1 (3 pts). For the following current-voltage curve, what is the C_{dl} (μF cm$^{-2}$) at 0.3 V. The curve was recorded at a scan rate of 100 mV s$^{-1}$ using an electrode of 1 cm2 area. The electrolyte was 1 M KCl. $F = 96,500$ C V$^{-1}$.

![Current-Voltage Curve](image)

\[i = \frac{E}{R_s} \exp \left(\frac{-t}{R_s C_{dl}} \right) \quad \frac{\partial Q}{\partial t} = C \frac{\partial E}{\partial t} = i \quad i_{ch} = AC_{dl} \nu \quad i_m = i \left| \sum_{j=1}^{n} A_j \frac{\partial \phi}{\partial x} \right| \quad i_m' = i \left| \sum_{j=1}^{n} z_j \mu_j C_j \right| \]

\[i_{ch} = A C_{dl} \nu \]

\[C_{dl} = \frac{i_{ch}}{A \nu} = \frac{1 \times 10^{-5} \text{A-s}}{1 \text{cm}^2 \times (0.1 \text{V})} \]

\[= 1 \times 10^{-7} \text{F/cm}^2 \]

\[A = \frac{S}{C} \]

\[C = FV \]

\[i_{ch} = \left(\frac{1 \text{V}}{30 \text{V-s}} \right) e^{\frac{-1 \times 10^{-6}}{25 \text{V-s}}} \left(\frac{5 \times 10^{4} \text{e}^{V}}{25 \text{V-s}} \right) \]

\[= \left(5.0 \times 10^{-3} \text{C} \right) \left(1 \right) = 0.05 \text{A} \]

\[= 50 \text{mA} \]

a rather huge current is forced to flow initially, with a rapid potential step. Current decays to 0 in an "elevator" manner as fully illustrated.

2 (4 pts). Applying a potential to an electrode causes a corresponding current to flow that is associated with charging up the electrode double layer. This double layer must form before meaningful faradaic electron transfer can occur. How much current would have to flow initially (100 mV/sec time point) in response to a rapid potential change? Assume the measurement was performed using a working electrode with a 1 cm2 area, a solution resistance of 20 ohm, a double layer capacitance of 25 μF cm$^{-2}$ and a potential step from 0 to +1 V.
3 (3 pts). In corrosion processes, there is always anodic and cathodic reaction occurring at two different sites on the metal. Explain how increasing or decreasing the rate of dissolved O₂ transport to the surface will affect the rate of corrosion.

Assume that a current-potential curve was recorded for a corroding metal in aerated 1 M KCl. The cathodic current-potential curve revealed a diffusion limited current of 100 µA cm⁻² at -0.8 V vs. SCE due to transport of O₂ to the metal surface (no convection). If the measurement was made in much lower supporting electrolyte concentration, how much would the limiting current increase due to migration of O₂ to the surface? Assume \(u(O_2) = 7.91 \times 10^8 \text{ m}^3 \text{ s}^{-1} \text{ V}^{-1} \), \(F = 96,500 \text{ C mol}^{-1} \), \(A = 1 \text{ cm}^2 \), \(C = 2 \text{ mM} \) and \(\frac{\partial \rho}{\partial x} = -0.8 \text{ V} \).

For a corroding metal, there is an oxidation reaction (metal oxidation) and a reduction reaction happening simultaneously. The reduction reaction consumes e⁻ generated by the corrosion reaction. O₂ is a good acceptor of e⁻. The rate of the oxidation and reduction reactions are equal at the metal. Changing the flow of O₂ to the surface by either reducing the solution concentration (denaturing) or increasing the solution concentration (aerating), \(\text{J}_e = -D_e (\frac{\partial C}{\partial x}) \), will decrease or increase the rate of corrosion, respectively.

If the rate of the cathodic reaction is increased, there must be a corresponding increase in the anodic reaction rate (i.e., the common rate ratio).

\[\dot{M}_{O_2} = 0 \text{ because } e = 0. \]