Chapter 20: Electrochemistry

Electrochemistry is the study of the relationships between *electricity* (movement of charge) and chemical reactions.

It includes the study of both spontaneous and nonspontaneous processes.

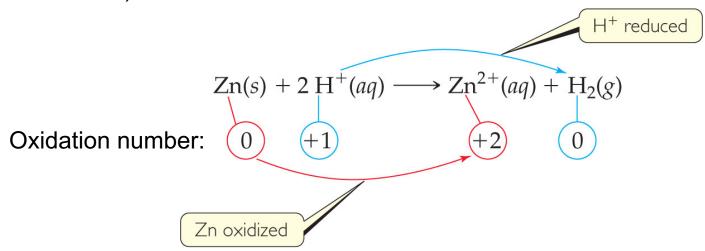
Two incredibly important processes:

1. Using electrons to make stuff (electrolytic cells).

Examples: Electroplating. Production of Aluminum.

2. Using chemical reactions to produce electricity (Galvanic or voltaic cells).

Batteries.


Liquid fuels (like gasoline): chemical energy stored in atoms/compounds Batteries: Electrical energy stored in atoms/ compounds.

First step: Where do the electrons come from? Where do they go? Must Assign Oxidation Numbers (as a Reminder)

- **1. Elements** (pure substance) = 0
- 2. Monatomic ion = charge
- 3. F: -1
- 4. O: -2 (unless peroxide = -1)
- **5. H:** +1 (unless a metal hydride = -1)
- 6. The **sum** of the oxidation numbers **equals** the overall **charge** (0 in a compound).

Oxidation Numbers in "REDOX" reactions

- To keep track of which chemical species loses electrons and what gains them, we assign oxidation numbers.
- If the oxidation number increases for an element, that element is oxidized (loss of electron).
- If the oxidation number decreases for an element, that element is reduced (gain of electron).

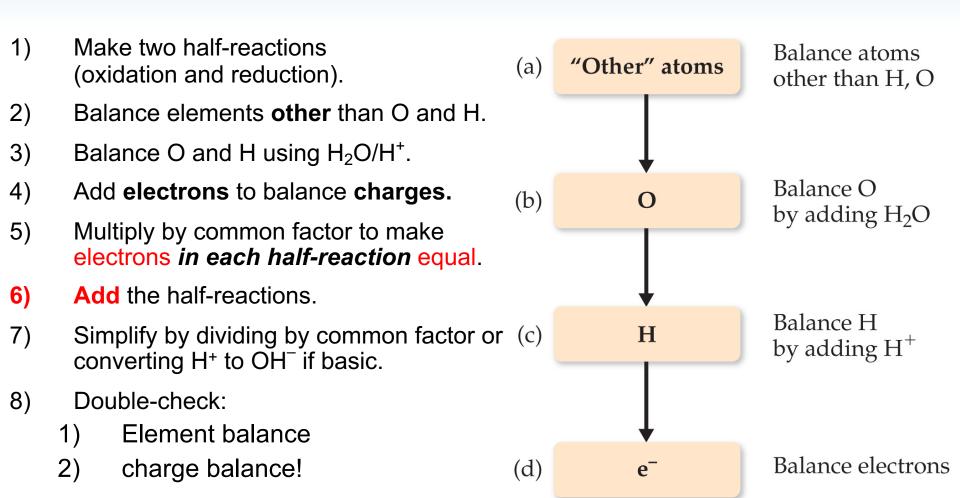
- H⁺ (when reduced) causes oxidation of something else (here, Zn). Thus, it is called an "oxidizing agent"
- Zn (when oxidized) causes reduction of something else (here H+). Thus, it is called a "reducing agent".

Example: $MnO_4^-(aq) + C_2O_4^{2-}(aq) \longrightarrow Mn^{2+}(aq) + CO_2(aq)$

 MnO_4 (aq)

The purple color of MnO_4^- disappears immediately as reaction with $C_2O_4^{2-}$ occurs.

The purple color of $\mathrm{MnO_4}^-$ remains because $\mathrm{C_2O_4}^{2-}$ is completely consumed.


$$C_2O_4^{2-}(aq)$$

(a)

(b)

Balancing Redox Equations:The Half-Reaction Method

Example:
$$^{+7}$$
 $MnO_4^-(aq) + C_2O_4^{2-}(aq) \longrightarrow Mn^{2+}(aq) + CO_2(aq)$

2 half reactions:

Mn is reduced (+7 \rightarrow +2), C is oxidized (+3 \rightarrow +4).

Example:
$$^{+7}MnO_4^{-}(aq) + C_2O_4^{2-}(aq) \longrightarrow ^{+2}Mn^{2+}(aq) + CO_2(aq)$$

2 half reactions:

Mn is reduced (+7 \rightarrow +2), C is oxidized (+3 \rightarrow +4).

