Instructions: You have fifty minutes to complete this exam. Please place your name on <u>all</u> pages of this exam. Exams submitted without a name will not be graded. Show all work when calculating answers. You are allowed to use a calculator for the exam.

- 1. (10 points, true/false) Determine whether each of the following statements regarding a pure liquid in equilibrium with its vapor at 298 K is true or false. Write the entire word TRUE or FALSE or else no credit will be give.
 - a. Before equilibrium, the greater the value of $\Delta_r G_{298}^0$ the faster equilibrium was obtained. FALS E
 - b. At equilibrium the chemical potentials of the liquid and gas phases are equal. au
 m R u
 m E
 - c. At equilibrium the rate of evaporation is greater than the rate of condensation. FALSE
 - d. At equilibrium the value of $\Delta_r \overline{G}_{298}^0$ is equal to 0. FALSE
 - e. If heat is added slowly so that the system remains at equilibrium, the temperature will not rise until all the liquid has evaporated. + RuE
- 2. (10 points) While you are working at the U.S. patent office an application comes across your desk. A heat engine is described which operates between a hot reservoir of 600 K and a cold reservoir of 300 K. The inventor claims that for 500 J of heat put into the engine, 200 J is exhausted while 300 J is converted to work.
 - a. What is the theoretical maximum efficiency for the heat engine described?

$$E = 1 - \frac{T_c}{T_H} = 1 - \frac{300}{600} = 0.5$$

b. Would you believe the claim from the inventor that 300 J can be converted to work? Explain.

$$E = \frac{\omega}{9H} = \frac{300}{500} = 0.6$$

do not believe the member, efficiency is too high

reversibly

3. (35 points) One mole of NH₃ (g) is expanded adiabatically from an initial state of P_1 = 21.58 bar, V_1 = 1 L, and T_1 = 300 K to a final state of P_2 = 1.62 bar, V_2 = 10 L, and T_2 = 200 K against a constant external pressure of 3.45 bar. The gas can be treated using the van der Waals equation of state with a=4.3 L²bar/mol² and b=0.038 L/mol.

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

a. Calculate the work performed by the gas.

b. What is the change in the internal energy, ΔU , for the process?

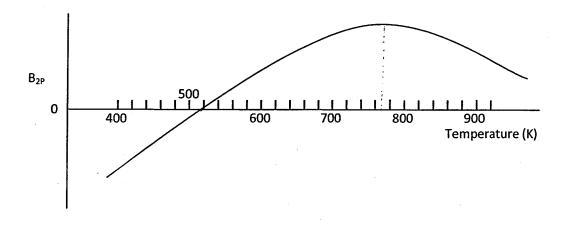
c. What is the entropy change, ΔS , for the process?

d. Calculate the heat capacity of NH₃(g). $\Delta S = O = \int_{T_1 V_1}^{T_2 V_2} \left(\frac{dS}{dT} \right) dT + \left(\frac{dS}{dV} \right)_T dV \qquad \left(\frac{dS}{dV} \right)_T = \left(\frac{dP}{dT} \right) \cdot \left(\frac{dP}{dT} \right)_T = \frac{nR}{v - nb}$ $O = \int_{T_1 V_1}^{T_2 V_2} \frac{Cv}{T} dT + \frac{nR}{v - nb} dV = Cv \ln \frac{T_2}{T_1} + nR \ln \left(\frac{v_2 - nb}{v_1 - nb} \right)$ $= nR \ln \left(\frac{v_2 - nb}{v_1 - nb} \right) \cdot \left(\frac{v_2 - nb}$

$$C_{\nu} = \frac{-nR\ln\left(\frac{\nu_{2}-nb}{\nu_{1}-nb}\right)}{\ln\frac{T_{2}}{T_{1}}} = \frac{(-1mol)(8.3145)(nol)(10L-1mol(0.038)(nol))}{\ln\frac{200}{T_{1}}(nol)(10L-1mol(0.038)(nol))} = 47.9 \% mol$$

e. What is the enthalpy change, ΔH for the process?

$$\Delta H = \Delta U + dPV$$


$$\Delta H = -31.05 Lbar + (4.62 bar)(10L) - (21.58 bar)(1L)$$

$$= -36.43 Lbar$$

4. (15 points) O_2 can be liquefied through successive Joule-Thompson expansions. During class we derived an expression for the Joule-Thompson coefficient in terms of B_{2P} :

$$\mu_{JT} = \frac{RT^2 \left(\frac{\partial B_{2P}}{\partial T}\right)_P}{\bar{C}_P}$$

A plot of B_{2P} as a function of temperature is given below.

a. What is the maximum allowable initial temperature for the Joule-Thompson expansion to lead to a drop in temperature of the gas?

b. At what temperature would O₂ behave most like an ideal gas?

c. O_2 undergoes a Joule-Thompson expansion from 100 bar to 1 bar. If the initial and final temperatures are 400 K and 350 K what is the Joule-Thompson coefficient.

