

Chapter 17

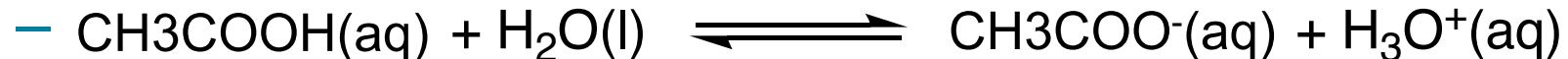
Buffers!!

17.1 The Common-Ion Effect

- What is "the common ion effect?
 - It's what happens when you add more of the product ion to an acid/base reaction.
- This, like most things makes most sense with an example:

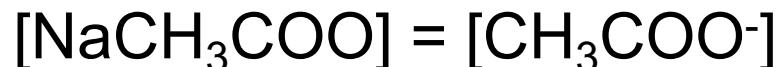
Example: What happens when you add Acetate to Acetic Acid? (1 of 2)

- Acetic acid is a weak acid:



- Sodium acetate is a strong electrolyte:

- all of it dissociates:



- What does that do to the equilibrium?

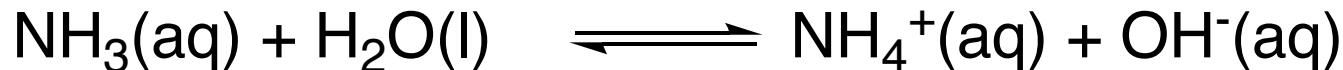
Effect of Acetate on the Acetic Acid Equilibrium (2 of 2)

- Le Châtelier's principle says:
 - Add **product** (CH_3COO^-), **shift to reactants**.
 - $\text{CH}_3\text{COOH(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_3\text{O}^+(\text{aq})$

Addition of CH_3COO^- shifts equilibrium concentrations, lowering $[\text{H}^+]$

Weak Bases Work the Same Way

- Adding the a weak base will do the same thing.



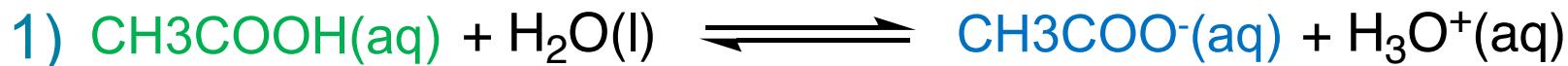
Addition of NH_4^+ shifts equilibrium concentrations, lowering $[\text{OH}^-]$

Example: Calculating pH for a Common Ion (1 of 3)

- What is the pH of a solution made by adding **0.30 mol** of acetic acid and **0.30 mol** of sodium acetate to enough water to make 1.0 L of solution?

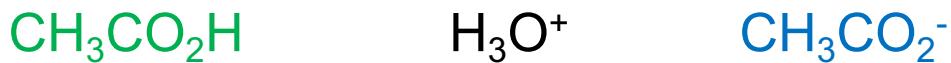
Example: Calculating pH for a Common Ion (1 of 3)

- What is the pH of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of solution?
- Assume the salt dissociates 100%.
- 0.3 moles sodium acetate = 0.3 moles acetate in 1L, 0.3 M
- Focus on the acetic acid equilibrium.



$$2) K_a = 1.8 \times 10^{-5} = \frac{[\text{H}_3\text{O}]^+ [\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]}$$

Calculating pH for a Common Ion (2 of 3)



Initial (M)			
Change (M)			
Equilibrium (M)			

Calculating pH for a Common Ion (2 of 3)

	$\text{CH}_3\text{CO}_2\text{H}$	H_3O^+	CH_3CO_2^-
Initial (M)	0.30	0	0.30
Change (M)			
Equilibrium (M)			

Calculating pH for a Common Ion (2 of 3)

	$\text{CH}_3\text{CO}_2\text{H}$	H_3O^+	CH_3CO_2^-
Initial (M)	0.30	0	0.30
Change (M)	$-x$	$+x$	$+x$
Equilibrium (M)	$(0.30 - x)$	x	$(0.30 + x)$

$$1.8 \times 10^{-5} = \frac{[\text{H}_3\text{O}]^+[\text{CH}_3\text{OO}^-]}{[\text{CH}_3\text{OOH}]}$$

$$1.8 \times 10^{-5} = \frac{x(0.3 + x)}{0.3 - x}$$

Can we assume that x is so small that:

adding or subtracting it from 0.30 will not matter?

Calculating pH for a Common Ion (3 of 3)

Yes!

$$1.8 \times 10^{-5} = \frac{x(0.3+x)}{0.3-x} \quad \text{becomes:} \quad 1.8 \times 10^{-5} = \frac{(x)(0.30)}{(0.30)}$$

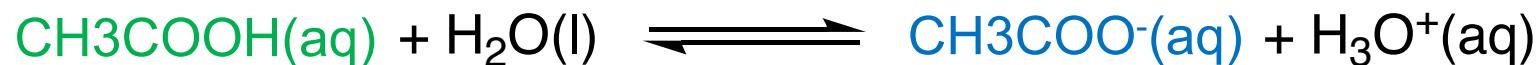
which results in: $x = 1.8 \times 10^{-5} M = [H^+]$

Check: $1.8 \times 10^{-5} \ll 0.3 M$

So: $pH = -\log[H^+] = 4.74$

Calculating pH for a Common Ion (3 of 3)

- Note!!

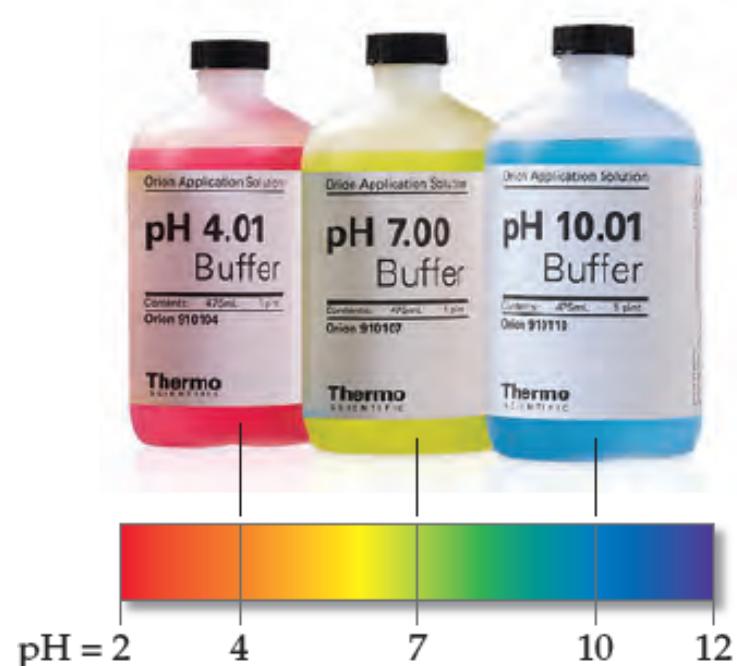


	$\text{CH}_3\text{CO}_2\text{H}$	H_3O^+	CH_3CO_2^-
Initial (M)	0.30	0	0.30
Change (M)	$-X$	$+x$	$+x$
Equilibrium (M)	0.30	1.8×10^{-5}	0.30

