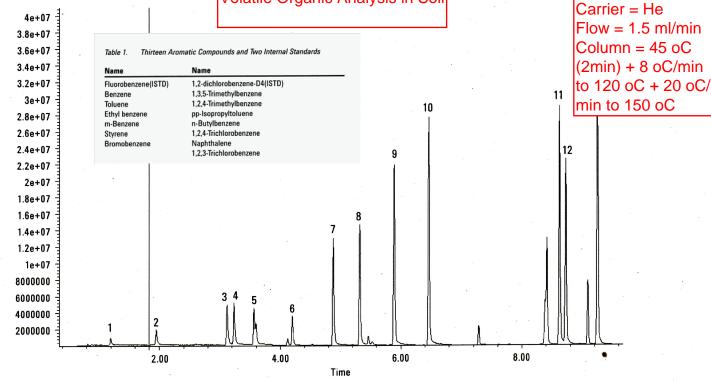
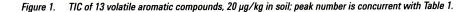
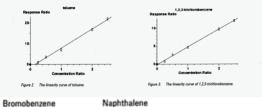

<u>Chapter 27 – Introduction to Gas</u> <u>Chromatography</u>

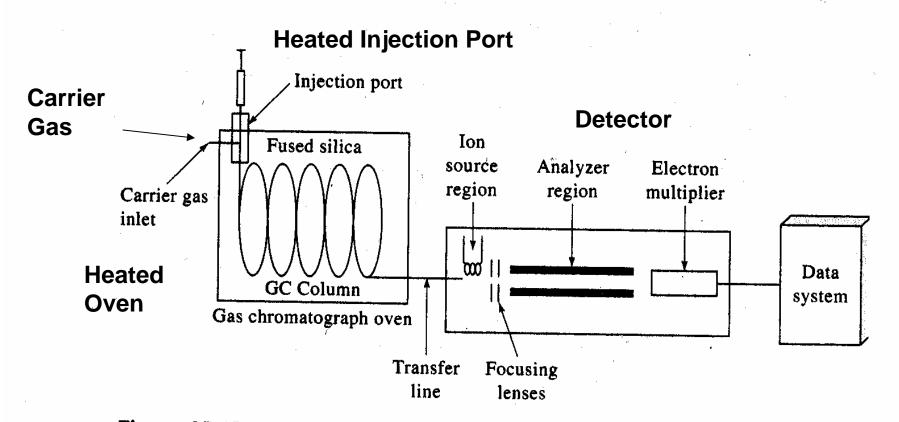
Read: pp. 701-721 Problems: 27-2,3,6,7,9,22


Gas chromatography involves a vaporized sample being injected into the head of a chromatographic column. Elution is brought about by the flow of an inert gas mobile phase. In contrast to most other types of chromatography, the mobile phase does not interact with molecules of the analyte. Its only function is to transport the analyte throught the column.

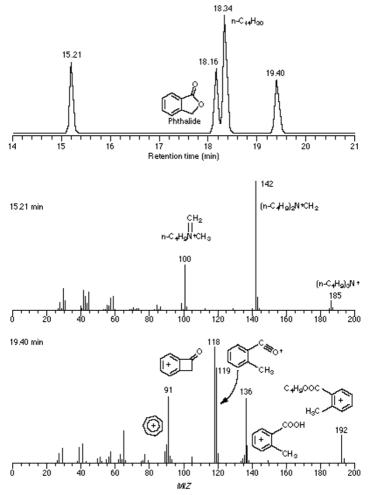

Two types: gas-solid and gas-liquid chromatography

Separation is based on differences in boiling points of the solutes and the solutes' interaction with the stationary phase.





