Summary of Reactions of Alkynes.

I. Structure and bonding
 A. sp-hybridization of carbons in triple bond
 B. 2 perpendicular \(\pi \) and 1 \(\sigma \) bonds
 C. relative stabilities
 1. disubstituted (interior or internal) > monosubstituted (terminal)

II. Nomenclature
 A. IUPAC system: alkyne (eg, \(t-C_2H_5C≡CH \) is 3,3-dimethyl-1-butyne)
 B. trivial: substituted acetylene (eg, \(t-C_4H_9C≡CH \) is \(t \)-butylacetylene)

III. Preparations of alkynes
 A. elimination reactions
 1. elimination of 2 HX from geminal, 1,1-dihaloalkanes: double dehydrohalogenation using very strong bases
 a. \(E_2 \) twice is usually mechanism
 b. must use strong base like \(\text{NaNH}_2 \)
 c. anti-elimination stereochemistry of \(E_2 \) is followed
 d. an intermediate haloalkene is generated; this alkene is the major product if bases weaker than \(\text{NaNH}_2 \) (eg, alkoxides) are used
 2. elimination of 2 HX from vicinal,1,2-dihaloalkanes: double dehydrohalogenation using very strong bases
 a. same comments as above
 3. alkylation of terminal alkynes
 a. \(C_{sp}^2-H \) bonds are quite short and relatively polarized so that the Hs are relatively acidic
 i. \(pK_a \) of acetylene is 26
 ii. terminal acetylenes can be deprotonated by very strong bases (eg, \(\text{NaNH}_2 \)) to form their conjugate bases which are called metal acetylides:

\[
\text{RC≡C} - \text{H} + \text{NaNH}_2 \rightarrow \text{RC≡C} - \text{Na}^+ + \text{NH}_3
\]

b. metal acetylides are nucleophiles and participate in \(S_N2 \) reactions:

\[
\text{RC≡C} - \text{Na}^+ + \text{R}^1-X \rightarrow \text{RC≡CR}^1 + \text{NaX}
\]

 i. \(\text{R}^1-X \) must be methyl or \(^1^\circ\) otherwise elimination predominates

IV. Reactions of alkynes
 A. addition reactions
 1. hydrogenation: addition of 1 mol \(\text{H}_2 \) to yield alkenes
 a. Lindlar's catalyst (\(\text{Pd on BaSO}_4 + \text{quoline} \)) and \(\text{H}_2 \)
 i. syn-addition stereochemistry yields 1-alkenes from terminal alkynes and (\(Z \))-alkenes from internal alkynes
 b. dissolving metal reduction: \(\text{Na in liquid NH}_3 \)
i. anti-addition stereochemistry yields 1-alkenes from terminal alkynes and (E)-alkenes from internal alkynes

2. double hydrogenation: addition of 2 mol of H₂ to yield alkanes
 a. noble metal catalyst + excess H₂

3. electrophilic additions (all by very similar mechanisms)
 a. hydrohalogenation: addition of HX to yield haloalkenes
 i. Markovnikov
 ii. anti-Markovnikov in presence of peroxides, light or heat
 b. double hydrohalogenation: addition of 2 HX to yield geminal dihaloalkanes
 i. Markovnikov
 c. hydration: addition of H₂O to yield aldehydes and ketones
 i. Markovnikov
 I. 50:50 H₂SO₄:H₂O₂, Hg²⁺ usually is added
 II. Mechanism is tricky, as it involves a rearrangement of the enol product to a thermodynamically more stable carbonyl-containing product
 III. Process is called tautomerization
 ii. anti-Markovnikov
 I. Borohydration-oxidation
 d. dihalogenation: addition of X₂ to yield dihaloalkanes
 i. halonium ion intermediate
 ii. anti-addition stereochemistry
 e. double dihalogenation: addition of 2 X₂ to yield tetrahaloalkanes
 i. halonium ion intermediate
 ii. anti-addition stereochemistry
 iii. mechanism is dihalogenation twice

4. electrophilic cleavage reactions
 a. ozonolysis: addition of ≥ O to yield formic acid and/or carboxylic acids

5. nucleophilic addition reactions
 a. conjugate bases of terminal alkynes are nucleophiles; see III. A. 3. above

V. Synthesis strategies: interconversions of single, double and triple bonds
 A. Additions
 1. C≡C → C≡C → C≡C
 B. Eliminations
 1. C≡C → C≡C