Minimal apparent change

17.2 But why do we care about buffers?

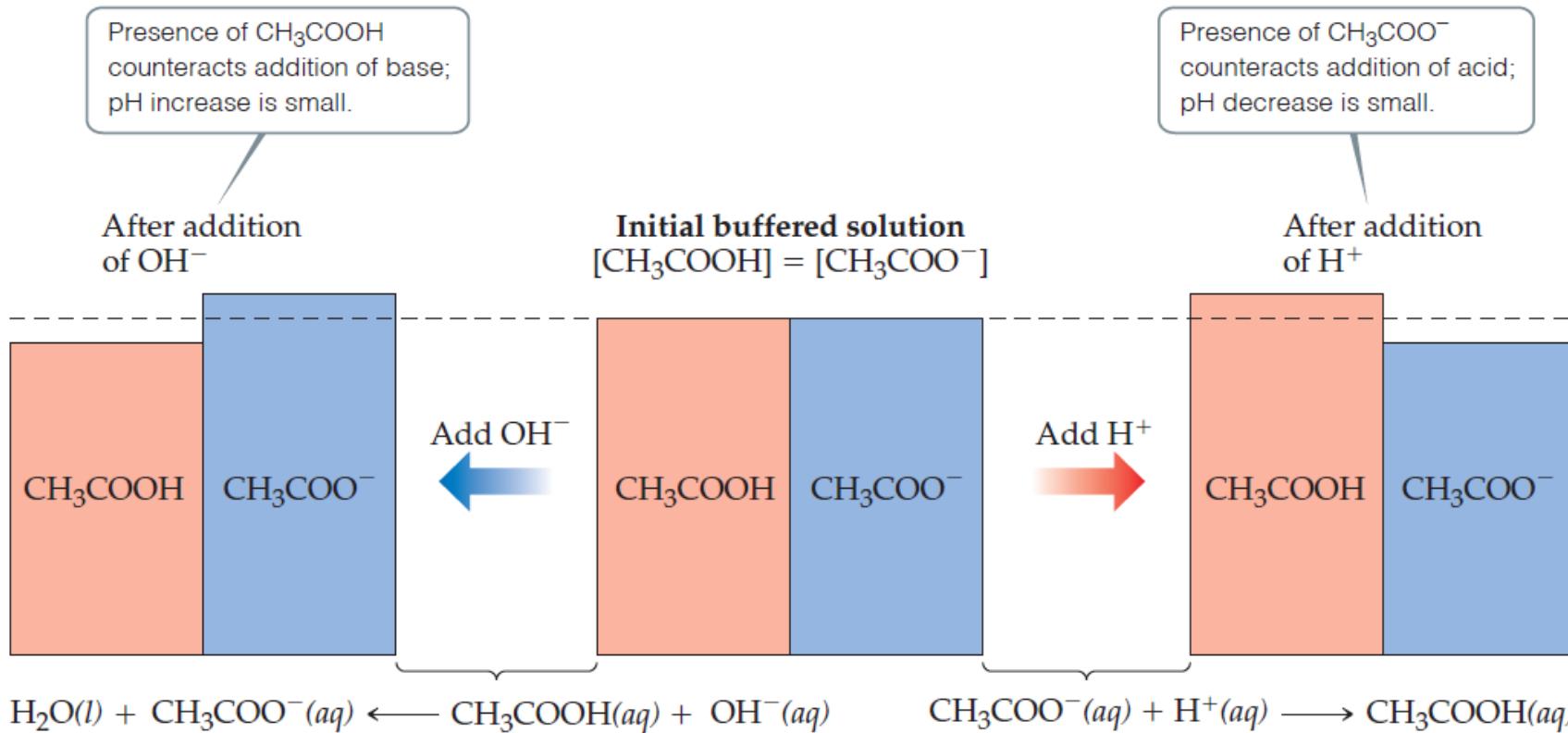
- A mixture of a weak acid and its conjugate base (salt product) **resists changes in pH**.
- But there has to be **enough** of each of them to do it.
- A reasonable buffer:
 - 10^{-3} M or more
 - of Both **AH** and **A⁻**



Ways to Make a Buffer

- 1) Mix a **weak acid** and its **conjugate base “salt”**
 - 1) Mix HA with A⁻ (acetic acid and acetate).
- 2) Mix a **weak base** and its **conjugate acid “salt”**.
 - 1) Mix B with HB (NH₃ and NH₄⁺)
- 3) Add strong base to a weak acid
 - 1) That will make the conjugate base
 - 2) $\text{CH}_3\text{COOH}(\text{aq}) + \text{NaOH}(\text{aq}) \rightarrow \text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_2\text{O}$
- 4) Add strong acid to a weak base
 - 1) That will make the conjugate acid.
 - 2) $\text{NH}_3 + \text{HCl} \rightarrow \text{NH}_4^+(\text{aq}) + \text{Cl}^-(\text{aq})$

How a Buffer Works



- Adding a small amount of acid or base only slightly neutralizes one component of the buffer, so the pH doesn't change very much.

The Henderson-Hasselback Equation : The equation of buffers

- For a weak acid: $K_a = \frac{[H^+][A^-]}{[HA]}$

- Take $-\log$ of both sides:

$$-\log K_a = -\log[H^+] + -\log\left(\frac{[A^-]}{[HA]}\right)$$

- Rearrange:

$$-\log[H^+] = -\log K_a + \log\left(\frac{[A^-]}{[HA]}\right)$$

- Which is:

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$$

Deriving the Henderson-Hasselback Equation (2 of 2)

$$\text{pH} = \text{p}K_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)$$

- **Henderson–Hasselbalch equation.**
 - Works with any weak acid or base and their respective salts.
 - There are four variables.
 - $[\text{H}_3\text{O}^+]$
 - K_a
 - $[\text{HA}]$
 - $[\text{A}^-]$

Example:

Using the Henderson–Hasselback Equation to Find pH

- What is the pH of a buffer that is 0.12 M in lactic acid, $\text{CH}_3\text{CH}(\text{OH})\text{COOH}$, and 0.10 M in sodium lactate?

K_a for lactic acid is 1.4×10^{-4} .

$$\begin{aligned}\text{pH} &= \text{p}K_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right) \\ &= -\log(1.4 \times 10^{-4}) + \log\left[\frac{(0.10\text{ M})}{(0.12\text{ M})}\right] \\ &= 3.85 + (-0.08) = 3.77\end{aligned}$$

Buffer Concentration vs. Buffer pH

- How does the **buffer concentration** affect pH of solution?

$$\text{pH} = \text{p}K_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)$$

- It's the **ratio** of **acid** and conjugate **base** that determines pH.
- **Not concentration**
- $1\text{M}/1\text{M} = .01\text{M}/.01\text{M}$
- **Both** have $\text{pH}=\text{p}K_a$

Buffer Concentration vs. Buffer pH

- How does the **buffer concentration** affect pH of solution?

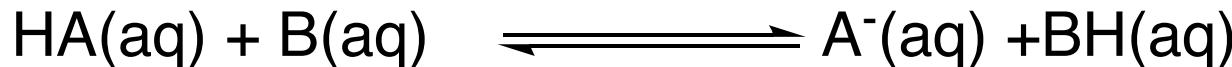
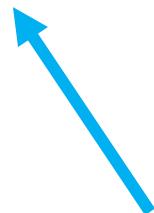
$$\text{pH} = \text{p}K_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)$$

- It's the **ratio** of **acid** and conjugate **base** that determines pH.
- **Not concentration**
- $1\text{M}/1\text{M} = .01\text{M}/.01\text{M}$
- **Both** have $\text{pH}=\text{p}K_a$

- **But:** If you add 0.01 M acid to 1M solution, ratio barely changes
 - **So pH barely changes**
- Add 0.01M acid to .01 M solution, **pH changes a lot.**
- **Buffer capacity**

Buffer pH range.

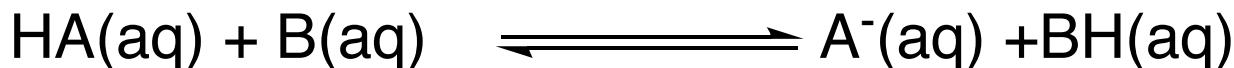
- Buffers only work within certain pH ranges.
 - Why?
 - What's the range?



- Once all HA is gone,
- $\text{B} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{BH}$
- All the added base makes OH^-
- pH changes quickly!

Buffer pH range.

- Buffers only work within certain pH ranges.
 - Why?
 - What's the range?



$$\text{pH} = \text{p}K_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right)$$

