Week 3: Distillation I

Best way to separate a mixture of two liquids

Simple Distillation

Simple Distillation = I evaporation / condensation

I Simple Distillation = I Theoretical Plate

Figure 3.3. A simple distillation setup.

Simple vs Fractional Distillation

Figure 3.4. A fractional distillation setup.

I Fractional Distillation = >I Theoretical Plates

Fractional Distillation is more efficient than the Simple Distillation.

Figure 3.4. A fractional distillation setup.

4.0 m 3.0 2.0 1.0 4

Graphing Your Data

Report your data as below:

Simple Distillation		Fractional Distillation	
Volume (mL)	Temp. (°C)	Volume (mL)	Temp. (°C)
1.0	52.2		
1.2	52.2	Participation of the second	are del si
1.6	52.3		
1.0		and parents should	contro chrou fre
			rectly propon
and motion			19.5
		the state of can be play	and the first
V		an derestor produce	
0.0			
and burgher into p			
		-	
1			
arthy sheeds		te concentration of	
	La set of temple of	a is the part of the state	and a striple
		St. D. N. BALASSAL STREET	
	Tel set son		Internet P
	dange soorquars.	to storgoursub ou	Constant Price
title orb broa	A laging gailing	out rogicit source	

Figure 3.1. Separation of an equimolar mixture of acetone/ethanol by distillation. The boiling points for the pure components are 56 and 78.5°C for acetone and ethanol, respectively. The dashed line graphs the distillation setup with an infinite number of theoretical plates.

CAUTION: Be careful, as both acetone and ethanol are highly flammable solvents.

Calculating Number of Theoretical Plates

The Fenske equation can be used to calculate the number of theoretical plates in a particular piece of apparatus. For a simple two-compound system the Fenske equation can be written as:

$$n = \frac{\log \left(\frac{X_a}{X_b} \right) - \log \left(\frac{Y_a}{Y_b} \right)}{\log \alpha}$$

- n = number of theoretical plates.
- $X_a =$ The vapor pressure of the more volatile compound in the product (acetone).
- $X_{b} =$ The vapor pressure of the more volatile compound in the distilling flask (acetone).
- $Y_a =$ The vapor pressure of the less volatile compound in the product (ethanol).
- Y_b = The vapor pressure of the less volatile compound in the distilling flask (ethanol).
- α = vapor pressure ratio of the two components.

Gas Chromatography

Column "A" is packed with 20% carbowax 20M on Chromasorb P AW DMCS, 80/100 mesh.

Column "B" is packed with 20% DC-200 20M on Chromasorb P AW DMCS, 80/100 mesh.

Helium tank

Figure 3.2. Schematic diagram of a GOW-MAC GC

Calculating Number of Theoretical Plates

The Fenske equation can be used to calculate the number of theoretical plates in a particular piece of apparatus. For a simple two-compound system the Fenske equation can be written as:

$$n = \frac{\log \left(\frac{X_a}{X_b} - \log \left(\frac{Y_a}{Y_b} \right) - \log \left(\frac{Y_a}{Y_b} \right)}{\log \alpha}$$

- n = number of theoretical plates.
- X_a = The vapor pressure of the more volatile compound in the product (acetone).
- $X_b =$ The vapor pressure of the more volatile compound in the distilling flask (acetone).
- Y_a = The vapor pressure of the less volatile compound in the product (ethanol).
- $Y_b =$ The vapor pressure of the less volatile compound in the distilling flask (ethanol).
- α = vapor pressure ratio of the two components.

Area % 68.6 Acetone 31.4 Ethanol

 X_{b} , Y_{b} will be provided by your TA i.e. $X_{b} = 52$, $Y_{b} = 48$

alpha= 1.7

n = [log (68.6/52) - log(31.4/48)] / log1.7

n = 1.35