: . MICHIGAN STATE
Week 13, Lecture 1 — Interaction of Radiation -

Interaction of Radiation with Matter

-- Penetration/absorption of charged particles
--- heavy ions

--- electrons

-- Penetration/absorption of neutral particles
--- gamma rays

--- neutrons

8t Homework due Today

Radiation Transport at UofM reactor



Classes of Radiation

ZCro Mmass

“low” mass

“high” mass

Neutral

Gamma rays
(photons)

Neutrinos

Neutrons

“Force”

Electromagnetic

Strong (Nuclear)

Except neutrons, these particles interact primarily with the electrons in materials that they
enter ... we are interested in those that are energetic enough to ionize the materials.

The coulomb interaction has an infinite range, thus charged particles interact with a large
number of electrons and a moving charged-particle continuously slows down until it stops.
This process creates a host of ion pairs with a variety of excitation energies.

A photon (uncharged) can only “collide” with one electron and the interaction creates a
moving electron and a cation essentially at rest.
Finally, neutrons only collide with nuclei and are detected through the secondary products
of nuclear reactions.

E.g, solid Silicon:
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Interaction of massive C.P. with Matter —1— hTneEEaTERER"

The massive particles can be expected to interact with the electrons in the bulk
material but the very large ratio of masses (mp/me ~ 1800) means that the ions
will travel on straight lines until the end, continuously slow down, and finally stop

at some point after a huge number of interactions. T
} Fig. 17-6 in text
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of the range when the ions all come to rest.
On the other hand the kinetic energy of the
ion will drop continuously in tiny increments

until it stops. In a single collision the energy
lost: AE(b) = [ Impulse(b) ]2/ m,

Deuterons in air from:
A.K. Solomon, "Why Smash Atoms?" (1959)



Cloud Chamber Images of 2°*Cf ( a & FF)
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From: http://www.lateralscience.co.uk/cloud/diff.html
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Interaction of massive C.P. with Matter —2— IEwEEATERER"

Rate of energy loss, dE/dx, for a heavy charged particle is called the stopping power
and it is made of three terms. The electronic stopping is the most important, the
nuclear reaction part is generally very small, and the nuclear-atomic part is only
important at the end of the range (misnomer in my opinion).
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Example of Energy-loss & Range

Consider the problem of a Rn atom that starts in the air and decays inside a person’s lung.
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http://learn.genetics.utah.edu/content/begin/cells/scale/




Interaction of €’s with Matter —1—

Rate of energy loss, dE/dx, for fast electrons (+ or -) is made of only two terms. The
electronic stopping is the most important, the second term is a radiative term due
to Bremsstrahlung that is most important for high energies and high Z materials.
The electronic term is similar to the Bethe-Bloch formula but the experimental
situation for e- is complicated due to scattering by identical particles and the fact
that the electrons are relativistic (m_c? = 0.511 MeV).

What’s wrong with this picture??
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For a 1 MeV electron the ratio Rad/Elec ~ 3Z/1600 which is a {Roentgen quantumm)
small contribution even for Pb or U targets.

http://www.euronuclear.org/info/encyclopedia/bremsstrahlung.htm
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Interaction of e’s with Matter —2— UNIVERSITY

Even monoenergetic electrons do not have a sharp range distribution

I Fig. 17-8 in text
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N.B. the range distribution for a beta source will be approximately
exponential due to the folding of the Fermi intensity distribution
with the range distribution.