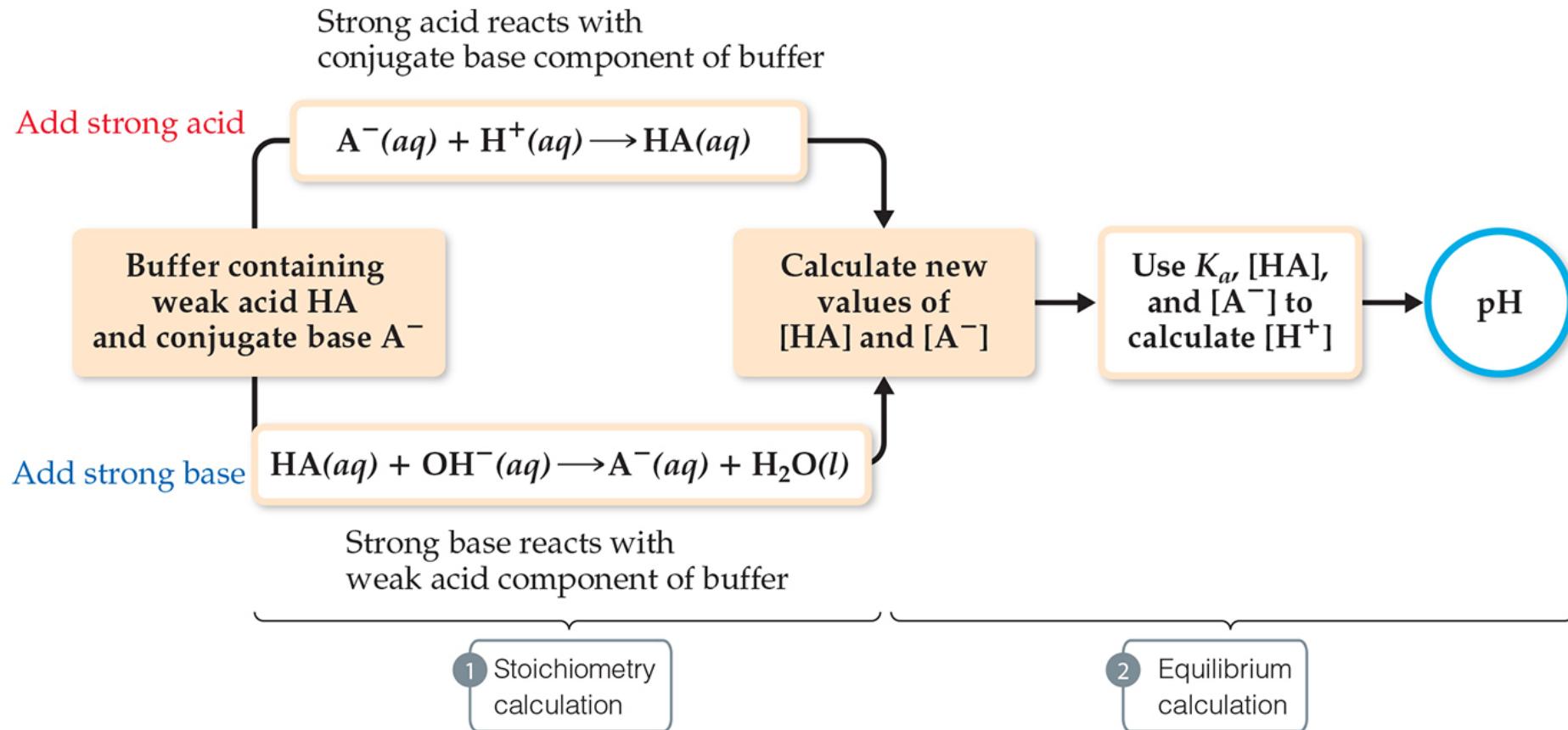
- If $[\text{HA}] > 10 \times [\text{A}^-]$
- or $[\text{HA}] < [\text{A}^-] / 10$
- Then $|\log([\text{A}^-]/[\text{HA}])| > 1$
- Buffering action is poor

Addition of a Strong Acid or a Strong Base to a Buffer (1 of 2)

Addition of the strong acid or base is a neutralization reaction.

- 1) Calculate like a stoichiometry problem to find $[\text{HA}]$ and $[\text{A}^-]$ when **all** of the added acid or base reacts. This is a limiting agent situation.
- 2) Use the Henderson–Hasselbalch equation to find pH. The equilibrium calculation is simplified by using this equation.

Addition of a Strong Acid or a Strong Base to a Buffer (2 of 2)



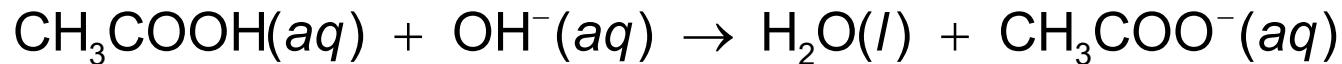
Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.30 mol CH_3COOH and 0.30 mol NaCH_3COO to enough water to make 1.00 L. Then 0.020 mol of NaOH is added. What's the pH?

Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.30 mol CH_3COOH and 0.30 mol NaCH_3COO to enough water to make 1.00 L. Then 0.020 mol of NaOH is added. What's the pH?

1) Stoichiometry table – limiting reactant calculation

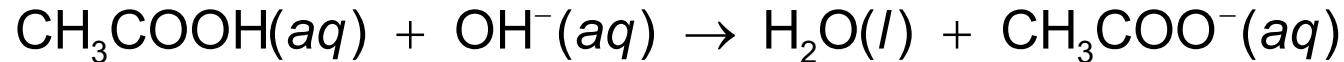


Before reaction (mol)			-	
Change (limiting reactant) (mol)			-	
After reaction (mol)				

Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.30 mol CH_3COOH and 0.30 mol NaCH_3COO to enough water to make 1.00 L. Then 0.020 mol of NaOH is added. What's the pH?

1) Stoichiometry table – limiting reactant calculation

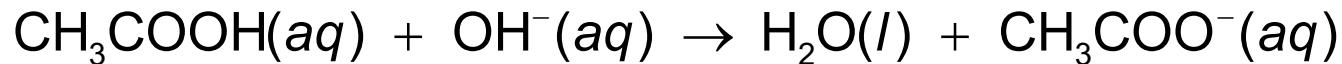


Before reaction (mol)	0.300	0.020	-	0.300
Change (limiting reactant) (mol)			-	
After reaction (mol)				

Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.30 mol CH_3COOH and 0.30 mol NaCH_3COO to enough water to make 1.00 L. Then 0.020 mol of NaOH is added. What's the pH?

1) Stoichiometry table – limiting reactant calculation

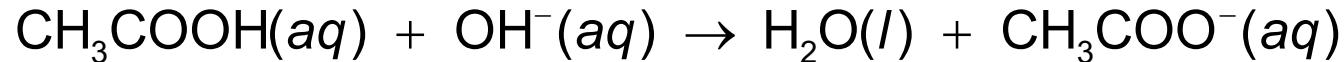


Before reaction (mol)	0.300	0.020	-	0.300
Change (limiting reactant) (mol)	-0.020	-0.020	-	
After reaction (mol)				

Example of pH Calculation for Buffer after Strong Base Addition (1 of 2)

- A buffer is made by adding 0.30 mol CH_3COOH and 0.30 mol NaCH_3COO to enough water to make 1.00 L. Then 0.020 mol of NaOH is added. What's the pH?

1) Stoichiometry table – limiting reactant calculation



Before reaction (mol)	0.300	0.020	-	0.300
Change (limiting reactant) (mol)	-0.020	-0.020	-	+0.020
After reaction (mol)	0.280	0	-	0.320

Example of pH Calculation for Buffer after Strong Base Addition (2 of 2)

2) Henderson–Hasselbalch equation:

$$\text{pH} = \text{p}K_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)$$

HA and A⁻ are in the same solution,

volume for each is the same
molarity ratio = moles ratio

$$\text{pH} = \text{p}K_a + \log\left(\frac{n_{\text{HA}}}{n_{\text{A}^-}}\right)$$

$$\text{pH} = 4.74 + \log\left(\frac{0.320}{0.280}\right) = 4.80$$

Contrast Base Addition on pH for Buffer versus Water

Add 5.00 mL of 4.0 M NaOH to a) or b) below

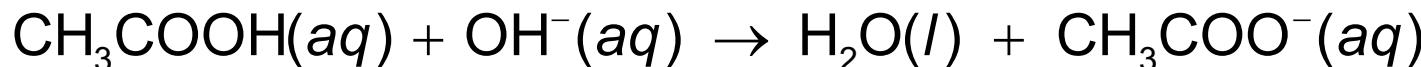
- a) 1.000 L of a buffer that is 0.30 M acetate/0.30 M acetic acid.
- b) 1.000 L of water

Contrast Base Addition on pH for Buffer versus Water

Add 5.00 mL of 4.0 M NaOH to a)

- a) 1.000 L of a buffer that is 0.30 M acetate/0.30 M acetic acid.
- b) 1.000 L of water

a)



Before reaction (mol)	0.300	0.020	-	0.300
Change (limiting reactant) (mol)	-0.020	-0.020	-	+0.020
After reaction (mol)	0.280	0	-	0.320

$$\text{pH} = 4.74 + \log\left(\frac{0.320}{0.280}\right) = 4.80$$

Contrast Base Addition on pH for Water versus Buffer

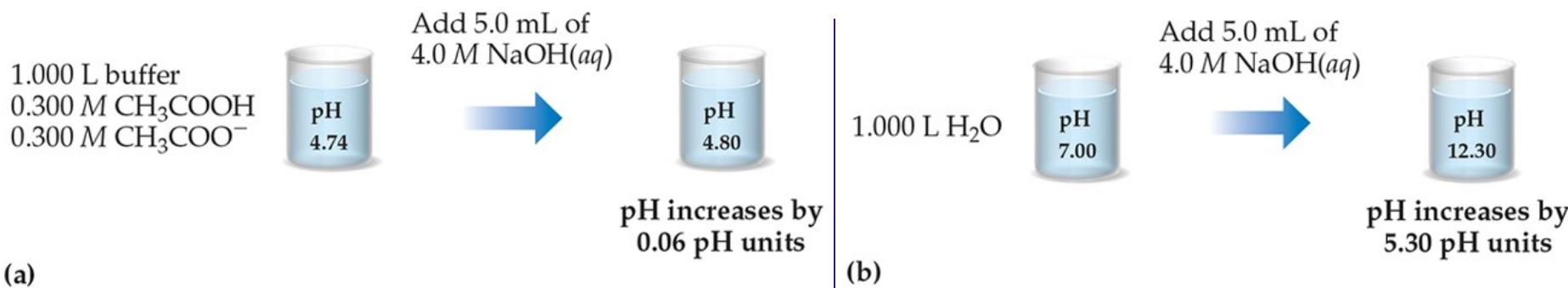
b) Pure water

$$(4.0\text{ mol/L}) \times 5.00 \times 10^{-3}\text{ L} = 2.0 \times 10^{-2}\text{ mol}$$
$$2.0 \times 10^{-2}\text{ mol} / 1.005\text{ L} = 0.0199\text{ M}$$
$$\text{pOH} = -\log[\text{OH}^-] = -\log(0.0199) = 2.70$$
$$\text{pH} = 14.00 - 2.70 = \mathbf{12.30}$$

pH change minimized using buffer:

