Chemistry 485

Spring, 2010 Distributed: Wed., 3 Mar. 2010 Exam #1

The questions in this exam may require information that can be found in the attached figure, the table, or the equation sheet. Scored on 100 point basis plus extra credit.

- 1. (20 points) 40 K is a natural radioactivity that is one of the important sources of background radiation for people. Potassium has two stable isotopes, 39 K at 93.2581% and 41 K at 6.7302%, while the half-life of 40 K is 1.29x10⁹ y with an abundance of 0.0117%. Potassium is also a significant component of clay-based Kitty litter and a typical shipment will trigger the radiation detectors at US border crossing points. What is the activity in Bq of a 1.00 g sample of natural KCl (MM=74.551 g/mol) due to the presence of 40 K?
- 2. (20 points) What is the activity in Bq of a sample of ¹⁸F ($T_{1/2}$ =109.8 min) that would be created during a 180 minute bombardment if the production cross section is 0.3 barns and the target has an areal density of $3.0 \times 10^{20}/\text{cm}^2$? The beam intensity during the irradiation is $6.0 \times 10^{12}/\text{s}$.

Short Answers (10 points each). Skip one question or answer all 7 for extra credit.

- 3. The ¹⁵O is an important nucleus that is used in medical diagnostic procedures with PET systems. Write the complete balanced equation for the expected decay of ¹⁵O.
- 4. Concisely describe the reason why positron emission requires more energy than electron capture decay.
- 5. 233 U is an extinct isotope of uranium (T_{1/2}=1.59x10⁵ y) that decays by alpha emission. (a) Write the balanced reaction for this decay. (b) Calculate the coulomb barrier for the REVERSE reaction of this decay.
- 6. Use the single particle shell model diagram (attached below) to predict the ground state nuclear spin and parity of the stable isotope ³⁹K. Be sure to indicate the configurations of the particles needed to make this prediction.
- 7. The cross sections for ALL neutron induced reactions increase at very low energies with the same slope on a log-log graph. What is the underlying cause for this uniform increase in the cross sections for neutron induced reactions at very low energies.
- 8. The medical isotope 18 F is produced in a (p,n) reaction. Write a balanced reaction for the production of 18 F based on this information.
- 9. What is the mass of a 60 kCi source of pure ¹⁸F ($T_{1/2}=109.8$ min)?

Table 1: Table of single particle decay rates for nuclear transitions.

Angular		Electric		Magnetic
Momentum	$\Delta \pi$	$\lambda_{SP}(\mathrm{s}^{-1})$	$\Delta \pi$	$\lambda_{SP}(\mathrm{s}^{-1})$
1	yes	$1.03 \mathrm{x} 10^{14} A^{2/3} E_{\gamma}^3$	no	$3.15 \mathrm{x} 10^{13} E_{\gamma}^3$
2	no	$7.28 \mathrm{x} 10^7 A^{4/3} E_{\gamma}^5$	yes	$2.24 \mathrm{x} 10^7 A^{2/3} E_{\gamma}^5$
3	yes	$3.39 \mathrm{x} 10^1 A^2 E \gamma^7$	no	$1.04 {\rm x} 10^1 A^{4/3} E_{\gamma}^7$
4	no	$1.07 \mathrm{x} 10^{-5} A^{8/3} E_{\gamma}^9$	yes	$3.27 \mathrm{x} 10^{-6} A^2 E_{\gamma}^9$

Potentially Useful Constants 24 Feb 10

$h = 6.626 \text{ x } 10^{-34} \text{ J sec}$	($c = 2.99792 \text{ x } 10^8 \text{ m sec}^{-1}$
$N_A = 6.0221 \ge 10^{23} \text{ mole}^{-1}$	hydrogen mass = 1.67263 x	$10^{-27} \text{ kg} = 938.7906 \text{ MeV}$
$1 \text{ MeV/c}^2 u = 931.50$	neutron mass = 1.67493 x	$10^{-27} \text{ kg} = 939.5731 \text{ MeV}$
1. u = 1.6605 x 10^{-27} kg	electron mass $= 9.1094$	$4 \ge 10^{-31} \text{ kg} = 0.511 \text{ MeV}$
$e^2/4\pi\epsilon_0 = 1.439$ MeV-fm	electron charg	$ge = 1.60218 \ge 10^{-19} \text{ Coul}$
$\epsilon_0 = 8.8542 \text{ x } 10^{-12} \text{Coulomb}^2$	$^{2} \mathrm{J}^{-1} \mathrm{m}^{-1}$	$1 \text{ eV} = 1.602 \text{x} 10^{-19} \text{J}$
1 Ci = 3.7×10^{10} Bq, 1 Bq = 1	1/s	$k_B = 1.380 x 10^{-23} J/K$
1 vr = 365.25 d = 8766 hr =	$525.960 \text{ m} = 3.156 \text{x} 10^7 \text{ s}$	$\hbar c = 197.49 \text{ MeV-fm}$

Potentially Useful Equations

 $V_{\rm sphere} = 4\pi \ r^3/3$ $A_{\rm sphere} = 4\pi r^2$ $r=1.2~{\rm fm}~{\rm A}^{1/3}$ $\lambda = 1/\tau = \ln 2/T_{1/2}$ $A = \lambda N$ $\lambda = 0.693/T_{1/2}$ $F(x) = -\frac{d}{dx}V(x)$ $\rho(R) = \rho_0 / (1 + e^{(r-R)/a})$ $F_{\rm coulomb} = -q_1 q_2 e^2 / 4\pi \epsilon_0 r^2 ~~ V_{\rm coulomb} = q_1 q_2 e^2 / 4\pi \epsilon_0 r$ $V_{\rm coulomb} = Z_1 Z_2 1.439 MeV fm/r$ $E_{total}^2 = (m_0 c^2)^2 + (pc)^2$ $E_{total} = \gamma m_0 c^2$ $E = mc^2$ $T_{nonRel}~=~\frac{1}{2}~m~v^2~=~p^2/2m$ $\lambda_{\rm deB}=h/p=h/mv$ p = m v $E_{photon} = p c$ $E_{photon} = h \ \nu$ $\lambda \nu = c$ $BE(Z, A) = [Z * M(^{1}H) + N * M(^{1}n) - M(Z, A)]c^{2}$ $\Delta(\mathbf{Z}, \mathbf{A}) = \mathbf{M}(\mathbf{Z}, \mathbf{A}) - \mathbf{A}$ $BE(Z, A) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A - 2Z)^2}{A} \pm \delta \qquad \qquad Z_A \approx \frac{A}{2} \frac{81}{80 + 0.6A^{2/3}}$ $\frac{\mathrm{dN}_1}{\mathrm{dt}} = -\lambda_1 N_1$ $N_1(t) = N_1^0 e^{-\lambda_1 t}$ $A_1(t) = A_1^0 e^{-\lambda_1 t}$ $\frac{\mathrm{d}N_2}{\mathrm{d}t} = \lambda_1 N_1 - \lambda_2 N_2 \qquad \qquad N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) + N_2^0 e^{-\lambda_2 t}$ $A_2 = R \left(1 - e^{-\lambda_2 t} \right)$ $R = \rho_A \sigma \phi$ $\rho_{\rm A} = \rho_{\rm n} \mathbf{x}$