Week 11, Lecture 2 – Fission Process #### **Nuclear Power, Nuclear Reactors** - -- Overview - --- Reactor types - --- Reactors in Michigan - --- Reactors in France - -- Nuclear Fission process --- fission energetics, fissile nuclei - --- limits to heavy nuclei - --- dynamical process - -- Nuclear Fission Operations - --- control and reactivity 7th Homework due Monday ## ²³⁵U vs. ²³⁸U for Fission It is obvious to take nuclei with the highest atomic number for fission since they are the most unstable due to the coulomb force. But there are two isotopes of uranium available in nature but only one is 'fissile'. Recall that the cross section for neutron capture increases dramatically at low energies (1/v). So it is best to use as low a neutron energy as possible from the stand point of capturing the neutron ... The excitation energy is the Q value plus a very small kinetic energy from the neutron: 1 n + 235 U -> (236 U₁₄₄)* + Q where Q = 6.545 MeV 1 n + 238 U -> $(^{239}$ U₁₄₇)* + Q' where Q' = 4.406 MeV The formation of the Even-Even nucleus gives about 2 MeV more energy than the formation of the Even-Odd nucleus – this makes all the difference in driving the fission process. #### **Fissile Nuclei** 249 Bk 330 d 248 Cm 0.3 My 249 Cm 64 m 248 Bk 9 y 247 Cm 16 My 247 Bk 1.7 ky 246 Cm 4.7 ky 245 Am 2 h Those nuclei that are Even-Odd and undergo fission after low energy neutron capture are called 'fissile' nuclei – there are only a few practical cases. | and any a few practical cases. | | | | | | | | | | | 246 Bk
1.8 d | |---|--|-----------------|-----------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|-------------------|---------------------| | | ²³⁵ U natural
²³⁹ Pu make from ²³⁸ U | | | | | | | 242
Cm
163 d | 243
Cm
30 y | 244
Cm
18 y | 245
Cm
8.5 ky | | 233U make from ²³² Th 240 Am 51 h 241 Am 433 y 16 h | | | | | | | | | 243
Am
7.4 ky | 244
Am
10 h | | | | | | | | 237 Pu
45 d | 238 Pu
88 y | 239 Pu
24 ky | 240 Pu
6.5 ky | 241 Pu
14 y | 242 Pu
374 ky | 243 Pu
5 h | | | | | | 235
Np
396 d | 236
Np
154 ky | 237
Np 23
My | 238
Np
2.1 d | 239
Np
2.4 d | 240
Np
1.1 h | 241
Np
14 m | | | | 231 U
4 d | 232 U
69 y | 233 U
159 ky | 234 U
159 ky | 235 U
704
My | 236 U
23 My | 237 U
6.7 d | 238 U
4.5 Gy | 239 U
23 m | 240 U
14 hr | | | | 230 Pa
17 d | 231 Pa
33 ky | 232 Pa
1.3 d | 233 Pa
27 d | 234 Pa
6 hr | 235 Pa
24 m | 236 Pa
9 m | | | | | | | 229 Th | 230 Th | 231 Th | 232 Th | 233 Th | 234 Th | | • | | | | 24 d 7.5 ky 75 ky 26 hr 14 Gy 22 m # Critical (large) Size for Nuclei Recall that the equilibrium shape of (most) nuclei is a sphere. Since fission converts a single nucleus into two separate nuclei – one needs to consider how the energy of a nucleus changes with deformation. Sphere: $$BE(Z,A) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} \pm \delta$$ Small deformations of the sphere: - constant volume - no change in numbers of nucleons - Surface area grows - Coulomb energy drops $$E_{C} \approx E_{C}^{o}(1 - \frac{\alpha^{2}}{5}) \stackrel{?}{=} E_{S} \approx E_{S}^{o}(1 + \frac{2\alpha^{2}}{5}) \text{ Eq. 11.2}$$ $$E_{C} - E_{C}^{o} = -\frac{E_{C}^{o}\alpha^{2}}{5} \stackrel{?}{=} E_{S} - E_{S}^{o} = \frac{2E_{S}^{o}\alpha^{2}}{5}$$ $$-\frac{E_{C}^{o}\alpha^{2}}{5} = \frac{2E_{S}^{o}\alpha^{2}}{5} \implies \frac{E_{C}^{o}}{2E_{S}^{o}} = 1 \text{ Eq. 11.3}$$ # **Fission Barrier** Ground state The deformation process reaches a point of no return that is called the fission barrier. The fission process is an energy amplifier in that a small amount of excitation energy can lead to the output of a large energy release. $$V_{Coulomb} = \frac{Z_1 Z_2 e^2}{R_1 + R_2} = \frac{Z_1 (92 - Z_1) 1.439 MeV}{1.2 [A_1^{1/3} + (238 - A_1)^{1/3}]}$$ **Energy Contours** # Mass and Charge of FF's 1 n + 235 U -> $(^{236}$ U₁₄₄)* + 6.545 MeV -> A1 Z₁ + A2 Z₂ + Q_f A1 = A2 = 236/2 - rare event $A1 \sim 140$, $A2 \sim (236-140)$ - common Unchanged Charge Ratio $Z/A = 92/238 = Z_1/A_1 = Z_2/A_2$ ### Modern Calculation of Fission The figure shows the energy surface of the transuranic element ²⁵⁸Fm calculated with the self-consistent nuclear density functional theory as a function of two collective variables: - (a) the total quadrupole moment \mathbf{Q}_{20} representing the elongation of nuclear shape, - (b) the total octupole moment Q_{30} representing the left-right shape asymmetry