Adding base to buffer: 4.74 to 4.80 is **0.06 units**

Adding base to water: 7.00 to 12.30 is **5.30 units**



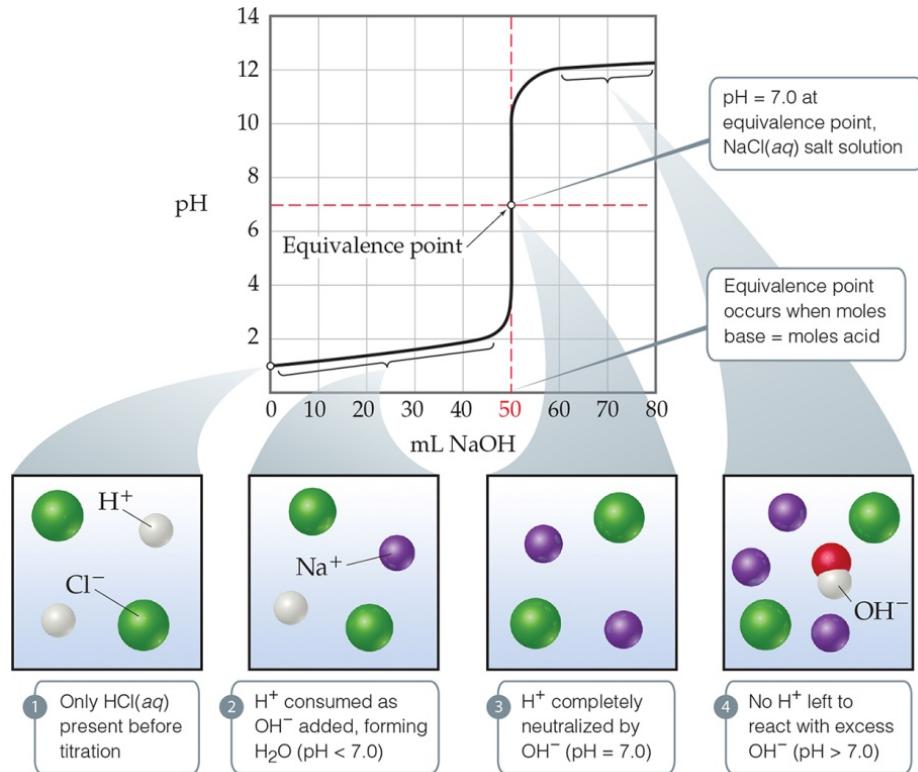
17.3 Acid–Base Titrations

- An acid (or base) solution of **known** concentration
- is slowly added to a base (or acid) solution of **unknown** concentration.
- Addition until the **equivalence point** is reached.
 - amount of acid =amount base.
- Equivalence point seen by monitoring pH change.



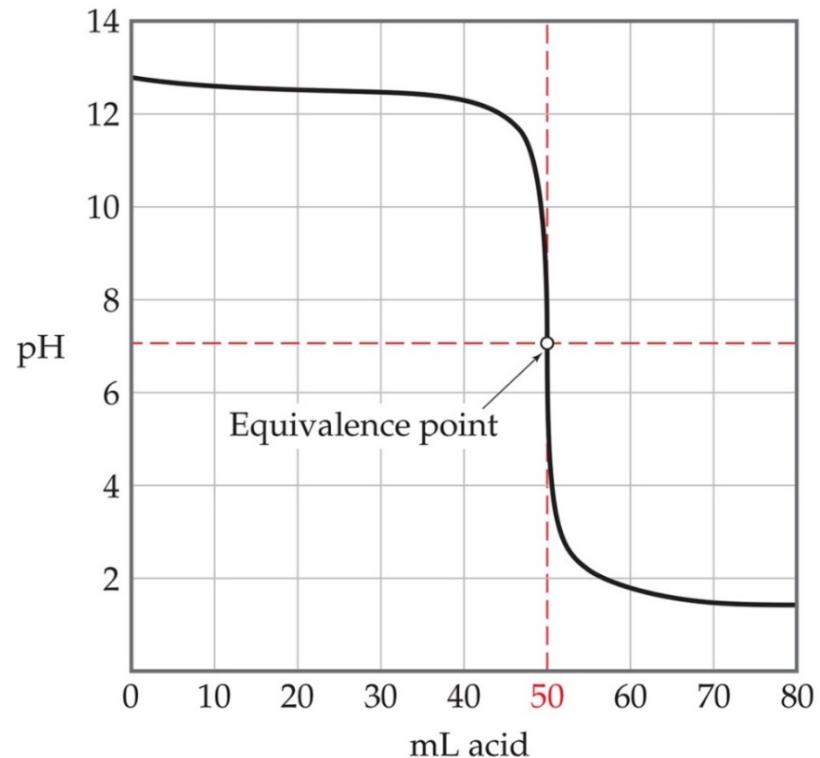
Titration of a Strong Acid with a Strong Base

- Plot pH versus mL of strong base.
- From the start to near the equivalence point, the *pH goes up slowly*.
- Just before (and after) the equivalence point, *the pH rises rapidly*.
- At the equivalence point, pH = 7.
- As more base is added, the pH again levels off.



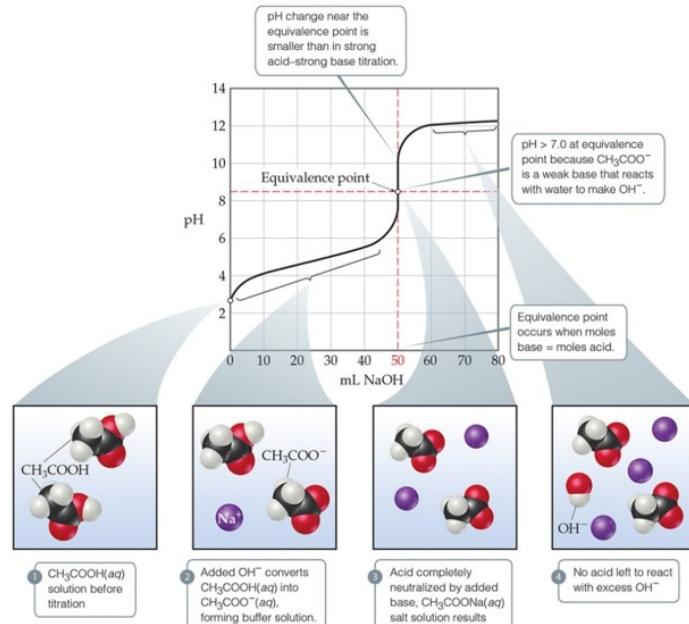
Titration of a Strong Base with a Strong Acid

- Start with a high pH (basic solution).
- pH = 7 at the equivalence point.
- Adding more acid, pH levels off.