$$T_2 - T_1 = u_{JT} (P_2 - P_1)$$

$$u_{JT} = \frac{(350^2 - 400 \text{ k})}{(1 - 100 \text{ bar})} = 0.505 \text{ bar}$$

5. (15 points) A short duration instant heat pack used by athletes to quickly treat injuries work by dissolving a substance in water. A heat pack is constructed by placing 1 mol of magnesium sulfate (MgSO₄) in a vial in a plastic pouch with 300 g of water. MgSO₄ dissolves in water according to the reaction given below

$$MgSO_4(s) + H_2O(l) \rightarrow Mg^{2+}(aq) + SO_4^{2-}(aq) + H_2O(l)$$

After breaking the vial and mixing the chemicals what is the highest temperature that can be reached by the hot pack if the pack is initially at 298 K?

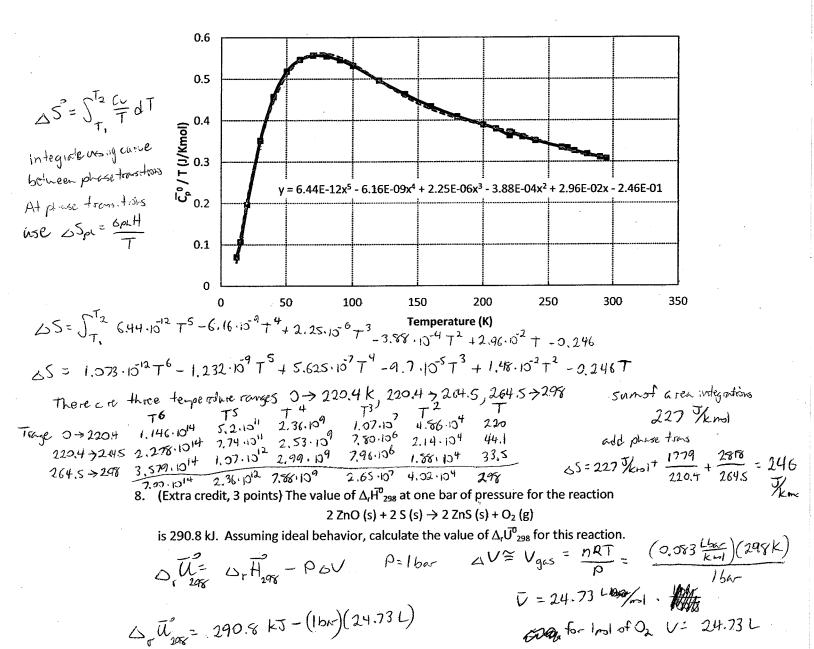
Substance	$\Delta_{ m f}\overline{ m H}_{ m 298}^{ m 0}$ (kJ/mol)
MgSO ₄	-1278.2
Mg ²⁺	-462.0
SO ₄ ²⁻	-907.5

You may assume that the heat capacity of the water, pouch, vial, and aqueous MgSO $_4$ is 1053 J/K after the dissolution and does not vary as a function of temperature.

$$\triangle_r \vec{H}_{298}^2 = O_S \vec{H}_{MS}(SO_4^2) + O_S \vec{H}_{298}(Mg^{24}) - O_F \vec{H}_{298}(MgSO_4)$$

$$= -907.5 - 462.0 + 1278.2 = 19 - 91.3 \text{ KJ/mol}$$
for I mole 91.3 KJ released by rxn and absorped by pouch, vial, solution, ...

91.3 kJ/moi =
$$\int_{298}^{T_2} (\rho dT = C\rho (T_2 - 298))$$


$$T_2 = \frac{91.3 \, \text{kg/mol}}{Cp} + 298 \, \text{k} = \frac{91.3 \, \text{kg/mol}}{1.053 \, \text{kg/mol}} + 298 \, \text{k}$$

6. (15 points) The vapor pressure of benzaldehyde is 0.533 bar at 427 K and its normal boiling point is 452 K (the normal boiling point is the temperature at which the vapor pressure is equal to 1 bar). What is the molar enthalpy of vaporization?

In
$$\frac{\rho_1}{\rho_1} = \frac{\Delta u \rho \overrightarrow{H}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\Delta up \vec{H}^2 = \frac{R \ln \frac{P_2}{p}}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} = \frac{\left(8.3145 \frac{1}{145} \frac{1}{1452 \frac{1$$

7. (Extra credit, 4 points) Methylammonium chloride occurs as three crystalline forms called, β , γ , and α , between 0 and 298 K. The constant pressure heat capacity divided by temperature is shown on the graph below long with a best fit polynomial expression. The β to γ transition occurs at 220.4 K with $\Delta_{trans}H=1.779$ kJ/mol and the γ to α transition occurs at 264.5 K with $\Delta_{trans}H=2.818$ kJ/mol. Approximate the molar entropy of methylammonium chloride at 298 K.

= 290.8 KJ - (1600) (24.73L). 1205 Lbar 1201

= 286.3 KJ