
Week 4 Lecture 1 – Basics of Nuclear Structure

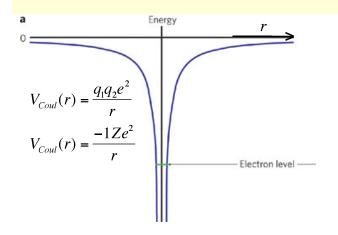
Basics of Nuclear Structure

- -- Nucleon potential viz. Coulomb potential
- -- Nuclear sizes & shape
- -- Nuclear potential well
- -- Schematic shell model of nuclei

2nd Homework due Today

Aside: Forces and Potential Energy

The potential energy (in mathematical form) is key to understanding the behavior of physical systems. For example, the Coulomb *force* in vacuum is given by the expression:


$$F_{Coulomb}(q_1,q_2,r) = -q_1 q_2 / 4\pi \varepsilon_0 r^2$$

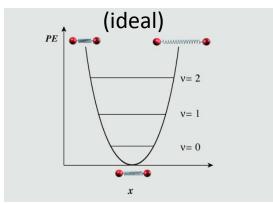
The potential energy is always the negative derivative of the potential energy function:

$$F(x) = -\frac{d}{dx}V(x)$$

Coulomb Force ... Nuclear Force

Hydrogen atom: 1 proton & 1 electron (heavy & light) Binding Energy of electron: 13.4 eV, PE=KE = $\frac{1}{2}$ m_ev² deBroglie Wavelength: $\lambda = h/mv = 3.3x10^{-10} \text{ m}$ Covalent radius Hydrogen atom = $0.3x10^{-10}$ m

Size of system is smaller than wavelength it should be treated Quantum Mechanically


Deuterium nucleus: 1 proton & 1 neutron (nearly equal masses)

Binding Energy per nucleon: 1.11 MeV

deBroglie Wavelength of nucleon:

Radius of deuterium nucleus: ~ 4 fm

Harmonic Potential

Corrections to H.O. picture:

- The nucleons cannot interpenetrate.
- The "bond" saturates.
- The "bond" breaks at large distances. a "Square Well" for Nuclear Force

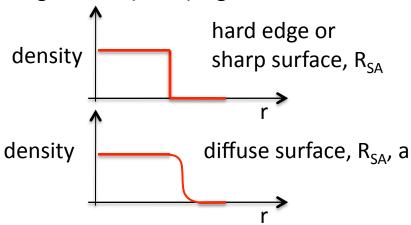
(The limit of a force only on contact is a useful approximation.)

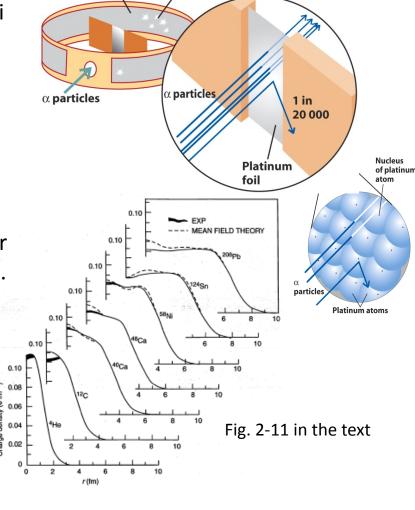
Nuclear Force ... Mirror Nuclei

Q: How does the binding energy change when neutrons and protons are interchanged?