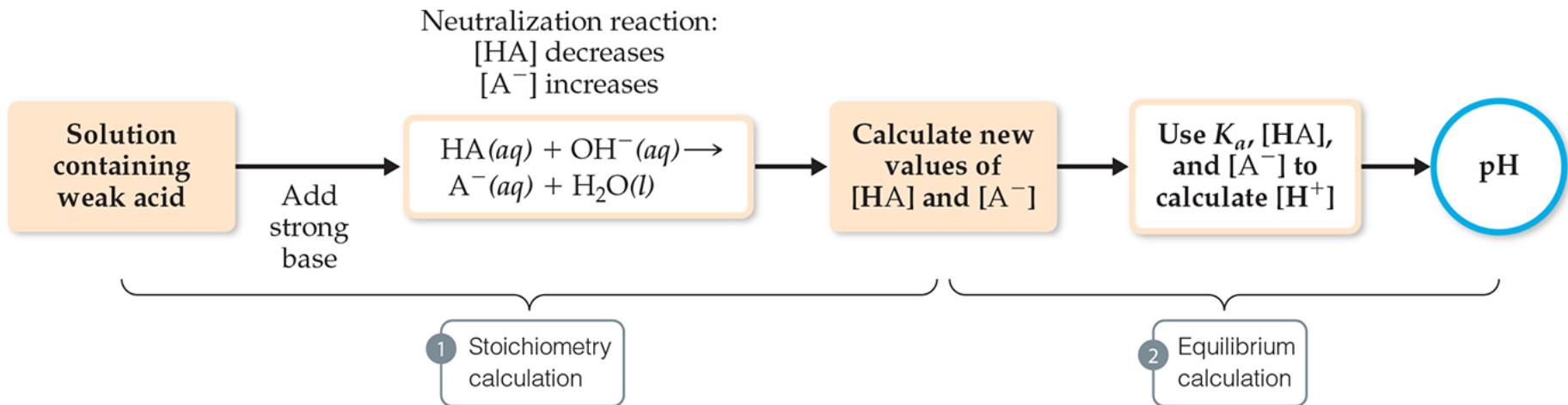


Titration of a **Weak Acid** with a **Strong Base**

- four distinct regions:
 1. Initial pH uses K_a calculation.
 2. Between initial pH and equivalence point (excess acid) uses limiting reactant then Henderson-Hasselback.
 3. At the equivalence point.
 4. After the equivalence point (excess strong base).



Calculating pH When a Weak Acid is Neutralized—Excess Acid



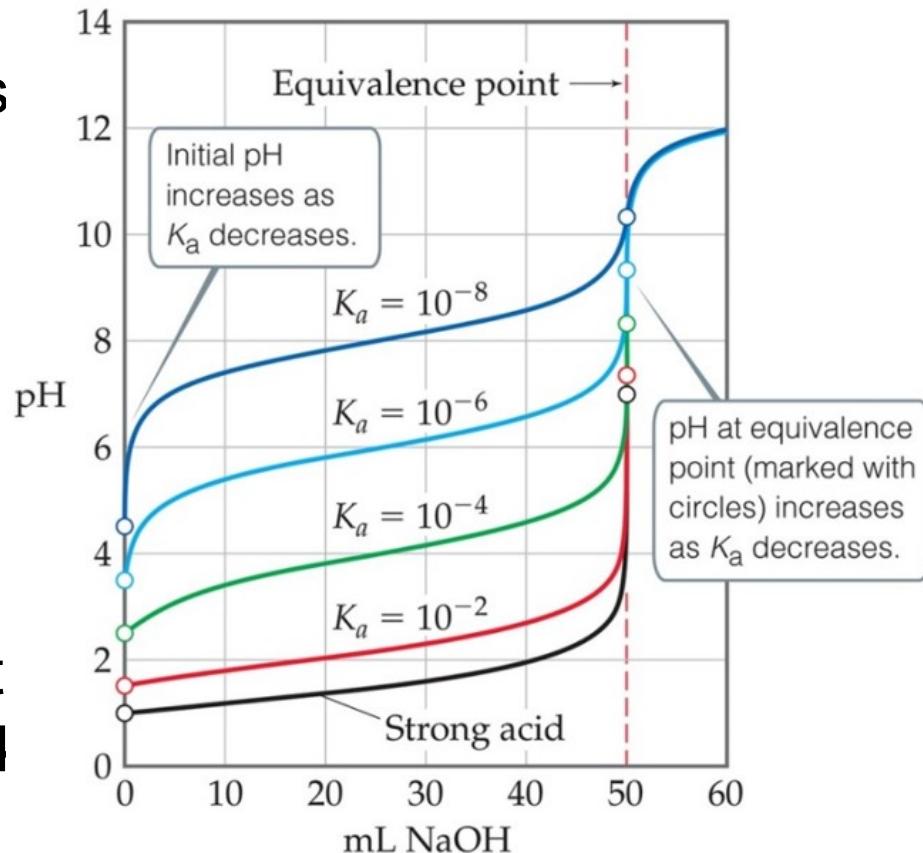
- Calculate the moles of weak acid and strong base.
- Write the neutralization reaction.
- Track limiting reactant change using the table. Gives you moles of remaining acid and the moles of anion formed.
- Substitute into the Henderson-Hasselbalch equation to find pH.

Calculating pH for titrating a Weak Acid With a Strong Base

- The pH is **Not 7.00** at the equivalence point.
- Calculate the moles of weak acid and strong base.
- Write the neutralization equation.
- Substitute into table.
- **Titration point:** moles strong base = moles weak acid.
 - No more HA, only A^-
- Find molarity of weak acid using the new volume.
- Use the equations of either the K_b of the anion or the K_a of the weak acid to determine the pH (like in Chapter 16).

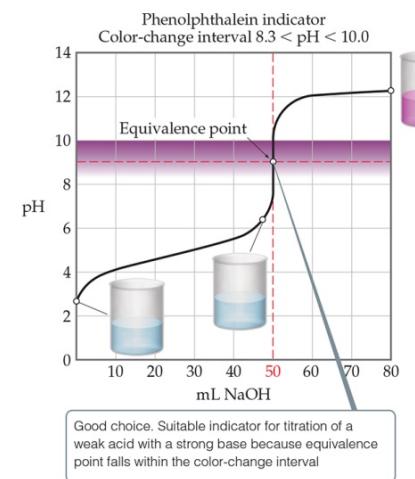
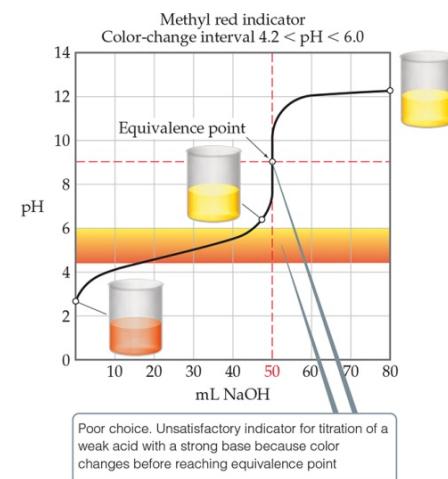
Ways That a Weak Acid Titration Differs from a Strong Acid Titration

- 1) A solution of **weak** acid has a **higher** initial pH than a **strong** acid.
- 2) The pH change is smaller
- 3) The pH midway to equivalence point = pK_a
- 4) pH at the equivalence point is **greater than 7** for a **weak** acid.



Titrations with an Acid–Base Indicator

- Indicators are weak acids that have a different color than their conjugate base form.
 - Each indicator has its own pH range over which it changes color.
 - Can be used to determine the equivalence point in a titration as long as it changes color at the pH of the equivalence point.



Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- Calculate the pH at the equivalence point in the titration of 50 mL of 0.1 M acetic acid with 0.1 M NaOH.

Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- Calculate the pH at the equivalence point in the titration of 50 mL of 0.1 M acetic acid with 0.1 M NaOH.
- $\text{CH}_3\text{COOH(aq)} + \text{NaOH(aq)} \longrightarrow \text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_2\text{O} + \text{Na}^+(\text{aq})$
- 50 mL 0.1M. 0.1 M
- $0.05\text{L} \times (0.1\text{mole/L}) = 0.005 \text{ moles}$

Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- Calculate the pH at the equivalence point in the titration of **50 mL of 0.1 M acetic acid with 0.1 M NaOH.**
- $\text{CH}_3\text{COOH(aq)} + \text{NaOH(aq)} \longrightarrow \text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_2\text{O} + \text{Na}^+(\text{aq})$
- 50 mL 0.1M. 0.1 M
- $0.05\text{L} \times (0.1\text{mole/L}) = 0.005 \text{ moles}$
- Initial: 0.005 moles **HA** 0.005 moles **OH-⁻** 0 **A⁻**
- Change: -0.005 moles -0.005 moles +0.005
- Equil.: 0 0 **0.005 moles**

Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- Calculate the pH at the equivalence point in the titration of 50 mL of 0.1 M acetic acid with 0.1 M NaOH.
- $\text{CH}_3\text{COOH(aq)} + \text{NaOH(aq)} \longrightarrow \text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_2\text{O} + \text{Na}^+(\text{aq})$
- 50 mL 0.1M. 0.1 M
- $0.05\text{L} \times (0.1\text{mole/L}) = 0.005 \text{ moles}$
- Initial: 0.005 moles HA 0.005 moles OH⁻ 0 A⁻
- Change: -0.005 moles -0.005 moles +0.005
- Equil.: 0 0 0.005
- Important!!! Now convert “moles” into “Molarity” for next step
- Total volume of solution at equivalence point: 100 mL = 0.1 L
- 0.005 moles CH₃COO⁻ in 0.1 L solution = 0.05 M

Let's calculate the pH at the equivalence point for a weak acid/strong base titration.

