Week 7 Lecture 1 – Nuclear Reactions & Waste

Nuclear Reactions

- -- Nuclear Reactions & Waste
- -- Transmutation
- -- Nuclear Reactions

5th Homework due today

The Alchemists Workshop

Nuclear Power – Reaction Overview

The most common nuclear reactions being run on earth this days are:

$${}^{1}n + {}^{235}_{92}U_{143} \rightarrow \left({}^{236}_{92}U_{144} \right)^{*} \rightarrow Fission + \approx 2.4 \, {}^{1}n$$

$$\sim 10\% \quad {}^{236}_{92}U_{144} + {}^{1}n \rightarrow {}^{237}_{92}U_{145} \qquad \alpha, 24,000 \text{ yr}$$

$${}^{1}n + {}^{238}_{92}U_{146} \rightarrow \left({}^{239}_{92}U_{147} \right)^{*} \rightarrow {}^{239}_{92}U_{147}$$

$$\xrightarrow{\beta - 23m} \rightarrow {}^{239}_{93}Np_{146}$$

$$\xrightarrow{\beta - 2.4d} \rightarrow {}^{239}_{94}Pu_{145}$$

$${}^{1}n + {}^{239}_{94}Pu_{145} \rightarrow \left({}^{240}_{94}Pu_{146} \right)^{*} \rightarrow Fission + \approx 2.5 \, {}^{1}n$$

$$\sim 10\% \quad {}^{240}_{94}Pu_{146} + {}^{1}n \rightarrow {}^{241}_{94}Pu_{147}$$

$$\xrightarrow{\beta - 14yr} \rightarrow {}^{241}_{95}Am_{146}$$

The typical reactor fuel in (light) water-moderated reactors is:

~3% ²³⁵U (compared to a natural enrichment of 0.27%) and the rest of the fuel is ²³⁸U.

The spent fuel on discharge contains:

The left over uranium with plutonium, neptunium, americium, and curium, and

the fission products (iodine, technetium, neodymium, zirconium, molybdenum, cerium, cesium, ruthenium, palladium, etc.) that constitute about 2.9% by weight.

Neutron Capture in "Minor Actinides"

Inside the reactor a slow neutron capture process takes place where β - decay competes with neutron capture to produce heavier nuclei. Every once in a while the process falls back by an alpha decay, and ends in spontaneous fission decay of the heaviest elements.

After use in the reactor the discharged fuel is:

- \sim 0.90% enriched in 235 U,
- ~1% of the weight is plutonium (mostly ²³⁹Pu)
- \sim 0.1% "minor actinides" by weight (which is divided into 50% 237 Np, 47% Am and 3% Cm) Leaving \sim 95% 238 U plus \sim 3% Fission products

Nuclear Power – Fission Product Overview

Imagine the simplest picture of nuclear fission with an equal division of mass and charge:

$${}^{1}n + {}^{235}_{92}U_{143} \rightarrow \left({}^{236}_{92}U_{144}\right)^{*} \rightarrow Fission + \approx 2 {}^{1}n$$

$$\rightarrow 2 {}^{(236-2)/2}_{92/2}Pd$$

Recall from early in the course, the stable atomic number (Z) for this set of isobars (A=117) is:

$$Z_A \approx \left(\frac{A}{2}\right) \frac{81}{80 + 0.6A^{2/3}} = \left(\frac{117}{2}\right) \frac{81}{80 + 0.6(117)^{2/3}} = 50.2$$

thus, these fission fragments will have to undergo 4 or 5 β - decays to reach a stable nucleus. In this particular example the chain would be:

$${}^{117}_{46}Pd \xrightarrow{\beta-4.3s} {}^{117}_{47}Ag \xrightarrow{\beta-73s} {}^{117}_{48}Cd \xrightarrow{\beta-2.5h} {}^{117}_{49}In \xrightarrow{\beta-43m} {}^{117}_{50}Sn$$

The fission product distribution runs from Z~30 to Z~70 and is sensitive to the underlying nuclear structure and the most probable mass split produces other chains of decaying nuclei:

$${}^{138}_{53}I \xrightarrow{\beta - 6.2s} {}^{138}_{54}Xe \xrightarrow{\beta - 14m} {}^{138}_{55}Cs \xrightarrow{\beta - 33m} {}^{138}_{56}Ba$$

$$^{98}_{39}Y \xrightarrow{\beta - 0.5s} ^{98}_{40}Zr \xrightarrow{\beta - 30s} ^{98}_{41}Nb \xrightarrow{\beta - 2.9s} ^{98}_{42}Mo$$

What to do with this stuff?

Activity of high-level waste from one tonne of spent fuel

- 1) Wait
- Separate out valuable isotopes, recycle into Mixed Oxide (MOX) fuel
- 3) Burn it up ... (transmutation via nuclear reactions)

Force = -dV/dr

Transmutation Facility make Neutrons

SCK-CEN Center, Mol, Belgium