Reduction Half-Reaction

$$MnO_4^- \longrightarrow Mn^{2+}$$

a. Balance atoms other than O and H

The manganese is balanced;

b. Balance O with water.

to balance the oxygen, we must add four waters to the right side: $MnO_4^- \longrightarrow Mn^{2+} + 4 H_2O$

c. Balance H with H+

To balance the hydrogen, we add 8H⁺ to the left side:

$$8 \text{ H}^+ + \text{MnO}_4^- \longrightarrow \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$$

d. Balance charge with e-

To balance the charge, we add 5e⁻ to the left side:

$$5e^{-} + 8 H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4 H_{2}O$$

Example:
$$^{+7}MnO_4^{-}(aq) + ^{+3}C_2O_4^{2-}(aq) \longrightarrow ^{+2}Mn^{2+}(aq) + ^{+4}CO_2(aq)$$

2 half reactions:

Mn is reduced (+7 \rightarrow +2), C is oxidized (+3 \rightarrow +4).

Oxidation Half-Reaction

$$C_2O_4^{2-} \longrightarrow CO_2$$

a. Balance atoms other than O and H

To balance the carbon, we add a coefficient of 2:

$$C_2O_4^{2-} \longrightarrow 2 CO_2$$

b. Balance O with water (skip)

The oxygen is now balanced as well.

c. Balance H with H⁺ (skip)

There is no H in the reaction.

d. Balance charge with e-

To balance the charge, we must add two electrons to the right side:

$$C_2O_4^{2-} \longrightarrow 2 CO_2 + 2e^-$$

The Half-Reaction Method: combine the two half-reactions

Oxidation Half-Reaction

$$C_2O_4^{2-} \longrightarrow 2 CO_2 + 2e^-$$

Reduction Half-Reaction

$$C_2O_4^{2-} \longrightarrow 2 CO_2 + 2e^-$$

 $5e^- + 8 H^+ + MnO_4^- \longrightarrow Mn^{2+} + 4 H_2O$

The Half-Reaction Method: combine the two half-reactions

Oxidation Half-Reaction

$$C_2O_4^{2-} \longrightarrow 2 CO_2 + 2e^-$$

Reduction Half-Reaction

$$5e^{-} + 8 H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4 H_{2}O$$

Balance the half reactions.

The number of electrons *must* be equal on each side.:

multiply the first reaction by 5, second by 2:

Oxidation Half-Reaction

Reduction Half-Reaction

$$5 C_2 O_4^{2-} \longrightarrow 10 CO_2 + 10e^-$$

 $10e^- + 16 H^+ + 2 MnO_4^- \longrightarrow 2 Mn^{2+} + 8 H_2O$

The Half-Reaction Method: combine the two half-reactions

Oxidation Half-Reaction

$$C_2O_4^{2-} \longrightarrow 2 CO_2 + 2e^-$$

Reduction Half-Reaction

$$5e^{-} + 8 H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4 H_{2}O$$

Balance the half reactions.

The number of electrons *must* be equal on each side.:

Oxidation Half-Reaction

Reduction Half-Reaction

$$5 C_2 O_4^{2-} \longrightarrow 10 CO_2 + 10e^-$$

 $10e^- + 16 H^+ + 2 MnO_4^- \longrightarrow 2 Mn^{2+} + 8 H_2O$

Add the two reactions Cancel out electrons:

$$10e^{-} + 16 \text{ H}^{+} + 2 \text{ MnO}_{4}^{-} + 5 \text{ C}_{2}\text{O}_{4}^{2-} \longrightarrow$$

$$2 \text{ Mn}^{2+} + 8 \text{ H}_{2}\text{O} + 10 \text{ CO}_{2} + 10e^{-}$$

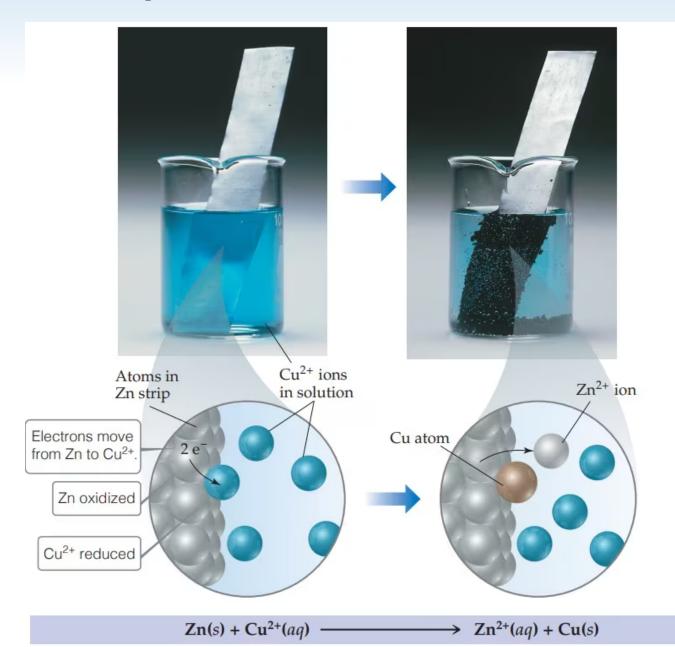
The final equation:

$$16 H^{+} + 2 MnO_{4}^{-} + 5 C_{2}O_{4}^{2-} \longrightarrow 2 Mn^{2+} + 8 H_{2}O + 10 CO_{2}$$

Verify that the equation is balanced by counting atoms and charges on each side!

