

Buffers!!

Special guest stars: **Titrations, and Solubility**

17.1 The Common-Ion Effect

- What is "the common ion effect?
	- It's what happens when you add more of the product ion to an acid/base reaction.
- This, like most things makes most sense with an example:

Example: What happens when you add Acetate to Acetic Acid? (1 of 2)

- Acetic acid is a weak acid:
	- $CH_3O_2H(aq) + H_2O(l) \implies CH_3CO_2(aq) + H_3O^+(aq)$
- Sodium acetate is a strong electrolyte:

 $NaCH₃COO (aq) \rightarrow Na⁺ (aq) + CH₃COO⁻ (aq)$

– all of it dissociates:

 \bullet Moles NaCH₃COO = moles CH₃COO-

–What does that do to the equilibrium?

Effect of Acetate on the Acetic Acid Equilibrium (2 of 2)

- Le Châtelier's principle says:
	- $-$ Add **product** (CH₃CO₂⁻), **shift** to **reactants**.

 $-$ CH₃O₂H(aq) + H₂O(l) \implies CH₃CO₂⁻(aq) + H₃O⁺(aq)

Addition of $CH₃COO⁻$ shifts equilibrium concentrations, lowering [H⁺]

Weak Bases Work the Same Way

• Adding the salt of a weak base will do the same thing.

$NH₃(aq) + H₂O(l) \implies NH₄⁺(aq) + OH⁻(aq)$

Addition of NH_4 ⁺ shifts equilibrium concentrations, lowering [OH⁻]

Example: Calculating pH for a Common Ion (1 of 3)

- What is the pH of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of solution?
- Assume the salt dissociates 100%.
- 0.3 moles sodium acetate = 0.3 moles acetate in 1L, 0.3 M
- Focus on the acetic acid equilibrium.
	- 1) $CH_3O_2H(aq) + H_2O(l) \implies CH_3CO_2(aq) + H_3O^+(aq)$

2)
$$
1.8x10^{-5} = \frac{[H_3O]^+[CH_3OO^-]}{[CH_3OOH]}
$$

Calculating pH for a Common Ion (2 of 3)

3) $CH_3O_2H(aq) + H_2O(l) \implies CH_3CO_2(aq) + H_3O^+(aq)$

$$
1.8x10^{-5} = \frac{[H_3O]^+[CH_3OO^-]}{[CH_3OOH]}
$$

$$
1.8x10^{-5} = \frac{x(0.3 + x)}{0.3 - x}
$$

Can we assume that *x* is so small that:

adding or subtracting it from 0.30 will not matter?

Calculating pH for a Common Ion (3 of 3)

Yes! 1.8×10^{-5} <<< 0.3 M

-
- $1.8 \times 10^{-5} = (x)(0.30 + x)/(0.30 x)$

becomes:
\n
$$
1.8 \times 10^{-5} = \frac{(x)(0.30)}{(0.30)}
$$

\nwhich results in: $x = 1.8 \times 10^{-5} \text{M} = \text{H}^+ \text{]}$
\nSo: pH = $-\log[\text{H}^+] = 4.74$
\nNote: $1.8 \times 10^{-5} << 0.3 \text{ M}$

17.2 But why do we care??? Buffers!!

- A mixture of a weak acid and its conjugate base (salt product) **resists changes in pH.**
- But there has to be **enough** of each of them to do it.
- A reasonable buffer:
	- -10^{-3} M or more
	- of **Both AH and A-**

Ways to Make a Buffer

- 1) Mix a weak acid and its conjugate base salt 1) Mix HA with A (acetic acid and acetate).
- 2) Mix a weak base and its conjugate acid salt. 1) Mix B with HB (NH₃ and NH₄⁺)
- 3) Add strong base to a weak acid 1) That will make the conjugate base 2) $CH_3COOH(aq) + NaOH(aq) - \rightarrow CH_3COO(aq) + H_2O$
- 4) Add strong acid to a weak base
	- 1) That will make the conjugate acid.
	- 2) $NH_3 + HCl \rightarrow NH_4^+(aq) + Cl^-(aq)$

How a Buffer Works

 $H_2O(l) + CH_3COO^-(aq) \longleftarrow CH_3COOH(aq) + OH^-(aq)$ $CH_3COO^-(aq) + H^+(aq) \longrightarrow CH_3COOH(aq)$

• Adding a small amount of acid or base only slightly neutralizes one component of the buffer, so the pH doesn't change very much.