lnlet = 220 oC



1,2,3-Trichlorobenzene

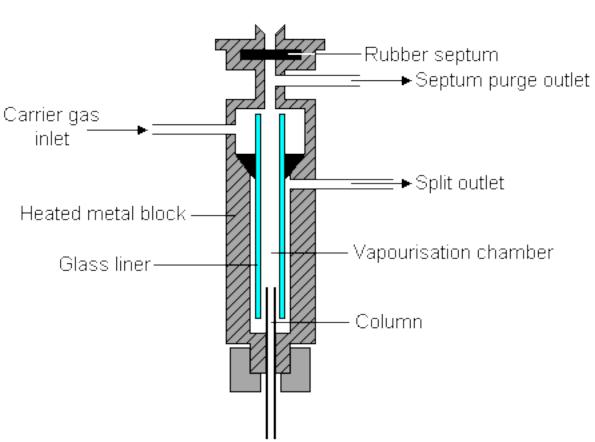
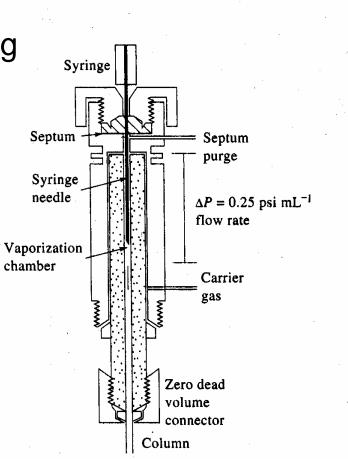
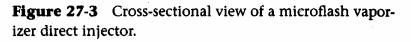

Instrumentation

Figure 27-13 Schematic of a typical capillary gas chromatography/mass spectrometer.




The split / splitless injector

Injector

Function is to introduce a plug of vapor.

20-50 µL volume for normal size columns.

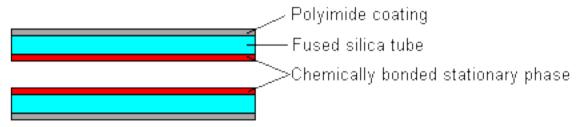
Ordinarily about 50 °C above the least volatile component in the sample.

Capillary columns require injection volumes of a few nL.

Column Types

There are three general types of columns used in modern day separations:

 Packed (filled with a "pseudospherical" support material that the stationary phase material is bonded to)
 Open tubular (inner walls of the tube are coated with a liquid or colid stationary phase material)


liquid or solid stationary phase material)

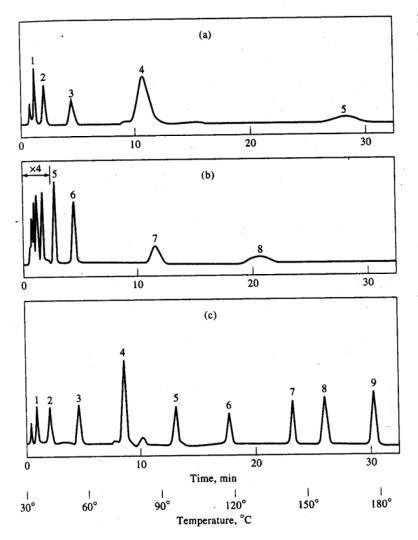
3. Capillary columns

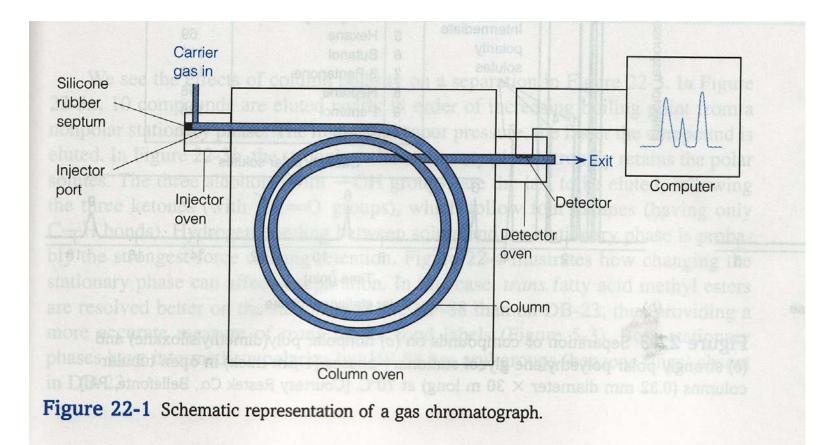
Packed columns are most often used. 1-10 m length, 2-4 mm in diameter, particle size 1-10 μ m.