Example 2:
$$Cr_2O_7^{2-}(aq) + Cl_{(aq)} \longrightarrow Cr_{(aq)} + Cl_{2(g)}$$

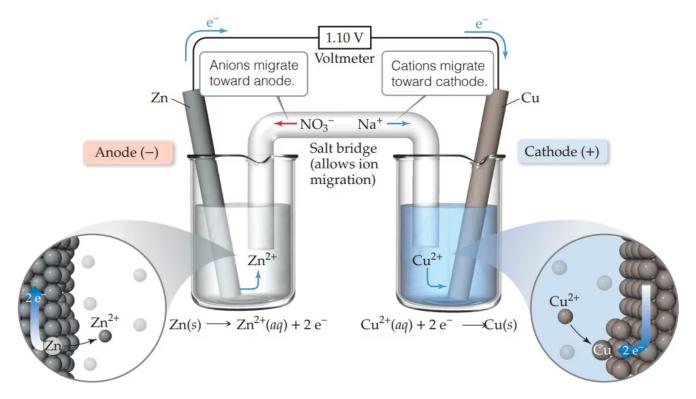
14 H⁺ +
$$Cr_2O_7^{2-}(aq)$$
 + 6 $Cl^{-}(aq)$ \longrightarrow 2 $Cr^{3+}(aq)$ + 7 H_2O + 3 $Cl_{2(g)}$


Example 2:
$$Cr_2O_7^{2-}(aq) + Cl_{-(aq)} \longrightarrow Cr_{-(aq)}^{3+}(aq) + Cl_{2(g)} + Cl_{2(g)}$$

Oxidation Half-Reaction: $Cl_{(aq)} \longrightarrow Cl_{2(g)}$

Reduction Half-Reaction: $Cr_2O_7^{2-}(aq) \longrightarrow Cr^{3+}(aq)$

14 H⁺ +
$$Cr_2O_7^{2-}(aq)$$
 + 6 $Cl^{-}(aq)$ \longrightarrow 2 $Cr^{3+}(aq)$ + 7 H_2O + 3 $Cl_{2(g)}$

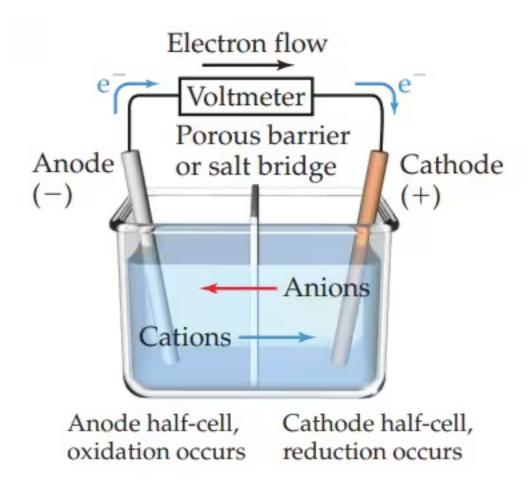

Spontaneous REDOX reaction

But what if you **SEPARATED** the two half reactions?

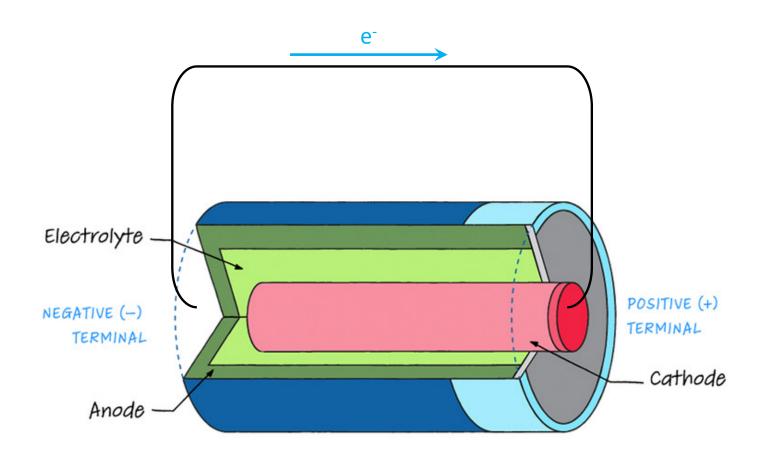
But what if you **SEPARATED** the two half reactions? Electrons then run through a wire from one half reaction to the other. A setup like this is called an **ELECTROCHEMICAL CELL**.

ANODE

the half side of a cell where the OXIDATION occurs


BRIDGE

allows ions to flow to close the circuit (each side must remain electrically neutral)


CATHODE

the half side of a cell where the REDUCTION occurs

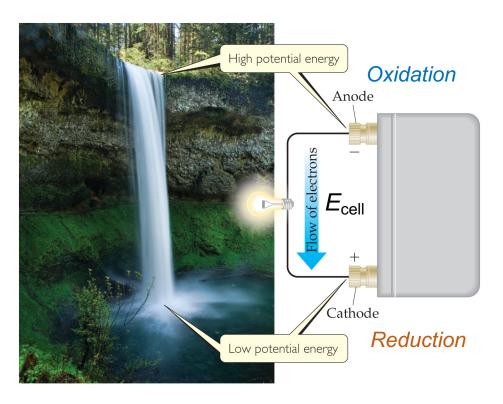
But what if you **SEPARATED** the two half reactions? Electrons then run through a wire from one half reaction to the other. A setup like this is called an **ELECTROCHEMICAL CELL**.