The Henderson-Hasselback Equation The equation of buffers

• For a weak acid:
$$
K_a = \frac{\begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} A^- \end{bmatrix}}{\begin{bmatrix} H A \end{bmatrix}}
$$

• Take -log of both sides:

$$
-\log K_a = -\log \left[H^+\right] + -\log \left(\frac{[A^-]}{[HA]}\right)
$$

Rearrange:

$$
-\log \left[H^+\right] = -\log K_a + \log \left(\frac{[A^-]}{[HA]}\right)
$$

• Which is:

$$
pH = pK_a + \log \left(\frac{[A^-]}{[HA]}\right)
$$

Deriving the Henderson-Hasselback Equation (2 of 2)

$$
pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)
$$

- Henderson-Hasselbalch equation.
	- Works with any weak acid or base and their respective salts.
	- There are four variables.
		- \blacksquare [H₃O⁺]
		- $K_{\rm a}$
		- \blacksquare [HA]
		- \blacksquare [A-]

Example: Using the Henderson-Hasselback Equation to Find pH

• What is the pH of a buffer that is 0.12 M in lactic acid, $CH₃CH(OH)COOH$, and 0.10 *M* in sodium lactate?

 K_a for lactic acid is 1.4×10^{-4} .

$$
-pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)
$$

= -log(1.4 × 10⁻⁴) + log\left[\frac{(0.10 M)}{(0.12 M)}\right]
= 3.85 + (-0.08) = 3.77

Exam 2 review

- Chapter 15 Equilibrium
	- What is Equilibrium?
		- \blacksquare Rate of forward = rate of reverse
		- No change in amount of stuff.
	- Equilibrium constants
		- $A + B \xrightarrow{c + D} K_{eq} =$ $[C] [D]$ A] $[B]$
	- Combining Equilibrium expressions/reactions
		- **Add two reactions together, multiply** K_{eq} **'s**
		- **Switch the direction of a reaction** $K_{rev} = 1/K_{for}$

Heterogeneous Equilibrium

- The equation for the reaction is CaCO₃ (s) \leftarrow CaO (s) +CO₂ (g)
- This results in $K_c = |CO_2|$ and $K_p = P_{CO_2}$
- Equilibria only happen in one phase
	- -If there's gas then gas
	- -Otherwise, liquid
	- -Usually solid is pure.

 $CaCO₃(s) \rightleftharpoons CaO(s) + CO₂(g)$

A closed system initially containing 1.000×10^{-3} MH₂ and 2.000×10^{-3} M I₂ at 448 °C is allowed to reach equilibrium. At equilibrium the mixture shows concentration of HI is 1.87 x 10⁻³ M. Calculate K_c at 448 $^{\circ}$ C.

$H_2(g)$ + $I_2(g) \rightleftharpoons 2H(g)$

2 Calculate changes. change in [HI] is easy. $H_2(g)$ $\mathbf{I}_{\geq}(g)$ \implies 2HI (g) \div $\lceil H_2 \rceil$, M $[HI], M$ $\lceil \mathsf{l}_2 \rceil$, M 1.000×10^{-3} 2.000×10^{-3} Initially $\overline{0}$ $+1.87 \times 10^{-3}$ Change 1.87×10^{-3} At equilibrium

2. Calculate changes.

3. Calculate the equilibrium concentrations

A K_c Calculation Example (6 of 6)

4. Substitute values into the K_c expression.

Note: Equilibrium constants are unitless.

$$
k_c = \frac{\left[\text{H1}\right]^2}{\left[\text{H}_2\right]\left[\text{I}_2\right]}
$$

=
$$
\frac{\left(1.87 \times 10^{-3}\right)^2}{\left(6.5 \times 10^{-5}\right)\left(1.065 \times 10^{-3}\right)}
$$

= 51

Le Châtelier's Principle

System at Equilibrium:

Change anything, system moves to counteract that change.

Change Pressure,

Increase P, Equilibrium shifts to less gas

Change T, Equilibrium shifts to absorb/release heat.