The optimum column temperature depends on the boiling point of the sample and the degree of separation required.

Cross section of a Fused Silica Open Tubular Column

<u>Columns</u>

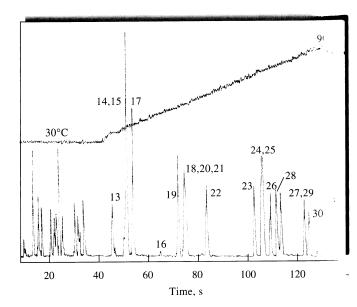



Figure 27-5 Effect of temperature on gas chromatograms: (a) isothermal at 45°C; (b) isothermal at 145°C; (c) programmed at 30° to 180°C. (From W. E. Harris and H. W. Habgood, Programmed Temperature Gas Chromatography, p. 10. New York: Wiley, 1966. Reprinted by permission of John Wiley & Sons, Inc.)

> A separation temperature roughly above the average boiling point of the sample results in a 2-30 min elution time.

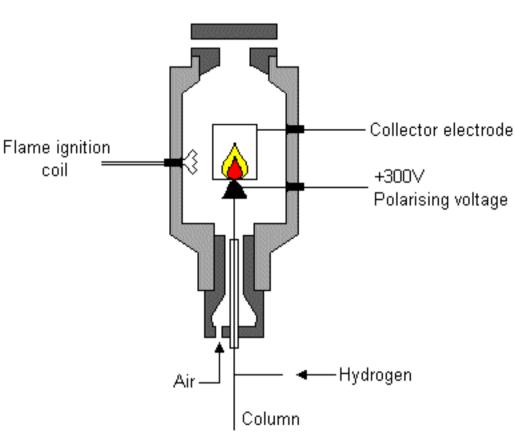
Temperature programming

Optimum resolution is associated with minimal temperature. The cost of lowered temperature is an increase in the elution time and therefore the time required to complete the analysis.


GC Instrument Design

Price paid for higher speed is reduced resolving power and reduced peak capacity.

FIGURE 27-19 High-speed chromatogram obtained with isothermal operation (30°C) for 37 s followed by a 35°C/min temperature ramp to 90°C. (From H. Smith and R. D. Sacks, *Anal. Chem.*, **1998**, *70*, 4960. Copyright 1998 American Chemical Society.)


Separations at a higher speed albeit at the expense of some selectivity and resolution

Ideal Detector Properties

- 1. Adequate sensitivity (slope of the response curve)
- 2. Good stability and reproducibility
- 3. A linear dynamic range that extends over several orders of magnitude
- 4. A temperature range from room temperature to at least 400 °C
- 5. A short response time that is independent of flow rate
- 6. Highly reproducible and easy to use
- 7. A predictable response toward all solutes
- 8. Nondestructive to the sample

The Flame Ionisation Detector

Flame Ionization Detector

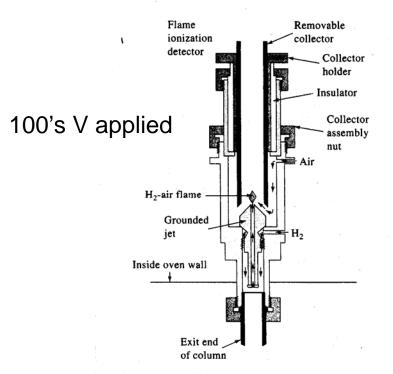
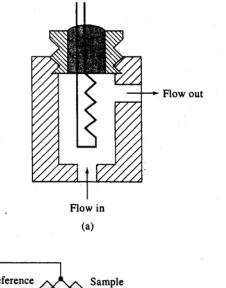
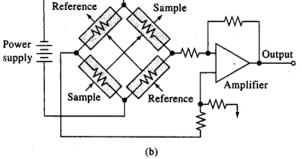


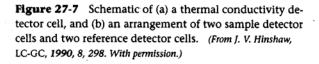
Figure 27-6 A typical flame ionization detector. (Courtesy of Hewlett-Packard Company.)