reactions and processes are interestangear													
	Z	N	BE (MeV)	V_Coul = (3/	[/] 5) Z^2 /	Z^2 / r_0 A^1/3		8 G 2p=100%	⁹ C β+=100%	10 G β*=100%	11 C β*=100%	12 G	¹⁸ C June 12
3-H	1	2	8.481	0.49	r_0	1.225 fm							
3-He	2	1	7.719	1.96			6 B	⁷ B	8 B	9 B	¹⁰ B	¹¹ B	12 B
	Δ ΒΕ		-0.76	-1.47	Not	e.	2p?	p=100%	β+=100%	p=100%	Barnens.	Huranest. 13	β=100%
11-B	5	6	76.208	7.93		asured	5 86 p?	6 Be 2p=100%	7 Be EC=100%	8 Be α=190%	9 Be AuguellCa	10 Be β=100%	11 Be β=100%
11-C	6	5	73.436	11.42	Bin	ding	ν.	2p=10070	E0-100%	Q-5070	Parametra.	p 100%	p 100%
	Δ ΒΕ		-2.77	-3.49	Fne	ergies	4 Li	⁵ Li	⁶ Li	⁷ Li	8 Lī	9 [¹⁰ Li
						t Calc.)	p=100%	p=100%	house 12	Aurane S. Pa	β=100%	β=100%	n=100%
17-0	8	9	131.767	17.56	(110	t Calc.)							
17-F	9	8	128.214	22.22			³ He	4 He	⁵ He	⁶ He	7 He	8 He	9 He
	Δ ΒΕ		-3.55	-4.66			August 10012	Anno Lanti	n=100%	β=100%	n=100%	β==100%	n=100%
									1	F	0		
25-Mg	12	13	205.6	34.73			² H	3 Η β=100%	4 H n=100%	5 H 2r=100%	⁶ H n?	7 Н 2n?	
25-Al	13	12	200.525	40.76			F01122-7.11161	p =100%	11-100%	21 - 10076	11?	211?	
	Δ ΒΕ		-5.07	-6.03									

Nuclear size and shape



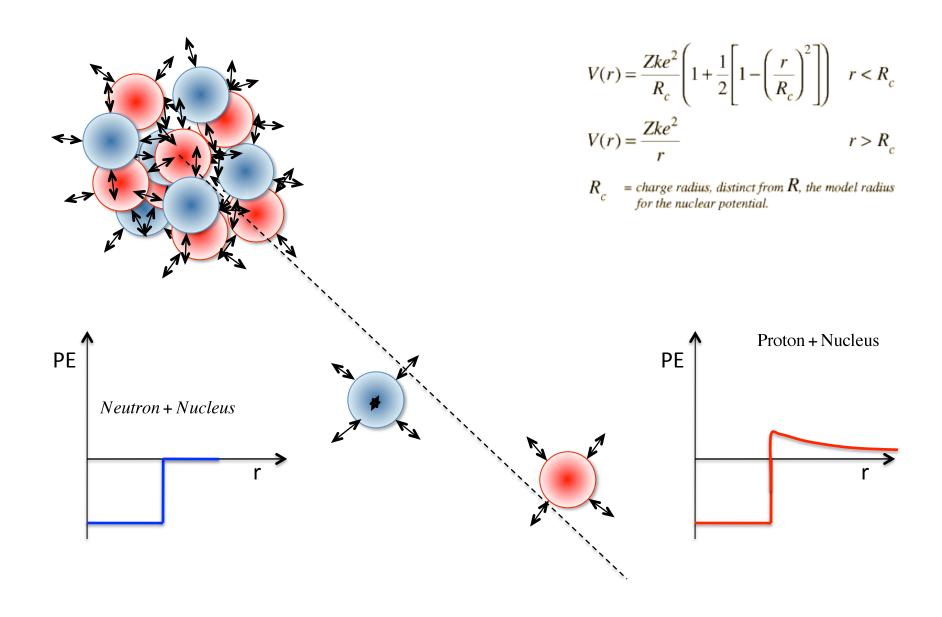

Cartoon!

Rutherford's experiment: Irradiate thin gold foil with alpha particles, measure deflection of each particle. Results: The vast majority of energetic helium nuclei passed through thin metal foils unscathed. Rarely, one particle will be scattered to a large angle. (Geiger & Marsden 1911-13)

<u>Conclusion</u>: the mass and positive charge is concentrated in a very small volume.

Modern results (using electrons) indicate a nearly constant nuclear density with a thin surface layer for large nuclei (A>40), lighter nuclei are mostly surface.

Scintillations


Fluorescent

Q: What is the value of the nuclear density in nucleons/fm³?

Nuclear Force ... Nucleus

What force do we expect when a nucleon approaches a nucleus?