But what if you **SEPARATED** the two half reactions? Electrons then run through a wire from one half reaction to the other. A setup like this is called an **ELECTROCHEMICAL CELL**.

Mnemonics...

Reduction always occurs at the cathode Oxidation always occurs at the anode

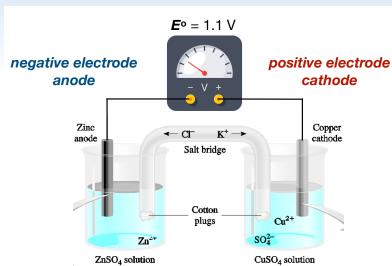
Two tricks to remember this:


1) Consonants with consonants, vowels with vowels:

Reduction at the Cathode
Oxidation at the Anode

ELECTROMOTIVE FORCE (EMF)

As Water flows *spontaneously* Down a waterfall... electrons flow *spontaneously one way* in a redox reaction, Both from high to low potential energy.

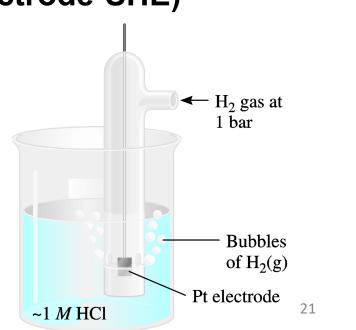

- electromotive force (emf) or
- cell potential designated E_{cell}.
 - The potential difference between the anode and cathode
 - The relative propensity of one species to oxidize, versus another specie's propensity to reduce.
- measured in volts (V).
 - volt = one joule per coulomb
 - (1 V = 1 J/C).

Standard Cell Potential/Reference cell potential

The **standard conditions** for electrochemical reaction:

- The concentration of all solutions is 1 M
- Gas pressures are 1 bar (often 1 atm is used)
- T = 25 °C (298 K), unless otherwise noted

Such "standard cell potentials" are denoted E°.



Reference electrode (standard hydrogen electrode-SHE)

- All cell potentials are *relative*.
- You need an arbitrary standard:
 - the REDUCTION potential for hydrogen is 0 V:
 - Every other potential is relative to hydrogen.

$$2 H^+(aq, 1M) + 2e^- \longrightarrow H_2(g, 1 atm)$$

$$E^{\circ} = 0 V$$

Standard Cell Potentials

All standard half-cell potentials are compiled as reduction potential.

the species the reduced form being reduced of that species
$$Cu_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Cu_{(s)}$$

$$a \ \textit{reduction} \ \text{reaction}$$

$$a \ \textit{reduction} \ \text{the reference} \ \text{potential}$$

The standard potential of an **oxidation** reaction is the **negative** of the reduction. Just run it backwards, the sign changes.

$$Zn_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Zn_{(s)} \qquad E_{red}^{o} \left(Zn^{2+} / Zn\right) = -0.76 \text{ V } vs. \text{ SHE}$$
a *reduction* reaction this is what we find in a redox table

$$Zn_{(s)} \rightleftharpoons Zn_{(aq)}^{2+} + 2e^{-}$$
 $E_{ox}^{o} \left(Zn / Zn^{2+} \right) = -E_{red}^{o} \left(Zn^{2+} / Zn \right)$ an *oxidation* reaction (inverse of reduction!)

Standard Reduction Potentials

The more **positive** the reduction potential is, the **easier** it is for the species to **accept** an electron / be reduced / act as an oxidant.

