1) Name. Include E / Z stereochemistry in name, if necessary.
a)

b)

c)

d)
Prosers)
e)

f)

use iso-, tert-, sec- prefixes in your substituent names, where necessary
g)

Do NOT use iso-, tert-, sec- prefixes in your substituent names; instead, use IUPAC numbering to identify substituent names, where necessary
2) Assign E or Z configuration. CIRCLE the highest priority groups for credit.

3) Match the appropriate letter to the substituent below

a. Allyl	b. Phenyl	c. Vinyl	d. Methylene

\square
\square
\square
\square
4) Classify each as (M)onosubstituted, (D)isubstituted, (TRI)substituted, or (TET)rasubstituted. Write M, D, TRI, or TET in boxes below.

\square

\square
\square
\square
5) Draw.

b) trans-2,2,5,5-tetramethyl-3-hexene

c) 3-isopropyl-2,4-dimethyl-2-pentene

d) 4-ethyl-2-methyl-2-hexene

6) Arrange the following in order of increasing stability (1 is LEAST stable; $\mathbf{3}$ is MOST stable).
a)

b)

\square \square
7) Place a dot (this size) on top of EACH beta-Carbon and draw the letter (α) next to the alpha-Carbon in the alkyl halide and carbocation compounds below.

8) For the E1 reactions below,

1. Provide the carbocation intermediate, then
2. Show the MOST stable product

Intermediate

Product

Product

9) Arrange the following in order of increasing E2 reactivity (1 is LEAST reactive; $\mathbf{3}$ is MOST reactive).
c)

d)

\square
\square
\square
10) Consider the following data in the Table (this will not be provided on the exam, it's included here to help you understand how to approach the problems). Look at the SIZE of the base used and notice the product distribution between the Zaitsev and Hofmann products.

11) Identify the products of the following E2 reactions. If only a MAJOR product is made, draw an X in the MINOR box. Disregard trans/cis stereochemistry as MAJOR/MINOR for this problem.

MAJOR

MINOR

MAJOR

MINOR

MAJOR

MAJOR

\square
MAJOR

MINOR
MINOR

12) Identify the STEREOISOMERIC products of the following E2 reactions

MINOR

13) Which base is used to yield the following as the MAJOR product.
A. t-BuOK
B. NaOH

Place Letter in the box.

14) Identify the STEREOISOMERIC products of the following E1 reactions. Notice the strong acid reactant $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ and heat) used with an alcohol ; notice that no strong acid is used with non-alcohol in E 1 reactions)

15) Provide the reactions conditions needed $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat OR EtOH/heat to carry out the following E1 reactions.

16) If the following E reaction involves a carbocation rearrangement, draw the initial carbocation formed, the carbocation made AFTER rearrangement, and then the alkene.

If no rearrangement occurs, Draw an X in the boxes.

If NO rearrangment, Draw X in the box

If NO rearrangment, Draw X in the box

17) Complete the mechanisms. Use curved arrows (\frown) to show movement of bond (electrons). Cation

Use curved arrows to show mechanism of deprotonation

> Alkene
> +
> $\mathrm{H}_{3} \mathrm{O}^{+}$

18) Draw the elimination product(s) for the reaction below (Include stereochemistry in products, when necessary).

If 2 or fewer products place an X in the box(es) that you do not use
19) Draw the structure of the major organic ELIMINATION product

20) Draw the structure of the major organic ELIMINATION product

21) Predict the MAJOR alkene of the E1 reaction.

Become familiar with the reagents in the table below, this will not be provided on the exam. Find trends, make up mnemonics that help you remember those trends, if necessary.

DBN: strong base, weak nucleophile

DBU: strong base, weak nucleophile

22) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

E1
$S_{N} 1$
E2
$S_{N} 2$
23) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

E1 $\mathrm{S}_{\mathrm{N}} 1$
$E 2 \quad S_{N} 2$
24) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

what type of solvent
is DMSO?

E1
$S_{N} 1$
E2
$S_{N} 2$
25) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

E1 $\mathrm{S}_{\mathrm{N}} 1$
E2
$S_{N} 2$
26) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

E1
$\mathrm{S}_{\mathrm{N}} 1$
E2
$\mathrm{S}_{\mathrm{N}} 2$
27) The mechanism(s) for the reaction below is: (CIRCLE mechanism(s) below)

28) Consider the reactions below for questions 29-32.

29) The alkyl bromide starting materials in these reactions are classified as
A) 3°
B) 4°
C) 1°
D) 2° ?
\square LETTER here
30) The solvent (acetone) in these reactions is:
A) polar protic
B) nonpolar protic
C) nonpolar aprotic
D) polar aprotic
\square LETTER here
31) Circle the faster reaction above?
32) The mechanism for both reactions above is:
A) E1
B) $\mathrm{S}_{\mathrm{N}} 1$
C) E2
D) $\mathrm{S}_{\mathrm{N}} 2$

LETTER here

For Reference Only (not supplied on exam)

33) Identify the MAJOR product of the following reactions. SHOW STEREOCHEMISTRY WHEN NECESSARY

