Chemistry 485

Spring, 2010 Distributed: Wed., 10 Feb. 2010 (10 points) Problem Set #4 Due: Mon., 15 Feb. 2010

- 1. The following questions consider the possibility of using decay heat from 238 Pu.
 - (a) Calculate the specific thermal energy content of a sample of pure ²³⁸Pu, that is, calculate the power in Watts given off by the alpha decay per kg of pure material.
 - (b) Calculate the mass in grams of 238 Pu that would be needed to generate 470 W of <u>thermal</u> power in a radioisotope thermal generator (RTG) to be used on a spacecraft.
 - (c) Unfortunately the conversion of thermal power to electrical power is rather inefficient, approximately 7% in most real devices. Calculate the mass in grams of ²³⁸Pu needed to generate 470 W of <u>electrical</u> power for the spacecraft.
- 2. Calculate the classical turning point or distance of closest approach for an alpha particle at an energy of 5.4 MeV to a 234 U nucleus. This is the radial distance, r, at which the kinetic energy of the alpha particle is equal to the Coulomb potential energy ($V_C = Z_1 Z_2 e^2 / 4\pi \epsilon_0 r$).
- 3. What is the ratio of the classical turning point calculated above to the radius of a 234 U nucleus?