Increase T, Equilibrium shifts in Endothermic direction.

Change reactants or products

Add products, equilibrium moves to reactants.

Chapter 19 Thermodynamics

Entropy.

Measure of randomness. Increase in microstates. What's got higher Entropy? solids, lowest, liquids, gases. Pure versus solutions. Effect of Temperature on Entropy Higher T, higher Entropy S = q/T

Chapter 19 Thermodynamics

Entropy.

Measure of randomness.

Increase in microstates.

What's got higher Entropy?

solids, lowest, liquids, gases.

Pure versus solutions.

Effect of Temperature on Entropy

Higher T, higher Entropy

 $\Delta S = q/T$

Entropy has an absolute 0 (crystalline solid at 0 K)

Chapter 19 Thermodynamics

Driving force of all processes.

Entropy of the universe must increase….

$\Lambda G = \Lambda H - T \Lambda S$

Gibbs Free Energy (system) is directly related to Entropy of universe.

 ΔG negative, spontaneous (it happens)

 ΔG positive, nonspontaneous (it doesn't happen)

Chapter 19 Thermodynamics $\Lambda G = \Lambda H - T \Lambda S$

Calculating stuff:

Calculate ΔG using values of formation Calculate ΔG using ΔH and ΔS values Relationship between ΔG and Equilibrium and Q:

 $\Delta G = \Delta G^{\circ}$ + Rtln(Q)

 ΔG° = -Rtln(K)

Effect of T on Gibbs Free energy?

Copyright © 2023 Pearson Education, Inc. All Rights Reserved Concept of Entropy driven versus Enthalpy driven.

19.6 Free Energy and Temperature (2 of 2) Table 19.3 How Signs of ΔH and ΔS Affect Reaction $\Lambda G = \Lambda H - T \Lambda S$

Spontaneity

Chapter 13 Solutions/intermolecular forces

Intermolecular forces

dipole-dipole

H-bonding

induced dipole-induced dipole

Ionic forces.

Which is stronger? Who will dissolve in who?

Henry's law: $S_i = kP_i$

Rault's law: $pP_i = x_i(P_i)$

Chapter 16 acids/bases.

- What is an acid? (more H^+ , electron pair acceptor)
- What is a base? (more OH-, Electron pair donor)
- Aqueous dissociation:
- $K_W = [H+][OH-]$
- $pH = -log[H+]$
- pH + pOH = 14
- pH =7 is neutral.
- pH of a weak acid/base given K_a
- ICE tables with weak acids/bases.

Exam 2 the Breakdown

Buffer Concentration. Vs. Buffer pH

• How does the buffer **concentration** affect pH of solution?

$$
pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)
$$

- . It's the ratio of acid and conjugate base that determines pH.
- Not concentration
- $1 M/1 M = 01 M/ 01 M$
- **Both have pH=pKa**

Buffer Concentration vs. Buffer pH

• How does the buffer **concentration** affect pH of solution?

$$
pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)
$$

- It's the *ratio* of acid and conjugate base that determines pH.
- **Not concentration**
- $1M/1M = 01M/01M$
- **Both** have pH=pKa
- **But:** If you add 0.01 M acid to 1M solution, ratio barely changes
	- **So pH barely changes**
- Add 0.01M acid to .01 M solution, *pH changes hugely.*
- **Buffer capacity**

Buffer pH range.

- Buffers only work at certain pH ranges.
	- $-$ Why?
	- What's the range?

nges

- Once HA is all gone,
- \bullet B + H₂O \longrightarrow OH + BH
- All the added base makes OH-
- pH drops fast!
Addition of a Strong Acid or a Strong Base to a Buffer (1 of 2)

Addition of the strong acid or base is a neutralization reaction.

- 1) Calculate like a stoichiometry problem to find $[HA]$ and $[A^{-}]$ when all of the added acid or base reacts. This is a limiting agent situation.
- 2) Use the Henderson–Hasselbalch equation to find pH. The equilibrium calculation is simplified by using this equation.

