through the data correcting the data using constants stored in page C. Page B 
contains programming that outputs the corrected spectrum to an output data file. In this example, 
the process is allowed three pages of physical memory, the working set. The execution of the 
program is as follows. 

1. Page A is loaded and requests C and then begins trying to load the data, causing 
D to be loaded into the working set. Once D is loaded, the program in page A 
begins trying to load into page E. This causes a page fault. 

2. The program in page A loads data into page E. Once E is loaded, the program in 
page A begins trying to load into page F. This causes a page fault. 

3. The program in page A begins to branch to the program in page B. This causes a 
page fault. 
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4. The program in page B begins to process data on page D. This causes a page 
fault.  

5. The program in page B processes the data on page D and then begins to process 
data on page E. This causes a page fault.  

6. The program in page B processes the data on page E and then begins to process 
data on page F. This causes a page fault.  

7. The program in page B processes the data on page F and then begins to write the 
data on page D to the output file. This causes a page fault.  

8. The program in page B writes the data on page D to the output file and then 
begins to write the data on page E to the output file. This causes a page fault.  

9. The program in page B writes the data on page E to the output file and then 
begins to write the data on page F to the output file. This causes a page fault.  

10. The program in page B writes the data on page F to the output file.  

14.4.5.1.  Common Sections of memory 

 

In multitasking operating systems, when more than one task has  read only sections of data 
and/or code that are exactly like those of another task that is resident, it is possible for both(or 
more) tasks to share one copy of these sections rather than each task demanding a copy. This 
will, of course, save memory and perhaps the time needed to load the extra copies of the shared 
information into memory. A typical example of this is a run time library of standard math 
subroutines for languages like FORTRAN, C, BASIC, etc. This technique is made possible by 
paging. 
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Figure 74  Common Sections  
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14.4.6.  Memory Protection  

Figure 75  Memory Protection  
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8. Ability to be Upgraded  

9. Convenience  

16.  Measurement of Performance  

A benchmark is typically a particular program with a given set of input data that is run in a given 
computer environment to measure the performance of that environment by comparing the results 
to those of other machines and environments. Generally trying to answer the questions:  

1. Which computer or operating system or software should I buy?   

2. What were the results of trying to improve a given environment with a given set 
of software or hardware changes?  

16.1.  Benchmarks  

The following methods of determining the performance of a computing system is listed in the 
order of increasing desirability. 

1. CPU Clock Speed (almost useless except when comparing examples of same 
architecture)  

2. Instruction times: MIPS, MFLOPS, I/O rates, Graphic drawing rates, …   

3. Standard single job benchmark: Linpack, Whetstone, Dhrystone, Livermoore 
Loops, Specmark,  …   

4. Your single job benchmark  

5. Multiple standard jobs running simultaneously  

6. Your mix of your jobs running in your environment  

7. History of your system over an extended length of time  

17.  CISC vs RISC  

Performance versus Memory  

17.1.  Main Attributes of RISC  

1. Reduce the number of Instructions  

2. Load and Store only Memory reference Instructions  

3. ALU instructions occur in 1 CPU clock cycle  
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4. Cache !!!  

5. Pipelines !!!  

6. Lots of registers  


