Week 1, Lecture 2 – Overview

Introduction

- -- Goals, roll back the fog
- -- Nomenclature
- -- General Properties of Nuclei
- -- Chart of Nuclides
- -- Nuclear Processes, overview
- --- decay equations
- --- conservation laws
- -- Nuclear "Activity"

Mass and Energy

- -- Einstein's cliché
- -- Binding Energy viz. Separation Energy

Nuclear vs. Atomic

Atomic

Sizes ... atoms are spherical with radii in "angstroms" determined by electron orbits Processes ... electron excitation & relaxation chemical reactions & bonding

			\sim	•
-	\sim	\square	_ L I	IICOD:
Г.Ы.	50	ш		IICOIT.
0,		•.	• • •	licon:

Nuclear

Sizes ... nuclear are spherical (or nearly so) with radii of "fermis" in general, $r = r_0 A^{1/3}$.. Packing nucleons with uniform density ...

Processes ... proton & neutron excitation & relaxation radioactive decay (often leads to nuclear and/or atomic excitation) nuclear reactions (nuclear collisions, essentially all extraterrestrial)

Nuclear Processes - 1

Internal Processes ...

relaxation of excited (*metastable*) states via photon emission: e.g., proton, neutron excited states, nuclear vibration or rotation

```
E.g. ^{99\text{m}}\text{Tc} \Rightarrow ^{99}\text{Tc} + \gamma (gamma is used to indicate that the photon is "nuclear") two-bodies in final state, E_{\gamma} = 142.7 \text{ keV} 1st order kinetics, half-life is constant, T_{\gamma_2} = 6.015 \text{ hr}, or mean-life = \tau = T_{\gamma_2} / \ln 2 or decay constant = \lambda = 1/\tau = \ln 2/T_{\gamma_2}
```

This isomer is used extensively in nuclear medicine to highlight parts of the body that are biologically more active than surrounding tissue in a SPECT scan (single-photon emission computerized tomography).

Mayo Clinic link on SPECT scan

This material is in short supply at the moment due to a reactor problem in Canada.

http://www.nytimes.com/2009/07/24/science/24isotope.html

Nuclear Processes - 2

Internal Processes ...

relaxation of excited states via photon emission:

e.g., proton, neutron excited states, nuclear vibration or rotation radioactive decay (often leads to nuclear and/or atomic excitation)

1) Nucleus has too much Coulomb energy nuclear conversion/change through the "strong force" ... alpha decay, fission

2) Nucleus is unbalanced with respect to neutron/proton number nuclear conversion/change through the "weak force" ... beta-decay