Addition of a Strong Acid or a Strong Base to a Buffer (2 of 2)

Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.300 mol $HC_2H_3O_2$ and 0.300 mol NaC₂H₃O₂ to enough water to make 1.00 L. 0.020 mol of NaOH is added. What's the pH?
- 1) Stoichiometry table $-$ limiting reactant calculation

 $CH_3COOH(aq) + OH⁻(aq) \rightarrow H_2O(I) + CH_3COO⁻(aq)$

Before reaction (mol)	0.300	0.020	\blacksquare	0.300
Change (limiting reactant) (mol)	-0.020	-0.020	\blacksquare	$+0.020$
After reaction (mol)	0.280		\blacksquare	0.320

Example of pH Calculation for Buffer after Strong Base Addition (2 of 2)

2) Henderson-Hasselbalch equation:

$$
pH = pK_a + log \left(\frac{[A^-]}{[HA]}\right)
$$

HA and A⁻ are in the same solution,
volume for each is the same
molarity ratio = moles ratio

$$
pH = pK_a + log\left(\frac{n_{HA}}{n_{A^-}}\right) \qquad pH = 4.74 + log\left(\frac{0.320}{0.280}\right) = 4.80
$$

 \blacksquare \blacksquare

Contrast Base Addition on pH for Buffer versus Water

Add 5.00 mL of 4.0 M NaOH to: a)

a) 1.000 L of a buffer that is 0.300 M acetate/0.3 M acetic acid. b) $1.000 L$ of water

a)

 $CH_3COOH(aq) + OH^{-}(aq) \rightarrow H_2O(I) + CH_3COO^{-}(aq)$

$$
\mathsf{dH} = -\mathsf{log}\Big(1.8 \times 10^{-5}\Big) + \mathsf{log}\Big(\frac{0.302}{0.298}\Big) = 4.75
$$

Contrast Base Addition on pH for Water versus Buffer

b) Pure water $(4.0$ mol/L) \times 5.00 \times 10 $-$ 3L = 2.0 \times 10⁻² mol 2.0×10^{-2} mol / 1.005L = 0.0199 M $pOH = -log | OH^-| = -log (0.0199) = 2.70$ $pH = 14.00 - 1.70 = 12.30$

pH change minimized using buffer:

Adding base to buffer: 4.80 to 4.75 is 0.05 units Adding base to water: 7.00 to 12.30 is 5.30 units

17.3 Acid–Base Titrations

- An acid (or base) solution of **known** concentration
- is slowly added to a base (or acid) solution of **unknown** concentration.
- Addition until the **equivalence point** is reached.
	- amount of acid =amount base.
- Equivalence point seen by monitoring pH change.

Titration of a Strong Acid with a Strong Base

- Plot p H versus mL of strong base.
- From the start to near the equivalence point, the *pH goes up slowly.*
- Just before (and after) the equivalence point, *the pH rises rapidly.*
- At the equivalence point, $pH =$ 7.
- As more base is added, the pH again levels off.

Titration of a Strong Base with a Strong Acid

- Start with a high pH (basic solution).
- $pH = 7$ at the equivalence point.
- Adding more acid, pH levels off.

Titration of a Weak Acid with a Strong Base

- four distinct regions:
- 1. Initial pH uses K_a calculation.
- 2. Between initial pH and equivalence point (excess acid) uses limiting reactant then Henderson-Hasselback.
- 3. At the equivalence point.
- 4. After the equivalence point (excess strong base).

Calculating pH When a Weak Acid is Neutralized—Excess Acid

- Calculate the moles of weak acid and strong base.
- Write the neutralization reaction.
- Track limiting reactant change using the table. Gives you moles of remaining acid and the moles of anion formed.
- Substitute into the Henderson-Hasselbalch equation to find pH.

Calculating pH for titrating a Weak Acid With a Strong Base

- The pH is **Not 7.00** at the equivalence point.
- Calculate the moles of weak acid and strong base.
- Write the neutralization equation.
- Substitute into table.
- **Titration point:** moles strong base = moles weak acid. – No more HA, only A-
- Find molarity of weak acid using the new volume.
- Use the equations of either the K_a of the anion or the K_a of the weak acid to determine the pH (like in Chapter 16).

Ways That a Weak Acid Titration Differs from a Strong Acid Titration

- 1) A solution of **weak** acid has a **higher** initial pH than a **strong** acid.
- 2) The pH change is smaller
- 3) The pH midway to equivalence point = pK_a
- 4) pH at the equivalence point **is greater than 7** for a weal acid.

