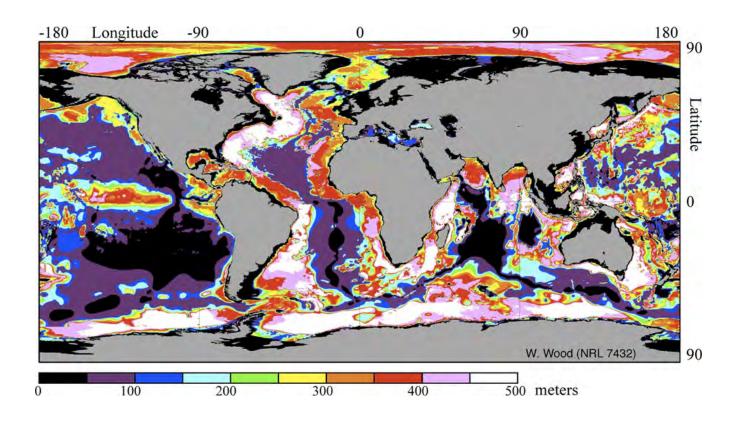


FIGURE 4.2 Crude oil distillation.

	Boiling		
Fraction	Point Range	Comments	
Gases			
Methane (65–90%), ethane, propane, butane	Below 20°C	Similar to natural gas. Useful for fuel and chemicals. Also obtained from catalytic cracking and catalytic reforming. Some of it is flared because of cost of recovery. <i>n</i> -Butane, however, is practically always recovered.	
Naphtha			
Light naphtha (C ₅ ,C ₆ hydrocarbons)	70–140°C	Naphtha is predominantly C ₅ –C ₉ aliphatic and cycloaliphatic compounds. May contain some aromatics. Base for gasoline. Useful for both fuel and chemicals. Light naphtha is now considered undesirable for gasoline because catalytic reforming yields benzene, which is toxic and has a relatively low octane number.	
Heavy naphtha (C7-C9 hydrocarbons)	140–200°C		
Atmospheric gas oil			
Kerosene	175–275°C	Contains C ₉ -C ₁₆ compounds useful for jet, tractor, and heating fuel.	
Diesel fuel	200–370°C	Contains C ₁₅ –C ₂₅ compounds, mostly linear. Useful for diesel and heating fuels. Gas oil is catalytically cracked to naphtha and may be steam cracked to olefins.	
Heavy fractions			
Lubricating oil	Above 370°C	Used for lubrication	
Residual or heavy fuel oil	Above 370°C	Used for boiler fuel. Vacuum distillation gives vacuum gas oil for catalytic cracking.	
Asphalt or "resid"		Used for paving, coating, and structural applications.	



Methane Hydrate –structure. methane: gray-carbon, green hydrogens water: red-oxygen, white-hydrogen,

Burning Ice - methane hydrate

DOI: 10.1021/je500604h

Copyright © 2014 American Chemical Society

Synthesis of Biobased Terephthalic Acid from Methane

Thermogenic/Biogenic Methane

- In 2018, the U.S. produced 0.76 x 10¹² m³ of methane.
- In 2017, the U.S. consumed 0.77 x10¹² m³ of methane.
- In 2016, the U.S. had 70 x 10¹² m³ of estimated methane reserves.
- The U.S. has 1,500 x 10¹² m³ of estimated methane hydrate reserves.
- In 2013, first marine extraction of methane hydrate (Nankai Trough).

Renewable Biogas

- In 2013, U.S. biogas production was 12 x 10⁹ m³ annually.
- Near-term, U.S. biogas production could reach 60 x 10⁹ m³ annually.
- U.S. chemical industry consumes 46 x10⁹ m³ of methane.
- Methane (wt/wt) has a 25-fold greater impact relative to CO₂ on climate change over a 100-year period.