Widely used and generally applicable.

Effluent from column is mixed with H_2 and air and ignited electrically.


Organic compounds, when pyrolyzed, produce ions and electrons.

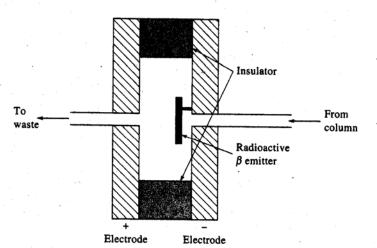

Number of ions produced is a function of the number of carbon atoms in the molecule. Good for the analysis of most organics.

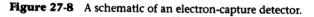

Detector insensitive toward noncombustible gases, such as H_2O , CO_2 , SO_2 and NOx.

LDR = 4-7 orders of magnitude LOD = low ppb range (S/N>3) Destructive to the sample!

Thermal Conductivity Detector

A very general or universal detector.


Response results from changes in the thermal conductivity of a gas stream brought about by the presence of an analyte.


Thermal conductivity of He and H_2 (carrier gases) is roughly 10x greater than that for most organic molecules.

Filament heated resistively to a constant temperature. The electrical power needed to maintain a constant temperature depends on the thermal conductivity of the surrounding gas. Small amount of analyte produces a big temperature change (increase) in the filament.

LDR = 3-5 orders of magnitude LOD = ppm range (S/N>3)

Electron Capture Detector

Widely used for environmental analysis.

Very good for detecting halogenated compounds, like pesticides and polychlorinated biphenyls.

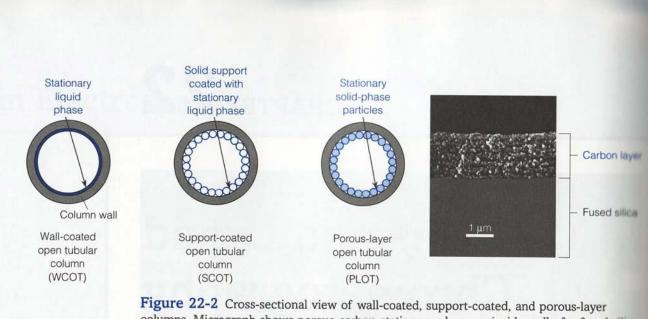
Electron from a β -emitter ionizes the carrier gas, often N₂, and produces a burst of electrons. A constant current is measured in the absence of any analyte.

Analytes that capture electrons reduce the current.

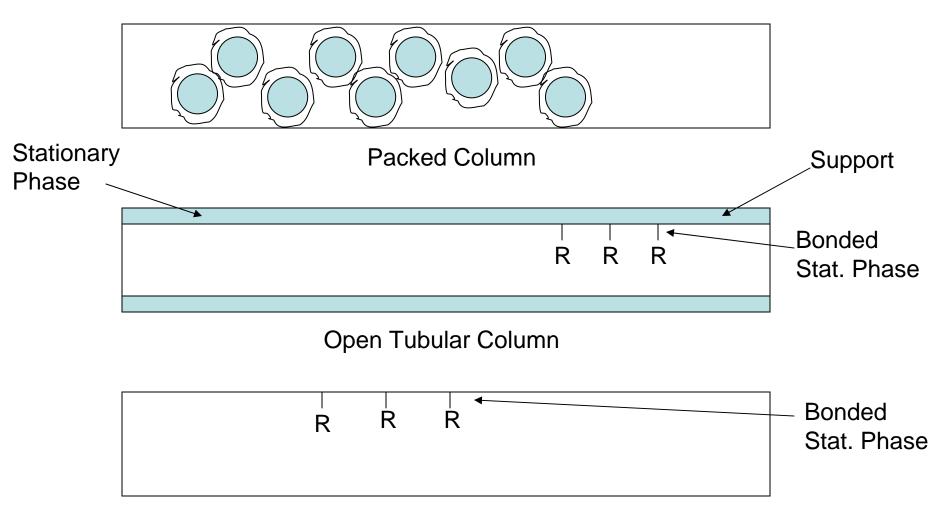
LDR = 3-5 orders of magnitude LOD = low ppb to high ppt levels (S/N>3)