- $\text{CH}_3\text{COO}^-(\text{aq}) + \text{H}_2\text{O} \longrightarrow \text{CH}_3\text{COOH}(\text{aq}) + \text{OH}^-$
- I: **0.05 M** 0 0
- C: -x x x
- E: 0.05-x x x

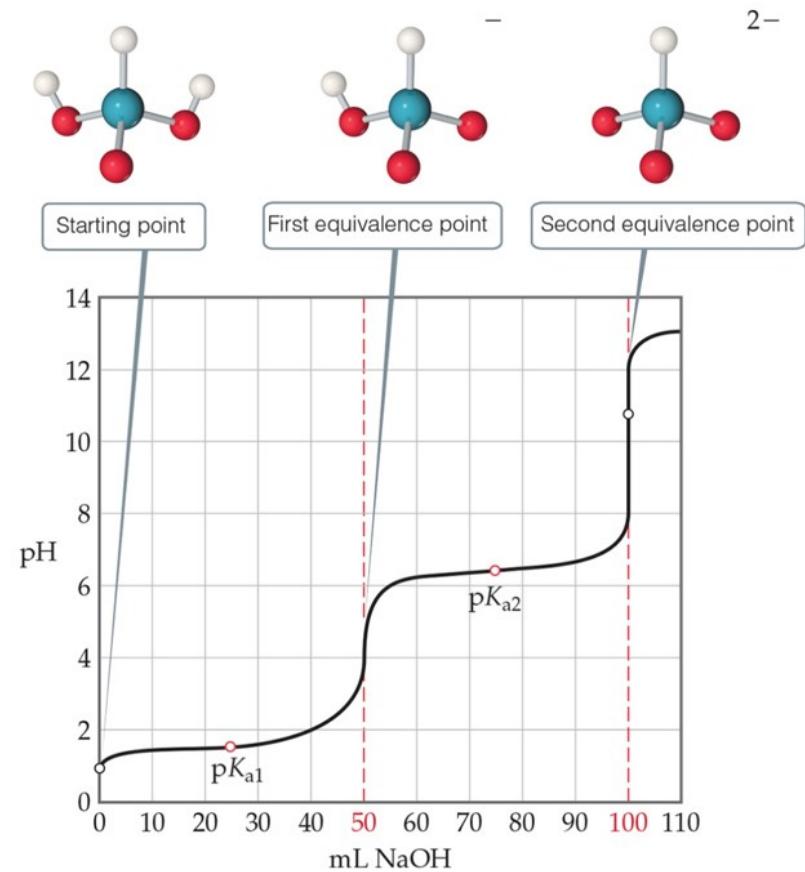
$$K_b = K_w / K_a = (1.0 \times 10^{-14}) / (1.8 \times 10^{-5}) = 5.6 \times 10^{-10}.$$

$$K_b = \frac{[\text{CH}_3\text{COOH}][\text{OH}^-]}{[\text{CH}_3\text{COO}^-]} = \frac{(x)(x)}{0.0500 - x} = 5.6 \times 10^{-10}$$

$$x = [\text{OH}^-] = 5.3 \times 10^{-6} M, \text{ which gives } \text{pOH} = 5.28 \text{ and } \text{pH} = 8.72$$

Titrations of Polyprotic Acids

- There are multiple equivalence points.
- Treat each step separately with their corresponding polyanions and K_a .
- The halfway to each equivalence point gives the pK_a
- The concentration of the dianion is always equal to K_{a2} .



17.4 Solubility Equilibria

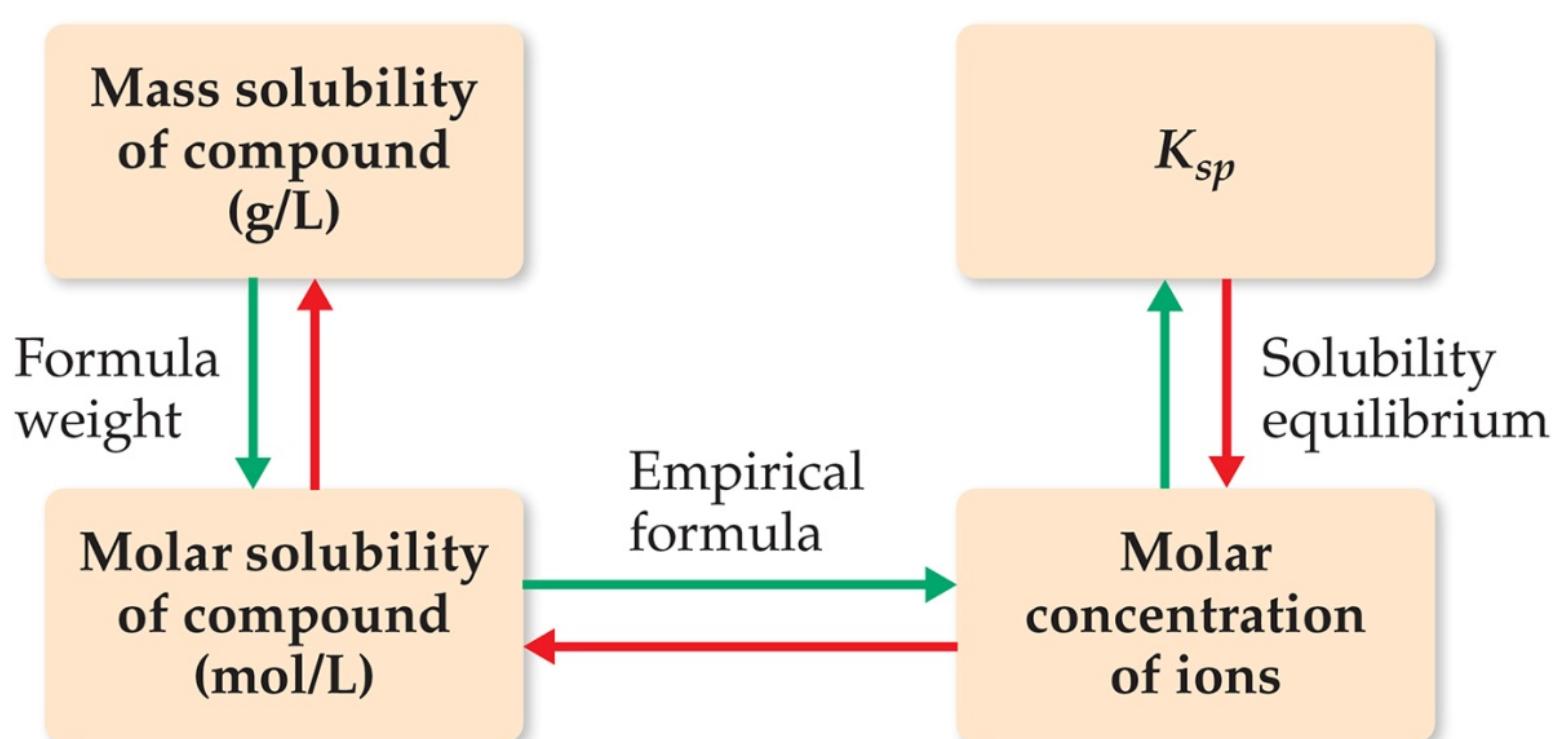
- Many Ionic compounds are not very soluble in water.
- The equilibrium constant expression is called the **solubility-product constant**. It is represented as
- K_{sp}
- $\text{Ba}_3(\text{PO}_4)(\text{s}) \rightleftharpoons 3\text{Ba}^{2+}(\text{aq}) + 2\text{PO}_4^{3-}(\text{aq})$

$$K_{sp} = [\text{Ba}^{2+}]^3 [\text{PO}_4^{3-}]^2$$

Solubility and K_{sp} (1 of 2)

- K_{sp} is **not** the same as solubility.
- **Solubility:** *Maximum amount* that can dissolve.
- Common units for solubility:
 - Grams per liter (g/L)
 - Moles per liter (mol/L)

Solubility and K_{sp} (2 of 2)



Calculating Solubility from K_{sp} (1 of 2)

- The K_{sp} for CaF_2 is 3.9×10^{-11} at 25°C . What is its molar solubility?