More "positive" Eº

- More easily reduced
- Better oxidants
- Electron acceptors
- Better cathode

Standard Reduction Potentials (vs. SHE) at 25 °C, in Aqueous Solutions						
	$E^{\circ}\left(\mathbb{F}_{2} / \mathbb{F}^{-}\right)$	=	2.87 V	$E^{\circ}(\operatorname{Fe}^{3+}/\operatorname{Fe})$	= -0.04 V	
	$E^{\circ}\left(\mathrm{O_{3},H^{+}/O_{2}}\right)$	=	2.08 V	$E^{\circ}\left(\mathrm{CO_{2}},\mathrm{H^{+}/CO}\right)$	= -0.11 V	
	$E^{\circ}\left(S_{2}O_{8}^{2-}/SO_{4}^{2-}\right)$	=	2.01 V	$E^{\circ}(\operatorname{Pb}^{2+}/\operatorname{Pb})$	= -0.13 V	
	$E^{\circ}\left(\operatorname{Ag}^{2+}/\operatorname{Ag}^{+}\right)$	=	1.98 V	$E^{\circ}(\operatorname{Sn}^{2+}/\operatorname{Sn})$	= -0.13 V	
	$E^{\circ}(\operatorname{Au^{+}}/\operatorname{Au})$	=	1.83 V	$E^{\circ}(\operatorname{Ni}^{2+}/\operatorname{Ni})$	= -0.25 V	
	$E^{o}\left(\operatorname{Co}^{3+}/\operatorname{Co}^{2+}\right)$	=	1.82 V	$E^{\circ}(V^{3+}/V^{2+})$	= -0.26 V	
	$E^{\circ}\left(\mathrm{H_{2}O_{2},H^{+}/H_{2}O}\right)$	=	1.76 V	$E^{\circ}(\operatorname{Co}^{2+}/\operatorname{Co})$	= -0.28 V	
	$E^{\circ}\left(PbO_{2},H^{+},SO_{4}^{-}/PbSO_{4}\right)$	=	1.69 V	$E^{\circ}(\operatorname{In}^{3+}/\operatorname{In})$	= -0.34 V	
	$E^{o}\left(\operatorname{Au}^{3+}/\operatorname{Au}\right)$	=	1.52 V	$E^{\circ}\left(\operatorname{Eu}^{3+}/\operatorname{Eu}^{2+}\right)$	= -0.35 V	
	$E^{\circ}\left(\operatorname{MnO}_{4}^{-},\operatorname{H}^{+}/\operatorname{Mn}^{2+}\right)$	=	1.51 V	$E^{\circ}\left(\text{PbSO}_{4} / \text{Pb,SO}_{4}^{2-}\right)$	= -0.36 V	
	$E^{\circ}\left(\operatorname{Cl}_{2}/\operatorname{Cl}^{-}\right)$	=	1.36 V	$E^{\circ}(\operatorname{PbI}_{2}/\operatorname{Pb})$	= -0.37 V	
	$E^{o}\left(\operatorname{Cr_{2}O_{7}^{2-},H^{+}/\operatorname{Cr}^{3+}}\right)$	=	1.33 V	$E^{\circ}\left(\operatorname{Cd}^{2+}/\operatorname{Cd}\right)$	= -0.40 V	
	$E^{\circ}(O_2,H^+/H_2O)$	=	1.23 V	$E^{\circ}\left(\operatorname{Cr}^{3+}/\operatorname{Cr}^{2+}\right)$	= -0.42 V	
	$E^{\circ}\left(\mathrm{IO}_{3}^{-},\mathrm{H}^{+}/\mathrm{I}_{2}\right)$	=	1.20 V	$E^{\circ}\left(\operatorname{Fe}^{2+}/\operatorname{Fe}\right)$	= -0.44 V	
	$E^{\circ} \left(\mathrm{Br}_{\!\scriptscriptstyle 2} \ / \mathrm{Br}^{\scriptscriptstyle -} \right)$	=	1.07 V	$E^{\circ}\left(\operatorname{Cr}^{3+}/\operatorname{Cr}\right)$	= -0.74 V	
	$E^{\circ}\left(NO_{3}^{-},H^{+}/NO\right)$	=	0.96 V	$E^{\circ}(\operatorname{Zn}^{2+}/\operatorname{Zn})$	= -0.76 V	
	$E^{\circ}\left(\operatorname{Hg}^{2+}/\operatorname{Hg}\right)$	=	0.85 V	$E^{\circ}(\mathrm{H_{2}O/H_{2},OH^{-}})$	= -0.83 V	
	$E^{\circ}(Ag^{+}/Ag)$	=	0.80 V	$E^{\circ}(V^{2+}/V)$	= -1.13 V	
	$E^{\circ}\left(\operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}\right)$	=	0.77 V	$E^{\circ}(Mn^{2+}/Mn)$	= -1.19 V	
	$E^{\circ}\left(O_{2},H^{+}/H_{2}O_{2}\right)$	=	0.70 V	$E^{\circ}(Al^{3+}/Al)$	= -1.66 V	
	$E^{\circ}(I_2/I^-)$	=	0.54 V	$E^{\circ}(\operatorname{Eu}^{3+}/\operatorname{Eu})$	= -1.99 V	
	$E^{\circ}\left(\overline{\Gamma_{3}}/\overline{\Gamma}\right)$	=	0.53 V	$E^{\circ}(Mg^{2+}/Mg)$	= -2.37 V	
	$E^{\circ}(\operatorname{Cu}^{+}/\operatorname{Cu})$	=	0.52 V	$E^{\circ}(\operatorname{Na^+}/\operatorname{Na})$	= -2.71 V	
	$E^{\circ}\left(\mathcal{O}_{2} / \mathcal{O}\mathcal{H}^{-}\right)$	=	0.40 V	$E^{\circ}\left(\operatorname{Ca}^{2+}/\operatorname{Ca}\right)$	= -2.87 V	
	$E^{\circ}\left(\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}/\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-}\right)$	=	0.36 V	$E^{\circ}(\operatorname{Sr}^{2+}/\operatorname{Sr})$	= -2.90 V	
	$E^{\circ}\left(\operatorname{Cu}^{2+}/\operatorname{Cu}\right)$	=	0.34 V	$E^{\circ}\left(\operatorname{Ba}^{2+}/\operatorname{Ba}\right)$	= -2.91 V	
	E°(AgCl/Ag)	=	0.22 V	$E^{\circ}(K^+/K)$	= -2.93 V	
	$E^{\circ}\left(\operatorname{Cu}^{2+}/\operatorname{Cu}^{+}\right)$	=	0.16 V	$E^{\circ}(Rb^{+}/Rb)$	= -2.98 V	
	$E^{\circ}\left(\operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}\right)$	=	0.15 V	$E^{\circ}(\operatorname{Cs}^+/\operatorname{Cs})$	= -3.03 V	
	$E^{\circ}\left(\mathrm{H}^{+}/\mathrm{H}_{2}\right)$	=	0.00 V	$E^{\circ}(\operatorname{Li}^+/\operatorname{Li})$	= -3.04 V	