Detector Summary

Gas chromatography detectors:


- *flame ionization:* responds to compounds with C—H
- *thermal conductivity:* responds to everything, but not sensitive enough for columns <0.53 mm in diameter
- electron capture: halogens, conjugated C=O, −C≡N, −NO₂
- flame photometer: P and S
- alkali flame: P and N
- sulfur chemiluminescence: S
- *mass spectrometer*: responds to everything

There are three general types of columns/stationary phases:


- Packed columns (stationary phase supported on small particles).
- 2. <u>Open tubular columns</u> wall-coated (thin layer of stationary phase material, 30 μ m thick) and support-coated (diatomaceous earth support coated on the wall, and stationary phase bonded to this).
- 3. Fused silica open tubular columns chemically modified inner wall. Direct bonding to the wall surface (100-500 μ m diam.).

N values can be 100,000 to 500,000 plates for OT format.

Types of Columns

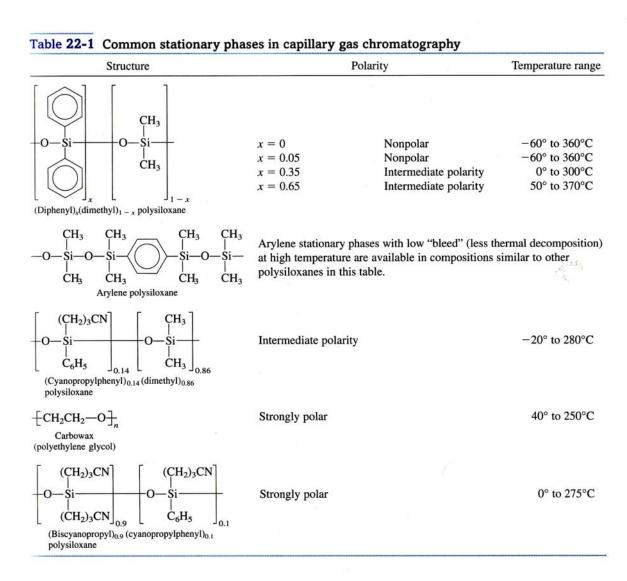
columns. Micrograph shows porous carbon stationary phase on inside wall of a fused-silica open tubular column.

Fused Silica Open Tubular Column

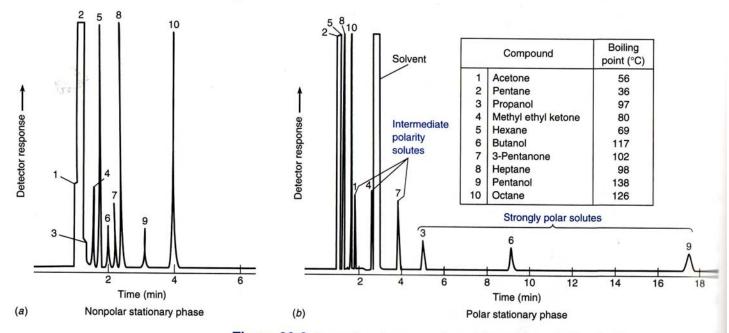
TABLE 27-1 Properties and Characteristics of Typical Gas-Chromatographic Columns