2) $K_{sp} = [\text{Ca}^{2+}][\text{F}^-]^2 = 3.9 \times 10^{-11}$

3)

Initial concentration (M)	-	0	0
Change (M)	-	$+x$	$+2x$
Equilibrium concentration (M)	-	x	$2x$

Calculating Solubility from K_{sp} (2 of 2)

- Substitute the equilibrium concentration values from the table into the solubility-product equation:

$$3.9 \times 10^{-11} = (x)(2x)^2 = 4x^3$$

$$x = 2.1 \times 10^{-4} \text{ M}$$

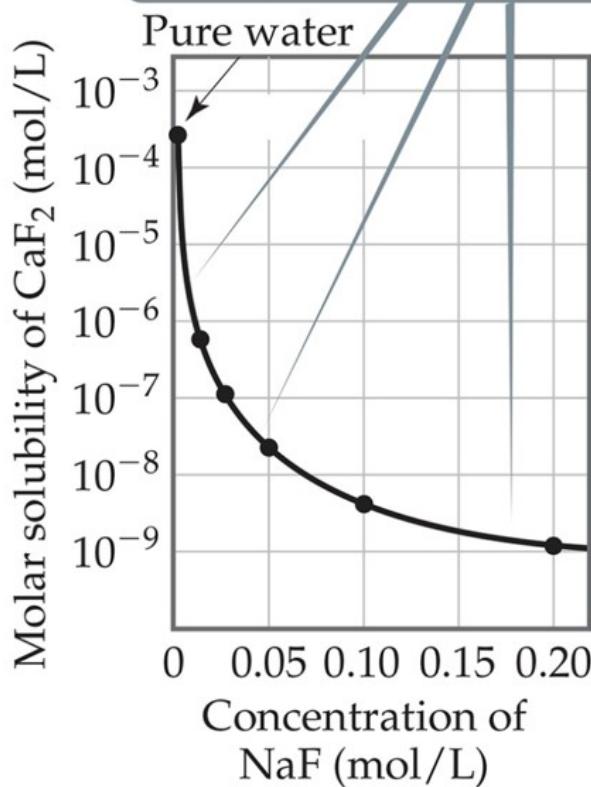
For **Mass** solubility in g/mol: Multiply by molar mass.

$$2.1 \times 10^{-4} \text{ mol/L} (78.1 \text{ g/mol}) = 0.0164 \text{ g/L}$$

17.5 Factors That Affect Solubility

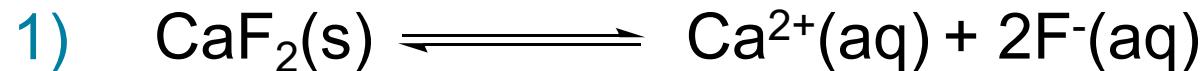
- **The common-ion effect:**
 - If one of the ions is added
 - *Independently*
 - ***The salt will be even less soluble.***
 - For CaF_2 ,
 - Add either Ca^{2+} or F^-
 - CaF_2 less soluble.

Solubility of CaF_2 decreases sharply as a common ion (F^-) is added to the solution.



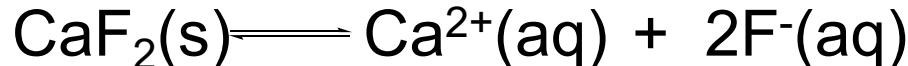
Calculating Solubility with a Common Ion (1 of 2)

- What is the molar solubility CaF_2 in $0.010\text{ M Ca}(\text{NO}_3)_2$?



2) $K_{sp} = [\text{Ca}^{2+}][\text{F}^-]^2 = 3.9 \times 10^{-11}$

3)



Initial concentration (M)	-	0.010	0
Change (M)	-	$+x$	$+2x$
Equilibrium concentration (M)	-	$(0.010 + x)$	$2x$

Calculating Solubility with a Common Ion (2 of 2)

- 4) Substitute the equilibrium concentration values from the table into the solubility-product equation:

$$3.9 \times 10^{-11} = (0.010 + x)(2x)^2$$

(We assume that $x \ll 0.010$, so that $0.010 + x = 0.010$!)

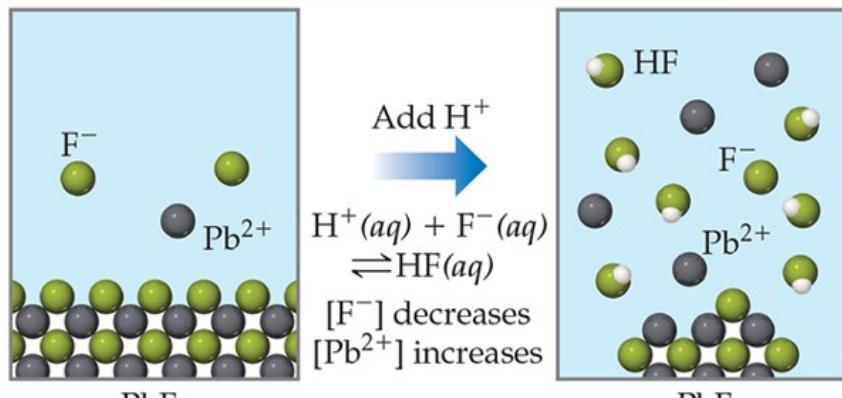
$$3.9 \times 10^{-11} = (0.010)(2x)^2$$

$$x = 3.1 \times 10^{-5} M$$

Solubility can be effected by pH

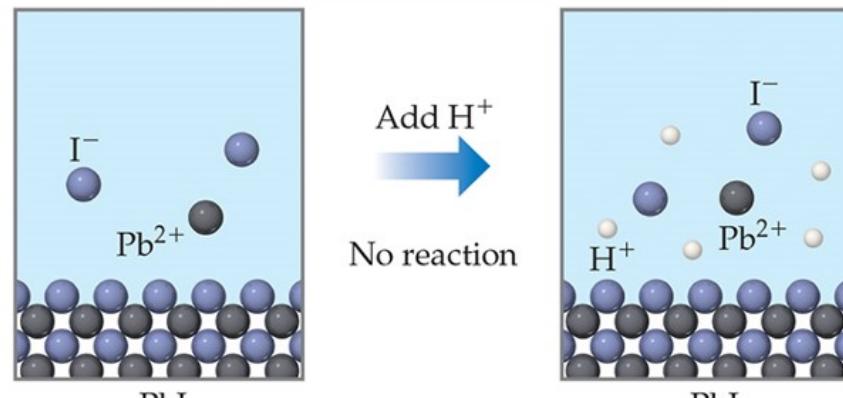
- When?
 - When the **anion** is a weak base... (conj. of weak acid)
 - Adding acid reduces anion.
 - $F^- + HA \rightleftharpoons HF + A^-$

Salt whose anion is conjugate base of weak acid:
Solubility increases as pH decreases



(a)

Salt whose anion is conjugate base of strong acid:
Solubility unaffected by changes in pH

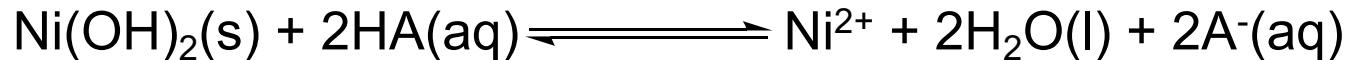


(b)

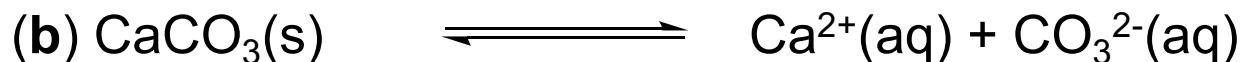
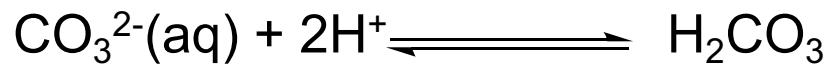
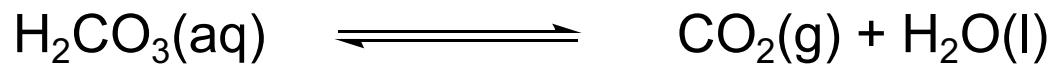
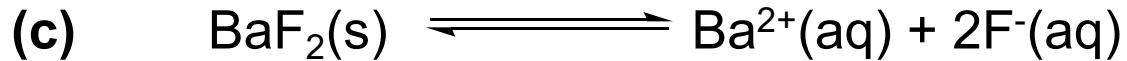
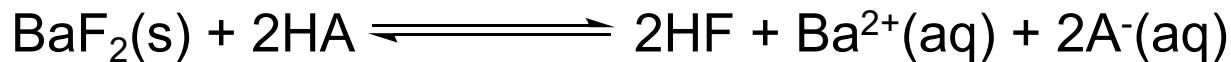
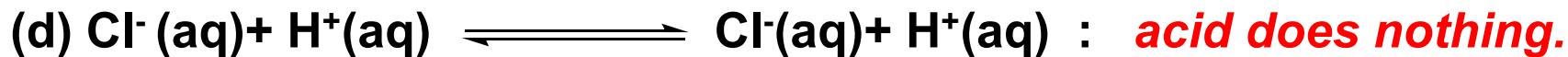
Sample Exercise 17.15 Predicting the Effect of Acid on Solubility (1 of 4)

