Chemistry 485

Spring, 2010 Distributed: Wed., 17 Feb. 2010 (10 points) Problem Set #5 Due: Mon., 22 Feb. 2010

- 1. Calculate the ratio of the wavelength of the 1.332 MeV photon to the *diameter* of the emitting 60 Ni nucleus formed by the beta decay of 60 Co.
- 2. The ¹³⁴Cs nucleus decays 70% of the time by a β decay (4+, T_{1/2}=2.06 yr) to an excited state (4+) in the daughter nucleus ¹³⁴Ba at 1.4006 MeV. This state can decay to three lower lying states by gamma ray emission: (1) to a 2+ state at 1.168 MeV, (2) to a different 2+ state at 0.6047 MeV, or (3) to the 0+ ground state at 0.0 MeV.
 - (a) What is the lowest multipolarity and character of the photon that would be emitted in a transition from the 4+ excited state to each of the three possible lower energy states?
 - (b) Calculate the three rate constants for photon emission $(\lambda \text{ in s}^{-1})$ from the 4+ excited state to each of the three possible lower energy states using the Weisskopf estimates.