More "negative" E°

- More easily oxidized
- Better reducers
- Electron givers
- Better anode

Standard Reduction Potentials

$E_{ m red}^{\circ}ig({ m V}ig)$	Reduction Half-Reaction
+2.87	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$
+1.36	$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$
+1.06	$\operatorname{Br}_2(l) + 2 e^- \longrightarrow 2 \operatorname{Br}^-(aq)$
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$
+0.80	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$
+0.59	$\operatorname{MnO_4^-}(aq) + 2 \operatorname{H_2O}(l) + 3 e^- \longrightarrow \operatorname{MnO_2}(s) + 4 \operatorname{OH}^-(aq)$
+0.54	$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$
+0.40	$O_2(g) + 2 H_2O(I) + 4 e^- \longrightarrow 4 OH^-(aq)$
+0.34	$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$
0 [defined]	$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$

 E_{Red}° is an intensive property : does not scale with quantity

-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$
-0.44	$\operatorname{Fe}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Fe}(s)$
-0.76	$\operatorname{Zn^{2+}}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$
-0.83	$2 \operatorname{H}_2 \operatorname{O}(I) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$
-3.05	$\operatorname{Li}^{+}(aq) + e^{-} \longrightarrow \operatorname{Li}(s)$

Standard Cell Potentials

Therefore: the total potential is the DIFFERENCE of the reduction potentials between the cathode and the anode (always "Reduction" part first):

$$E_{Cell}^{\circ} = E_{Red}^{\circ}(cathod) - E_{Red}^{\circ}(anode)$$

$$\uparrow$$
Note! Also reduction!

ex: Daniell Cell

$$\begin{array}{c|c}
Zn_{(s)} | Zn_{(aq)}^{2+} | Cu_{(aq)}^{2+} | Cu_{(s)} \\
\hline
\text{anode half-cell}
\end{array}$$

$$\begin{array}{c|c}
E_{red}^{\circ} (Cu^{2+} / Cu) = 0.34 \text{ V } vs. \text{ SHE} \\
\hline
E_{red}^{\circ} (Zn^{2+} / Zn) = -0.76 \text{ V } vs. \text{ SHE} \\
\hline
E_{tot}^{\circ} = 1.10 \text{ V } vs. \text{ SHE}
\end{array}$$

A galvanic cell is just another chemical reaction.

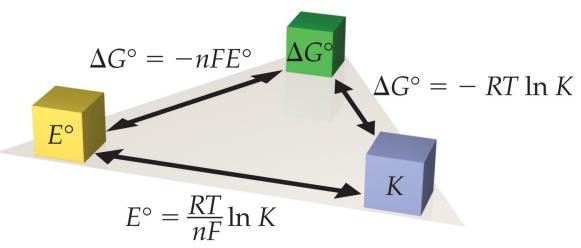
Therefore:

The laws of Thermodynamics should apply *Exactly* as it did for any other chemical reaction.

This means the relationships between **Work**, **Free Energy** and **Equilibrium** should be **exactly the same** as for any other chemical reaction

The relationship between the standard free energy and the standard redox potential:

$$\Delta G^{\mathrm{o}} = -nFE^{\mathrm{o}}$$
 F = 96,485 C / mol


The relation between the free energy and the equilibrium constant:

$$\Delta G^{\circ} = -RT \ln K$$

Equating the two relationships: $-nFE^{o} = -RT \ln K$

Yielding the relationship between the standard redox potential and equilibrium constant:

$$E^{\circ} = \frac{RT}{nF} \ln K$$

Example: $4 \text{ Ag}_{(s)} + O_{2(g)} + 4 H^{+}_{(aq)} \longrightarrow 4 \text{ Ag}^{+}_{(aq)} + 2 H_{2}O_{(l)}$

Example:
$$4 \text{ Ag}_{(s)} + O_{2(g)} + 4 \text{ H}^{+}_{(aq)} \longrightarrow 4 \text{ Ag}^{+}_{(aq)} + 2 \text{ H}_{2}O_{(l)}$$

Oxidation:
$$4 \text{ Ag}_{(s)} \longrightarrow 4 \text{ Ag}_{(aq)}^+ + 4 \text{ e}^- \qquad \qquad E_{Red}^\circ = +0.80 \text{ V}$$

Reduction:
$$O_{2(g)} + 4 H_{(aq)}^+ + 4 e^- \longrightarrow 2 H_2 O_{(l)}$$
 $E_{Red}^{\circ} = +1.23 V$

$$E_{Cell}^{\circ} = E_{Red}^{\circ}(cathod) - E_{Red}^{\circ}(anode)$$
$$= 1.23 - 0.8 = 0.43 \text{ V}$$

Example: $4 \text{ Ag}_{(s)} + O_{2(g)} + 4 \text{ H}^{+}_{(aq)} \longrightarrow 4 \text{ Ag}^{+}_{(aq)} + 2 \text{ H}_{2}O_{(l)}$

