Week 6 Lecture 1 – Industrial Radiation

Decay Processes

- -- Alpha Decay revisited
- -- Beta Decay revisited
- --- Decay chains
- --- Fermi function
- --- Half-lives, log ft

Gamma Radiation

- -- Industrial Applications of Radiation
- -- beta thickness gauge
- -- gamma irradiators
- -- Internal Transitions revisited
- -- Nuclear Energy Levels

4th Homework due Today

Beta particles can measure thickness

http://www.jasch.biz/mewd/products/plastic/plastic_main.htm

BASIS WEIGHT SENSOR

- Beta Transmission Sensor
- 200 mCi Kr 85 Radioisotope (10-1000 g/m²) or 100 mCi Pm 147 (10-200 g/m²).

$${}^{85}_{36}Kr_{49} \rightarrow {}^{85}_{37}Rb^{1+} + e^{-} + \overline{\upsilon}_{e} + Q_{\beta-}$$

$$T_{1/2} = 10.8yr \quad 9/2 + \neq \pi(f_{5/2}^{4}) \, \upsilon(g_{7/2}^{-1})$$

$$Q_{\beta-} = \Delta({}^{85}_{36}Kr) - \Delta({}^{85}_{37}Rb) = 0.687MeV$$

$$\begin{array}{l} ^{147}Pm_{86} \rightarrow ^{147}Sm^{1+} + e^{-} + \overset{-}{\upsilon_{e}} + Q_{\beta-} \\ \\ T_{1/2} = 2.6yr \quad 7/2 + \quad \neq \quad \pi(d_{5/2}^{3}) \, \upsilon(h_{9/2}^{4}) \\ Q_{\beta-} = \Delta(^{147}_{61}Pm) - \Delta(^{147}_{62}Sm) = 0.224 \, MeV \\ \end{array}$$

Recall the shape of the spectrum of beta particles.

Gamma rays can measure densities

 $Q_{\beta-} = 1.176 MeV$

Source: 137Cs, up to 11 mCi

$$\begin{array}{l} ^{137}Cs \rightarrow ^{137}_{56}Ba^{1+} + e^{-} + \overset{-}{v_e} + Q_{\beta-} \\ \pi(g_{7/2}^5) \quad 7/2 \ (l=4) + \\ T_{1/2} = 30.2yr \\ Q_{\beta-} = \Delta(^{137}_{55}Cs) - \Delta(^{137}_{56}Ba) \end{array}$$

Sterilization of Food & Objects

MSU News Story:

"Food irradiation – which does not in any way render food radioactive – today uses gamma rays from radioactive material or machine-generated electron beams, Schoch said, both of which tend to cause cellular damage and visually degrade food. X-rays promise a gentler, more scalable solution. Rayfresh recently landed its first contract to build an X-ray machine to treat ground beef for Omaha Steaks, which inspected the prototype at MSU." Peter Schoch, CEO, Rayfresh Foods Inc, Ann Arbor.

http://uw-food-irradiation.engr.wisc.edu/Facts.html

http://news.msu.edu/story/5777/

⁶⁰Co Irradiator Under water

MICHIGAN STATE UNIVERSITY

1.173

1.332

(2+) 1.332

2.823 MeV

Web Sez:

RADIATION SOURCE:

Cobalt-60;

1,000,000 curies per unit (Max);

half-life - 5.3 years;

POOL DIMENSIONS:

7' x 8' x 22'

(3.5' above ground).

RADIATION SHIELD:

De-ionized water.

Minimum depth above

source is 12.5 feet.

Q: (review) What is the mass of ⁶⁰Co in this source?

⁶⁰Co Irradiator in iron/concrete

http://www.mds.nordion.com/index.asp#sterilization

Further splitting

Water shield was 12 feet, metal shield appears to be much thinner (Q: Why?)

Multiplicity

