Chem 485 Spring/Zolo

Trub. Set#6 Page I of 2

1) $233 \atop{q_2} \longrightarrow 229 \atop{q_4} \longrightarrow + 44e^{2+} + 4.908 \text{ MeV}$ a) $E_{Th} = \left(\frac{4}{233}\right) 4.968 \text{ MeV} = 0.684 \text{ MeV}$ "recoil" $E_{\text{He}} = \left(\frac{229}{233}\right) 4.908 \text{ MeV} = 4.824 \text{ MeV}$ t) the + 223 The reaction in hab w/ alpha beam $V_{cons}^{cons} = \frac{Z_1 Z_2 e^2}{R_1 + R_2} = \frac{2 \times 90 \times 1.439 \text{ MeV} - 4u}{1.2 (4^{1/3} + 229^{1/3}) 4u} = 28.00 \text{ MeV}$ 9.25 fr. $V_{coul} = \left(\frac{233}{229}\right) V_{coul} = \left(\frac{233}{229}\right) Coul = 1$ [not a large difference] Levith light dear and heavy target = (<u>233</u>) 28.0 MeV = 28.5 MeV 235 u (n, d) cross section for 1eV neutrons 2) $R_{1} = 1.2 A^{1/3} = 1.2(235)^{1/3} fm$ $T_{\text{REACTION}} \simeq \Pi (R_1 + 1)^2$ R1 = 7.41 fm LeB= Mr = h NZmKE $T = 11^{-15} (7.41 \times 10^{-15} + 7.86 \times 10^{-11} m)^2$ Reat 2 B= 6.626×10³⁴ J·n Millit the OFF (2×1.675×10²⁷ky×lev×1.602×10⁹ J) AV $\frac{\sqrt{React}}{2.57 \times 10^{21} m^2}$ $\lambda_{deB} = \frac{6.626 \times 10^{34} \text{ J.s.}}{2.316 \times 10^{23} \text{ kg·m}} = 2.86 \times 10^{11} \text{ m}$

Table 2: Full table of target nuclei and products for neutron irradiation of NH_4Cl . Notice that after a couple of hours for decay of ³⁸Cl the only significant activity is due to ³²P with a small amount of ³H and the very long-lived ³⁶Cl.

Nuclide	Isotopic	Nuclear	Reaction	Half-life
	Abundance	Reaction	Product	
¹ H	99.989%	(n,γ)	² H	stable
$^{1}\mathrm{H}$	99.989%	(n, α)	NO reaction	
$^{2}\mathrm{H}$	0.011%	(n,γ)	³ H	12.3 y
² H	0.011%	(n, α)	NO reaction	
¹⁴ N	99.632%	(n,γ)	¹⁵ N	stable
^{14}N	99.632%	(n, α)	$^{11}\mathrm{B}$	stable
¹⁵ N	0.368%	(n,γ)	^{16}N	$7.1 \mathrm{~s}$
^{15}N	0.368%	(n, α)	$^{12}\mathrm{B}$	$20.2~\mathrm{ms}$
³⁵ Cl	75.78%	(n,γ)	$^{36}\mathrm{Cl}$	301 ky
³⁵ Cl	75.78%	(n,α)	^{32}P	$14.3~\mathrm{d}$
³⁷ Cl	24.22%	(n,γ)	$^{38}\mathrm{Cl}$	$37.2 \mathrm{m}$
³⁷ Cl	24.22%	(n, α)	^{34}P	$12.4~\mathrm{s}$