Oxidation:
$$4 \text{ Ag}_{(s)} \longrightarrow 4 \text{ Ag}_{(aq)}^+ + 4 \text{ e}^ E_{Red}^\circ = +0.80 \text{ V}$$

Reduction:
$$O_{2 (g)} + 4 H^{+}_{(aq)} + 4 e^{-} \longrightarrow 2 H_{2}O_{(l)}$$
 $E^{\circ}_{Red} = +1.23 V$

$$E_{Cell}^{\circ} = E_{Red}^{\circ}(cathod) - E_{Red}^{\circ}(anode)$$
$$= 1.23 - 0.8 = 0.43 \text{ V}$$

$$\Delta G^{\circ} = -nFE^{\circ} = 4 \times 96,485 \times 0.43 = -1.7 \times 10^5 \, J/mol$$

$$K = \exp\left(-\frac{\Delta G^{\circ}}{RT}\right) = \exp\left(-\frac{-1.7 \times 10^{5}}{RT}\right) = \exp(67) = 1.2 \times 10^{29}$$

What if we cut the reaction **in half**?

Example:
$$2 \text{ Ag}_{(s)} + \frac{1}{2} O_{2(g)} + 2 H^{+}_{(aq)} \longrightarrow 2 \text{ Ag}^{+}_{(aq)} + H_2 O_{(l)}$$

Oxidation:
$$2 \text{ Ag}_{(s)} \longrightarrow 2 \text{ Ag}_{(aq)} + 2 \text{ e}^{-}$$
 $E_{Red}^{\circ} = +0.80 \text{ V}$

Reduction:
$$\frac{1}{2} O_{2(g)} + 2 H^{+}_{(aq)} + 2 e^{-} \longrightarrow 1 H_{2}O_{(l)}$$
 $E^{\circ}_{Red} = +1.23 V$

$$E_{Cell}^{\circ} = 1.23 - 0.8 = 0.43 \text{ V}$$

: Stays the same because it is **intensive**!

What if we cut the reaction in half?

Example:
$$2 \text{ Ag}_{(s)} + \frac{1}{2} O_{2(g)} + 2 H^{+}_{(aq)} \longrightarrow 2 \text{ Ag}^{+}_{(aq)} + H_2 O_{(l)}$$

Oxidation:
$$2 \text{ Ag}_{(s)} \longrightarrow 2 \text{ Ag}_{(aq)} + 2 \text{ e}^{-}$$
 $E_{Red}^{\circ} = +0.80 \text{ V}$

Reduction:
$$\frac{1}{2} O_{2(g)} + 2 H^{+}_{(aq)} + 2 e^{-} \longrightarrow 1 H_{2}O_{(l)}$$
 $E_{Red}^{\circ} = +1.23 V$

$$E_{Cell}^{\circ} = 1.23 - 0.8 = 0.43 \text{ V}$$

: Stays the same because it is **intensive**!

$$\Delta G^{\circ} = -nFE^{\circ} = 2 \times 96,485 \times 0.43 = -8.3 \times 10^4 J/mol$$

$$K = \exp\left(-\frac{\Delta G^{\circ}}{RT}\right) = 3.5 \times 10^{14}$$

The Nernst Equation

All the relationships that we derived only applies under standard conditions.

- -All reactants at 1 M concentration
- -T=298 K.
- -Gases all at 1 atm.

Why? Because we are using the Standard Reduction Potential:

 $-nFE^{\circ} = -RT \ln K$ And those are all at standard conditions.

The Nernst Equation

All the relationships that we derived only applies under standard conditions.

- -All reactants at 1 M concentration
- -T=298 K
- -Gases all at 1 atm.

Why? Because we are using the Standard Reduction Potential:

$$-nFE^{\circ} = -RT \ln K$$

 $-nFE^{\circ} = -RT \ln K$ And those are all at standard conditions.

Q = reaction quotient

then Q = 1 and $\ln Q = 0$)

34

What happens if the reaction is under "non-standard conditions"? What if the concentrations of the solutions are **not** all **1 M**?

NERNST EQUATION: The equation that gives the potential under non-standard conditions

potential under any conditions
$$E = E^{o} - \frac{RT}{nF} \ln Q$$
potential under standard conditions
$$Q = \frac{[\text{products}]}{[\text{reactants}]}$$
specific concentrations used (if all concentrations = 1 M,

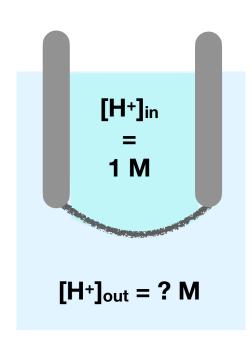
The Nernst Equation

Remember (chapter 19): $\Delta G = \Delta G^{\circ} + RT \ln Q$

and (this chapter)

$$\Delta G^{\rm o} = -nFE^{\rm o}$$

Therefore,


$$-nFE = -nFE^{\circ} + RT \ln Q$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

NERNST EQUATION:

Concentration Cells: pH meters

In a pH meter, the measured potential comes from the difference in [H⁺] ion concentrations on both sides of the thin glass membrane of the sensing electrode.

