Chemistry 485

Spring, 2010 Distributed: Wed., 17 Mar. 2010 (10 points)

Problem Set #6 Due: Mon., 29 Mar. 2010

- 1. Notice that alpha decay is an example of a nuclear reaction in which the Center of Mass system (CMS) coincides exactly with the Laboratory System. (1) Calculate the recoil energy of the decay of the rare isotope ²³³U that decays with $Q_{\alpha}=4.908$ MeV. (2) Calculate the Coulomb barriers for the reverse reaction in the CMS and in the Lab system.
- 2. Make a rough estimate of the reaction cross section in barns for the neutron capture reaction (n,γ) on ²³⁵U at a neutron kinetic energy of 1 eV.
- 3. ³²P is a beta-minus emitting nuclide that is used extensively in biological and biochemical studies. This nuclide is made in nuclear reactors by the (n,α) reaction. The target material for the production is usually ammonium chloride (NH_4Cl) because it is a simple ionic solid. Determine all of the nuclear reaction products from (n,γ) and WHERE POSSIBLE (n,α) reactions on the six nuclei present in this sample. Use the format of the following table to present your results for the six isotopes in the sample.

Table 1:	Table of	target	nuclei	and	products	for	neutron	irradiation	of	$\rm NH_4Cl.$
----------	----------	--------	--------	-----	----------	-----	---------	-------------	----	---------------

Nuclide	Isotopic	Nuclear	Reaction	Half-life
	Abundance	Reaction	Product	
¹ H	99.989%	(n,γ)	$^{2}\mathrm{H}$	stable
$^{1}\mathrm{H}$	99.989%	(n,α)	NOT possible	
etc.				