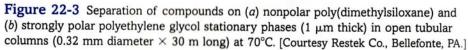
	Type of Column*				
	FSOT	WCOT	SCOT	Packed	
Length, m	10100	10-100	10–100	16	
Inside diameter, mm	0.1-0.53	0.25-0.75	0.5	2-4	
Efficiency, plates/m	20004000	10004000	600-1200	500-1000	
Total plates	$(20-400) \times 10^3$	$(10-400) \times 10^3$	$(6-120) \times 10^{3}$	$(1-10) \times 10^{3}$	
Sample size, ng	10–75	101000	10-1000	10-106	
Relative back pressure	Low	Low	Low	High	
Relative speed	Fast	Fast	Fast	Slow	
Chemical inertness	Best		· · · · · · · · · · · · · · · · · · ·	> Poorest	
Flexible?	Yes	No	No	No	

*FSOT: Fused-silica, open tubular column. WCOT: Wall-coated, open tubular column. SCOT: Support-coated open tubular column.


8

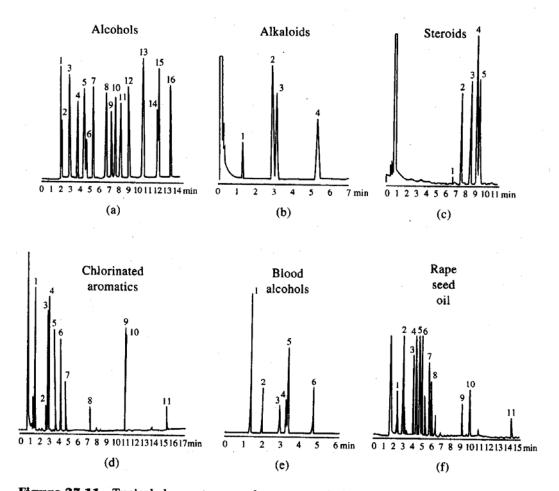
Stationary Phase	Common Trade Name	Maximum Temperature, °C	Common Applications	
Polydimethyl siloxane	OV-1, SE-30	350	General-purpose nonpolar phase; hydrocarbons; polynuclear aromatics; drugs; steroids; PCBs	
Poly(phenylmethyldimethyl) siloxane (10% phenyl)	OV-3, SE-52	350	Fatty acid methyl esters; alkaloids; drugs; halogenated compounds	
Poly(phenylmethyl) siloxane (50% phenyl)	OV-17 °	250	Drugs; steroids; pesticides; glycols	
Poly(trifluoropropyldimethyl) siloxane	OV-210	200	Chlorinated aromatics; nitroaromatics; alkyl-substituted benzenes	
Polyethylene glycol	Carbowax 20M	250	Free acids; alcohols; ethers; essential oils; glycols	
Poly(dicyanoallyldimethyl) siloxane	OV-275	240	Polyunsaturated fatty acids; rosin acids; free acids; alcohols	


TABLE 27-2 Some Common Stationary Phases for Gas-Liquid Chromatography


Like interacts with like!!!

Common Stationary Phases

Example Separation



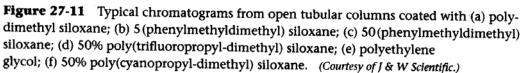

Why is the Efficiency, N, so Different?

Figure 22-5 Gas chromatography with 5A molecular sieves. Upper chromatogram was obtained with a packed column (3.2 mm diameter \times 4.6 m long) at 40°C, by using 1 mL of sample containing 2 ppm (by volume) of each analyte in He. Lower chromatogram was obtained with an open tubular column (0.32 mm diameter \times 30 m long) at 30°C, by using 4 µL of the same sample. [From J. Madabushi, H. Cai, S. Steams, and W. Wentworth, *Am. Lab.* October 1995, p. 21.]

Examples of Separations