Titrations with an Acid–Base Indicator

- Indicators are weak acids that have a different color than their conjugate base form.
	- Each indicator has its own pH range over which it changes color.
	- Can be used to determine the equivalence point in a titration as long as it changes color at the pH of the equivalence point.

Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- Calculate the pH at the equivalence point in the titration of 50 mL of \bullet 0.1 M acetic acid with 0.1 M NaOH.
- CH₃COOH(aq) + NaOH(aq) \longrightarrow CH₃COO (aq) + H₂O + Na⁺(aq)
- \cdot 50 mL 0.1M. \qquad 0.1 M
- $.05L(0.1mole/L) = . . .005 moles/0.1M$
- \bullet St. 005 moles $0.05L$ $\overline{0}$
- \cdot Ch. -005 moles -0.005 moles $+0.005$ moles
- \cdot Fin. \cdot Ω Ω 0.005 moles

$$
K_b = K_w / K_a = (1.0 \times 10^{-14}) / (1.8 \times 10^{-5}) = 5.6 \times 10^{-10}.
$$

\n
$$
K_b = \frac{\text{[CH}_3\text{COOH}][\text{OH}^-]}{\text{[CH}_3\text{COO}^-]} = \frac{(x)(x)}{0.0500 - x} = 5.6 \times 10^{-10}
$$

\n
$$
x = \text{[OH}^-] = 5.3 \times 10^{-6} \text{ M}, \text{ which gives } \text{pOH} = 5.28 \text{ and } \text{pH} = 8.72
$$

Titrations of Polyprotic Acids

- There are multiple equivalence points.
- Treat each step separately with their corresponding polyanions and K_a .
- The halfway to each equivalence point gives the pK _a
- The concentration of the dianion is always equal to

 K_{22} .

Copyright © 2023 Pearson Education, Inc. All Rights Reserved

17.4 Solubility Equilibria

 \bullet K_{sp}

• Many Ionic compounds are not very soluble in water.

• The equilibrium constant expression is called the solubility-product constant. It is represented as

> $Ba_3(PO_4)(s) \$ 3Ba²⁺(aq) + 2PO₄⁻³(aq) $K_{\rm sn} = \left[\text{Ba}^{2+}\right]^3 \left[\text{PO}_4^{3-}\right]^2$

Solubility and $K_{\rm{sp}}$ **(1 of 2)**

- $K_{\rm so}$ is **not** the same as solubility.
- **Solubility:** *Maximum amount* that can dissolve.
- Common units for solubility:
	- Grams per liter (g/L)
	- Moles per liter (mol/L)

Solubility and K_{sp} **(2 of 2)**

Calculating Solubility from K_{sp} (1 of 2)

• The $K_{\rm so}$ for CaF₂ is 3.9 × 10⁻¹¹ at 25 °C. What is its molar solubility?

1)
$$
CaF_2(s) \longrightarrow Ca^{2+}(aq) + 2F-(aq)
$$

\n2) $K_{sp} = [Ca^{2+}][F^{-}]^2 = 3.9 \times 10^{-11}$
\n3)

$$
CaF2(s) \longrightarrow Ca2+(aq) + 2F-(aq)
$$

Calculating Solubility from K_{sp} **(2 of 2)**

• Substitute the equilibrium concentration values from the table into the solubility-product equation:

$$
3.9 \times 10^{-11} = (x)(2x)^2 = 4x^3
$$

$$
x=2.1\times10^{-4}~M
$$

For g/mol: multiply by molar mass.

 $2.1x10^{-4}$ mol/L(78.1g/mol) = 0.0164 g/L

17.5 Factors That Affect Solubility

- **The common-ion effect**:
	- If one of the ions is added
		- *Independently*
	- *The salt will be even less soluble.*
	- $-$ For CaF $_2$,
		- \bullet Add either Ca²⁺ or F⁻
		- CaF₂ less soluble.

Calculating Solubility with a Common $lon(1 of 2)$

• What is the molar solubility $CaF₂$ in 0.010 M Ca(NO₃)₂?

