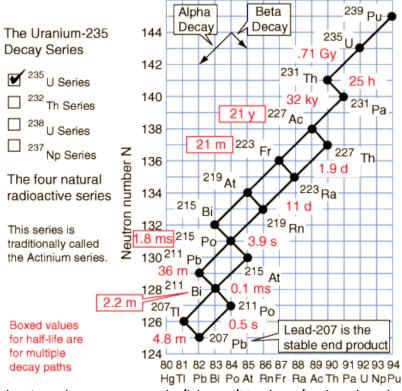
Week 3 Lecture 1 – Ages from Isotope Ratios

Nuclear Decay

- -- Decay Law
- -- Simplest form of kinetics
- -- Sequential Decay (three groups)

-- Radioactive dating, Ages & Natural Activities

The Persistence of Memory, S. Dali (1931)


Primordial Isotopes - 1

MICHIGAN STATE UNIVERSITY

There are a few radioisotopes with very long half-lives that can be used to evaluate the age of a geological sample – given the right conditions.

"Natural Decay Series" – there are four series (sets) of heavy elements linked by the fact that alpha decay changes the mass number by four units but beta decay cannot change the mass number.

 232 Th (14 Gyr) and all daughters have A= 4n [208 Pb] 237 Np (2.3 Myr) leads the (4n)+1 series [extinct, 209 Bi] 238 U (4.5 Gyr) heads the (4n)+2 series [206 Pb] 237 U (0.71 Gyr) heads the (4n)+3 series [207 Pb]

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/radser.html

Measure ratio of Pb to U and compare it to the equilibrium ratio...

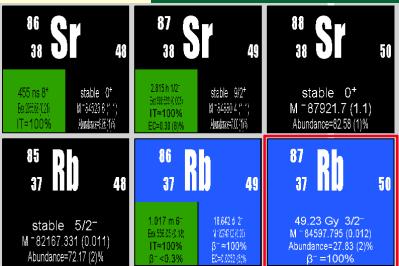
- 1) The U and Pb were distributed evenly when the material (rock) was being formed.
- 2) The material did not undergo a chemical change during its life. (no gain/loss of U & Pb)

Measure Pb isotopic ratios [note that ²⁰⁴Pb is stable]

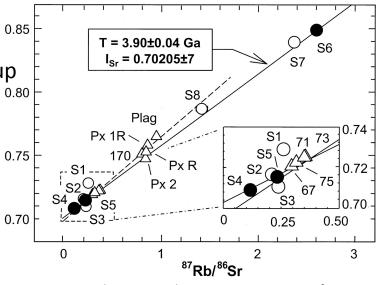
- 1) The isotopic variations are due to feeding by the radioactive decay.
- 2) The material underwent (no more than) one purification of Pb during its life.

Primordial Isotopes -

There are a few radioisotopes with very long half-lives that can be used to evaluate the age of a geological sample – given the right conditions.


The Rb-Sr Isochron: ⁸⁷Rb is long-lived and decays to ⁸⁷Sr $(\beta$ -); strontium has several other stable isotopes to provide a reference measurement of the amount of daughter present when the material (rock) was formed.

Measure atomic ratio of ⁸⁷Rb/⁸⁷Sr and compare to ⁸⁷Sr/⁸⁶Sr. This plot is called a concordance and all the data should fall on a straight line if the samples were created at the same time in the past. Cf. Figure 3.12 in the textbook.


Measure isotopic ratios [note that two isotopes in this group are stable], assume: 87Sr/86

- The isotopic variations are due to feeding by the radioactive decay.
- The material did not undergo a chemical separation of Rb from Sr during its life.

Note that a similar isochron is ⁴⁰K/⁴⁰Ar where one might worry more about chemical separation over time.

MICHIGAN STATE

Random example: Martian Meteorite from Borg, et al. Science 286 (1999) 90

Cosmogenic (recently produced) Isotopes

 14 C "dating" ... 14 C ($T_{1/2}$ = 5730 yr) is created in upper atmosphere by a secondary nuclear reaction between neutrons and 14 N. The free carbon atom usually ends up bound into CO_2 . The 14 CO $_2$ comes into equilibrium with the atmosphere and then the biosphere. Every living thing has the equilibrium amount of 14 C activity per gram of stable carbon isotopes (12 C and 13 C). The activity is usually quoted as a "specific activity" because the source is not pure – in preindustrial times: 0.226Bq/gram of carbon. [The specific activity of pure 14 C is 4460 mCi/g.] Once the organism dies, it goes out of equilibrium, and the amount of 14 C decreases.

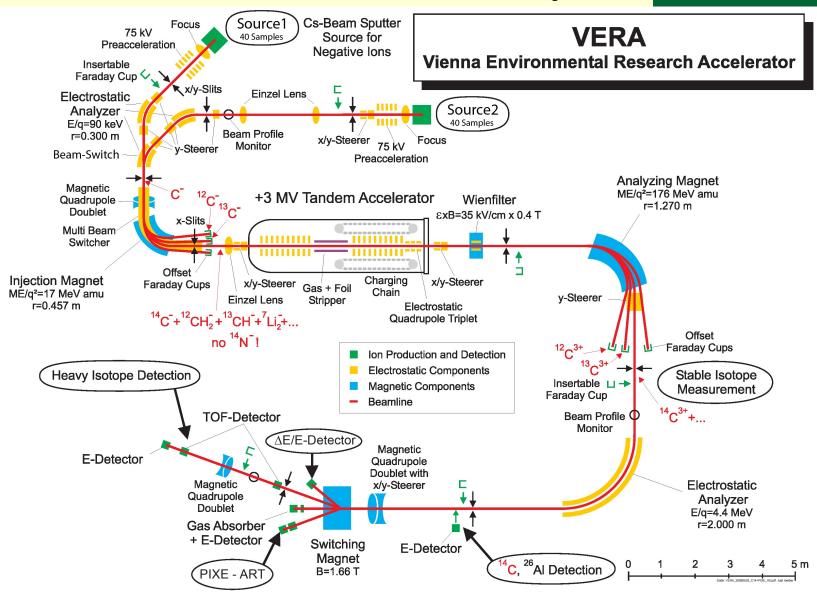
The understanding and application of these ideas lead to the Nobel Prize in Chemistry for W. Libby in 1960

Modern ¹⁴C Analysis

Recall that the activity is proportional to the number of atoms, and in this case with a long half-life:

$$A(t) = \lambda N(t) \rightarrow \frac{N(t)}{A(t)} = \frac{1}{\lambda}$$

It was realized about 30 years ago that an extremely sensitive Mass Spectrometer could measure the number of atoms present in a sample when the level of activity is far below a measureable activity. (This lead to a MacArthur Award to R. Mueller in 1982.)


The difficulty is to separate the stable and ubiquitous ¹⁴N from the rare ¹⁴C atoms. Here one applied the fundamental chemical difference between these elements to separate them in a high energy mass spectrometer.

Today there is a large number of AMS laboratories that will analyze the ¹⁴C content for you. http://www.radiocarbon.org/Info/ams-labs.htm

http://owww.phys.au.dk/ams/

Modern ¹⁴C Laboratory

http://isotopenforschung.univie.ac.at/index.php?id=1570