We can think of the redox reactions as being:

$$E = -\frac{RT}{F} \ln \frac{[H^+]_{out}}{[H^+]_{in}} = -0.02569 \text{ V } \ln \frac{[H^+]_{out}}{1 \text{ M}}$$

To make things simpler, let's change the logarithm to a base 10:

$$E = -2.30 \times 0.02569 \text{ V } \log_{10}[\text{H}^+]_{\text{out}}$$
$$= 0.0592 \text{ V} \times \left(-\log_{10}[\text{H}^+]_{\text{out}}\right)$$
$$= 59.2 \text{ mV} \times \text{pH}$$

The potential changes by **59.2 mV** every time the pH changes by one unit!

Electrolysis

Galvanic (voltaic) cells: production of electrical energy from the energy of a chemical reaction

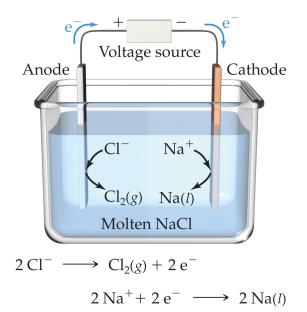
Electrolysis: Use of electrical energy to create chemical reactions.

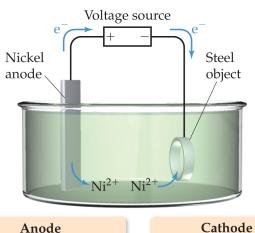
Run nonspontaneous reactions using electrical energy.

Reduction potentials:

Anode: $E_{Red}^{o}(Cl_{2}/Cl^{2}) = 1.36 \text{ V}$

Cathode: E^{o}_{Red} (Na⁺/Na) = -2.71 V

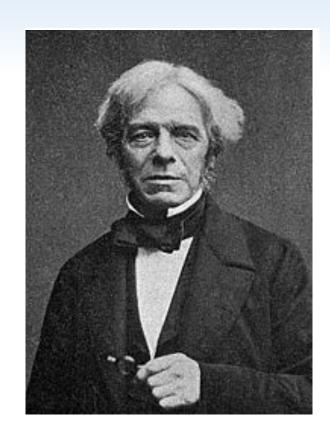

 $E^{o}_{Tot} = E^{o}_{Red} (Cl_{2}/Cl^{-}) - E^{o}_{Red} (Na^{+}/Na) = 4.07 \text{ V}$ $E^{o}_{Tot} = E^{o}_{Red} (Ni^{2+}/Ni) - E^{o}_{Red} (Ni^{2+}/Ni) = 0 \text{ V}$


Anode: $E_{Red}^{o}(Ni^{2+}/Ni) = -0.25 \text{ V}$

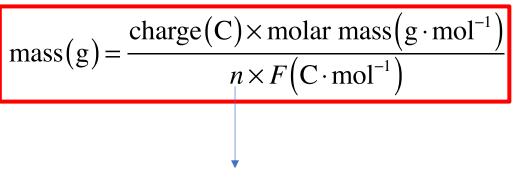
Cathode : E^{o}_{Red} (Ni²⁺/Ni) = -0.25 V

$$E^{o}_{Tot} = E^{o}_{Red} (Ni^{2+}/Ni) - E^{o}_{Red} (Ni^{2+}/Ni) = 0 V$$

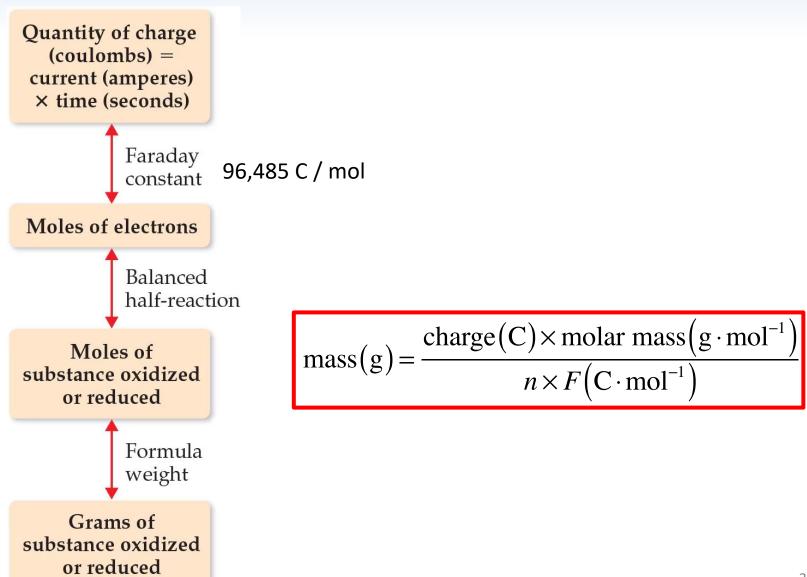
Non-spontaneous can occur by the addition of external voltage source.



Anode $Ni(s) \longrightarrow Ni^{2+}(aa) + 2e^{-}$


 $Ni^{2+}(aa) + 2e^{-} \longrightarrow Ni(s)$

Faraday's Law of Electrolysis


Michael Faraday 1791 - 1867 (England)

"The amount of substance created is directly proportional to the electrical charge passed through the cell."

Number of electrons required to make one mol of substance

Using Faraday's Law