1)
$$
CaF_2(s) \xrightarrow{Ca^{2+}(aq) + 2F-(aq)}
$$

\n2) $K_{sp} = [Ca^{2+}][F^{-}]^2 = 3.9 \times 10^{-11}$
\n3) $CaF_2(s) \longrightarrow Ca^{2+}(aq) + 2F-(aq)$

Calculating Solubility with a Common Ion (2 of 2)

4) Substitute the equilibrium concentration values from the table into the solubility-product equation:

$$
3.9 \times 10^{-11} = (0.010 + x)(2x)^2
$$

(We assume that $x \ll 0.010$, so that $0.010 + x = 0.010$!)

$$
3.9 \times 10^{-11} = (0.010)(2x)^2
$$

$$
x = 3.1 \times 10^{-5} M
$$

Solubility can be effected by pH

• When?

– When the **anion** is a weak base…(conj. of weak acid)

• Adding acid reduces anion.

$$
\bullet \ \mathsf{F}^{\text{-}} + \mathsf{HA} \overbrace{\hspace{2.5cm}}^{\text{-}} \mathsf{HF} + \mathsf{A}^{\text{-}}
$$

Salt whose anion is conjugate base of weak acid: Solubility increases as pH decreases

Sample Exercise 17.15 Predicting the Effect of Acid on Solubility (1 of 4)

- Which of these substances are more soluble in acidic solution than in basic solution? (a) $Ni(OH)_{2}(s)$ (b) $CaCO_{3}(s)$ (c) $BaF_{2}(s)$ (d) $AgCl(s)$
- (a) Ni(OH)₂(s) is more soluble in acidic solution because of the basicity of OH^- ; the H⁺ reacts with the OH^- ion, forming water:

 $Ni(OH)_2 (s) \longrightarrow Ni^{2+}(aq) + 2OH^{-}(aq)$

2OH⁻ + 2HA = 2H₂O(I) + 2A⁻(aq)

 $\text{Ni}(\text{OH})_{2}(\text{s}) + 2\text{HA}(\text{aq}) \longrightarrow \text{Ni}^{2+} + 2\text{H}_{2}\text{O}(\text{l}) + 2\text{A}(\text{aq})$

Sample Exercise 17.15 Predicting the Effect of Acid on Solubility (1 of 4)

 $BaF_2(s) + 2HA \longrightarrow 2HF + Ba^{2+}(aq) + 2A^{-}(aq)$

(d) Cl- (aq)+ H+(aq) Cl- (aq)+ H+(aq) *acid does nothing.*

Complex Ion Formation (1 of 4)

- Metal ions can act as Lewis acids and form **complex ions** with Lewis bases in the solvent.
- The formation of these complex ions can increase the solubility of these salts.

Complex Ion Formation (2 of 4)

- Silver chloride is insoluble. It has a $K_{\rm so}$ of 1.6 × 10⁻¹⁰.
- In the presence of NH_{3} , the solubility greatly increases because Aq^+ will form a complex ion with NH_3 .

 $K_{\rm r} = 1.7 \times 10^7$

 $AgCl(s) \Delta Ag^+(aq) + Cl^-(aq)$ $Ag^+(aq) + 2NH_3(aq) \Delta Ag(NH_3)_2^+(aq)$ $AgCl(s) + 2NH_3(aq) \Delta Ag(NH_3)_2^+(aq) + Cl^-(aq)$ $K_f\left(Ag(NH_3)_2^+\right) = \frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2} = 1.7 \times 10^7$

Complex Ion Formation (3 of 4)

Table 17.1 Formation Constants for Some Metal Complex Ions in Water at $25 °C$

Complex Ion Formation (4 of 4)

Table 17.1 [continued]

Sample Exercise 17.16 Evaluating an Equilibrium Involving a Complex Ion (1 of 5)

Calculate the concentration of free Ag⁺ in a solution that is 0.01 M AgNO₃ and 0.20 M NH₃

This concerns the $AgNH₃$ ⁺ formation:

Ag⁺ + NH₃(aq) \equiv AgNH₃⁺(aq) K = 1/K_f = (1.7x10⁷)⁻¹= 5.9x10⁻⁸

$$
Ag^{+} +
$$

 $NH₃(aq) \implies AgNH₃⁺⁽(aq)$

$$
\frac{[Ag^*][NH_3]^2}{[Ag(NH_3)_2^+]} = \frac{(x)(0.20)^2}{0.010} = 5.9 \times 10^{-8}
$$

$$
x = 1.5 \times 10^{-8} \text{ M} = [Ag^*]
$$

Amphoterism

• **Amphoteric oxides and hydroxides**

- soluble in strong acids or base, because they can act either as acids or bases.
- Examples: Al^{3+} , Cr^{3+} , Zn^{2+} , and Sn^{2+} .

17.6 Precipitation and Ion Separation

- To decide if precipitation will occur, calculate the reaction quotient, Q , and compare it to K_{sp} .
- *Q* uses the given conditions and has the same form as the *K* expression.
	- $-$ If $\,$ Q $=$ K_{sp} , the system is at equilibrium and the solution is saturated.
	- If $Q < K_{sn}$, more solid can dissolve, no precipitate forms.
	- If $Q > K_{\text{sp}}$, a precipitate will form.

Sample Exercise 17.17 Predicting Whether a Precipitate Forms (1 of 3)

Does a precipitate form when 0.10 L of -8.0×10^{-3} *M* Pb $(\mathrm{NO}_{3})_{_{2}}$ is added to 5.0×10^{-3} *M* Na₂SO₄?

Solution

Analyze The problem asks us to determine whether a precipitate forms when two salt solutions are combined.

Plan We should determine the concentrations of all ions just after the solutions are mixed and compare the value of Q with $K_{\rm so}$ for any potentially insoluble product. The possible metathesis products are $PbSO₄$ and NaNO₃. Like all sodium salts, NaNO₃ is soluble, but PbSO₄ has a $K_{\rm sn}$ of 6.3 × 10⁻⁷ (Appendix D) and will precipitate if the Pb^{2+} and SO²⁻ concentrations are high enough for Q to exceed K_{sp} .

Copyright © 2023 Pearson Education, Inc. All Rights Reserved
Sample Exercise 17.17 Predicting Whether a Precipitate Forms (2 of 3)

Solve

When the two solutions are mixed, the volume is $0.10 L + 0.40 L = 0.50$ L. The number of moles of Pb²⁺ in 0.10 L of 8.0×10^{-3} M Pb(NO₃)₂ is:

$$
(0.10 \cancel{1}) \left(\frac{8.0 \times 10^{-3} \text{ mol}}{\cancel{1}} \right) = 8.0 \times 10^{-4} \text{ mol}
$$

The concentration of Pb^{2+} in the 0.50-L mixture is therefore:

$$
\left[Pb^{2+} \right] = \frac{8.0 \times 10^{-4} \text{ mol}}{0.50 \text{ L}} = 1.6 \times 10^{-3} \text{ M}
$$

The number of moles of SO_4^{2-} in 0.40 L of 5.0×10^{-3} M Na₂SO₄ is:

$$
(0.40 \tL) \left(\frac{5.0 \times 10^{-3} \text{ mol}}{L} \right) = 2.0 \times 10^{-3} \text{ mol}
$$

Copyright © 2023 Pearson Education, Inc. All Rights Reserved

Sample Exercise 17.17 Predicting Whether a Precipitate Forms (3 of 3)

Therefore:
$$
[SO_4^{2-}] = \frac{2.0 \times 10^{-3} \text{ mol}}{0.50 \text{ L}} = 4.0 \times 10^{-3} M
$$

 $Q = \left[\overline{P}b^{2+}\right]\left[\overline{SO_4}^{2-}\right] = (1.6 \times 10^{-3})(4.0 \times 10^{-3}) = 6.4 \times 10^{-6}$ $and:$

Because $Q > K_{so}$, PbSO₄ precipitates.

Practice Exercise

Does a precipitate form when 0.050 L of $2.0 \times 10^{-2} M$ NaF is mixed with 0.010 L of 1.0×10^{-2} M Ca(NO₃)₂?

Selective Precipitation of Ions

• Ions can be separated from solution based on their solubilities in the presence of different ions.

17.7 Qualitative Analysis of Ions

One can use differences in solubilities of salts to separate ions in a mixture. This has been used for qualitative analysis of the presence of ions in a solution. A new application is recovery of metal ions from batteries used in electric vehicles.