Which of these substances are more soluble in acidic solution than in basic solution? (a) $\text{Ni(OH)}_2(s)$ (b) $\text{CaCO}_3(s)$ (c) $\text{BaF}_2(s)$ (d) $\text{AgCl}(s)$

(a) $\text{Ni(OH)}_2(s)$ is more soluble in acidic solution because of the basicity of OH^- ; the H^+ reacts with the OH^- ion, forming water:

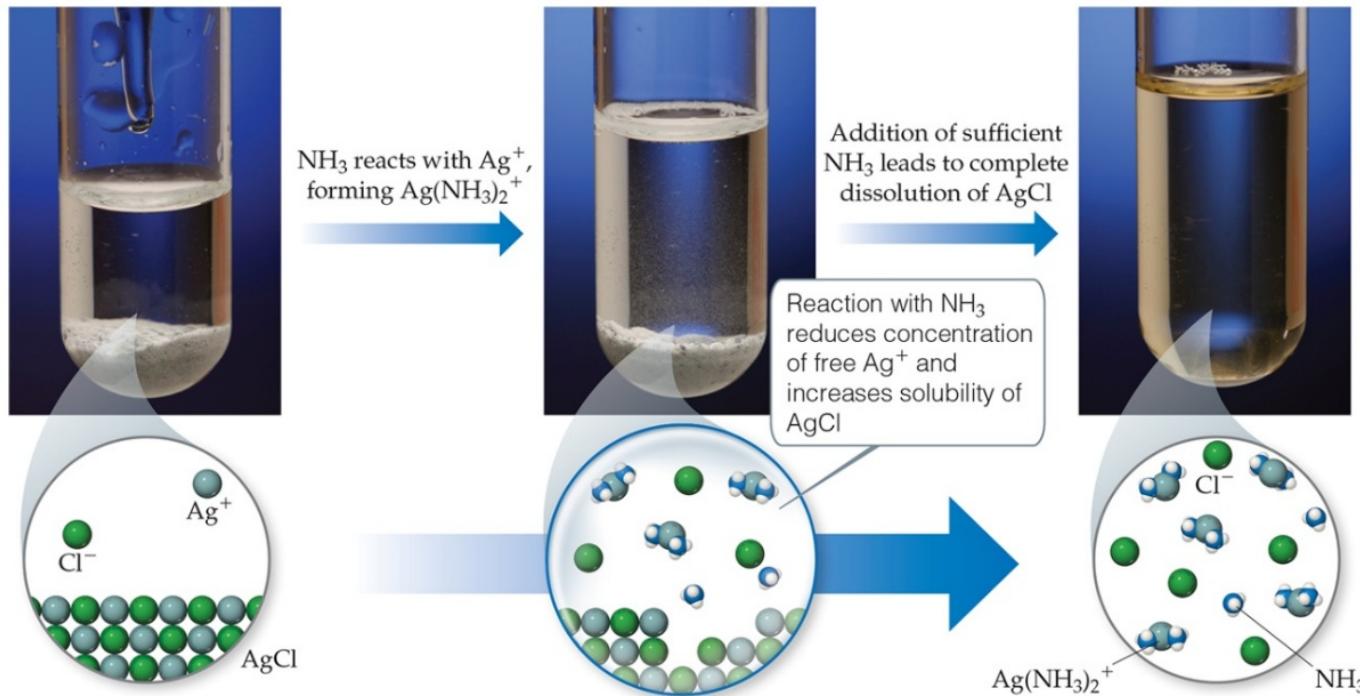


Sample Exercise 17.15 Predicting the Effect of Acid on Solubility (1 of 4)



Complex Ion Formation (1 of 4)

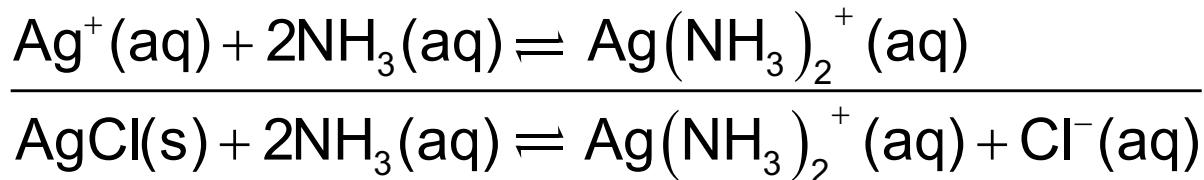
- Metal ions can **act as Lewis acids** and form **complex ions** with **Lewis bases** in the solvent.
- The formation of these complex ions can increase the solubility of these salts.



Complex Ion Formation (2 of 4)

- Silver chloride is insoluble. It has a K_{sp} of 1.6×10^{-10} .
- In the presence of NH_3 , the solubility greatly increases because Ag^+ will form a complex ion with NH_3 .

$$K_f = 1.7 \times 10^7$$



$$K_f \left(\text{Ag}(\text{NH}_3)_2^+ \right) = \frac{\left[\text{Ag}(\text{NH}_3)_2^+ \right]}{\left[\text{Ag}^+ \right] \left[\text{NH}_3 \right]^2} = 1.7 \times 10^7$$

Complex Ion Formation (3 of 4)

Table 17.1 Formation Constants for Some Metal Complex Ions in Water at 25 °C

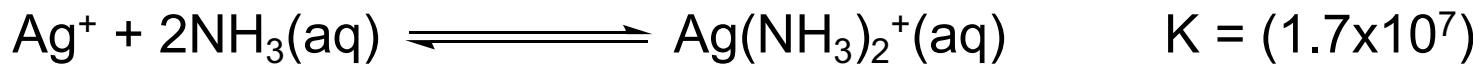
Complex Ion	K_f	Chemical Equation
$\text{Ag}(\text{NH}_3)_2^+$	1.7×10^7	$\text{Ag}^+(aq) + 2\text{NH}_3(aq) \rightleftharpoons \text{Ag}(\text{NH}_3)_2^+(aq)$
$\text{Ag}(\text{CN})_2^-$	1×10^{21}	$\text{Ag}^+(aq) + 2\text{CN}^-(aq) \rightleftharpoons \text{Ag}(\text{CN})_2^-(aq)$
$\text{Ag}(\text{S}_2\text{O}_3)_2^{3-}$	2.9×10^{13}	$\text{Ag}^+(aq) + 2\text{S}_2\text{O}_3^{2-}(aq) \rightleftharpoons \text{Ag}(\text{S}_2\text{O}_3)_2^{3-}(aq)$
$\text{Al}(\text{OH})_4^-$	1.1×10^{33}	$\text{Al}^{3+}(aq) + 4\text{OH}^-(aq) \rightleftharpoons \text{Al}(\text{OH})_4^-(aq)$
CdBr_4^{2-}	5×10^3	$\text{Cd}^{2+}(aq) + 4\text{Br}^-(aq) \rightleftharpoons \text{CdBr}_4^{2-}(aq)$
$\text{Cr}(\text{OH})_4^-$	8×10^{29}	$\text{Cr}^{3+}(aq) + 4\text{OH}^-(aq) \rightleftharpoons \text{Cr}(\text{OH})_4^-(aq)$
$\text{Co}(\text{SCN})_4^{2-}$	1×10^3	$\text{Co}^{2+}(aq) + 4\text{SCN}^-(aq) \rightleftharpoons \text{Co}(\text{SCN})_4^{2-}(aq)$
$\text{Cu}(\text{NH}_3)_4^{2+}$	5×10^{12}	$\text{Cu}^{2+}(aq) + 4\text{NH}_3(aq) \rightleftharpoons \text{Cu}(\text{NH}_3)_4^{2+}(aq)$
$\text{Cu}(\text{CN})_4^{2-}$	1×10^{25}	$\text{Cu}^{2+}(aq) + 4\text{CN}^-(aq) \rightleftharpoons \text{Cu}(\text{CN})_4^{2-}(aq)$
$\text{Ni}(\text{NH}_3)_6^{2+}$	1.2×10^9	$\text{Ni}^{2+}(aq) + 6\text{NH}_3(aq) \rightleftharpoons \text{Ni}(\text{NH}_3)_6^{2+}(aq)$
$\text{Fe}(\text{CN})_6^{4-}$	1×10^{35}	$\text{Fe}^{2+}(aq) + 6\text{CN}^-(aq) \rightleftharpoons \text{Fe}(\text{CN})_6^{4-}(aq)$
$\text{Fe}(\text{CN})_6^{3-}$	1×10^{42}	$\text{Fe}^{3+}(aq) + 6\text{CN}^-(aq) \rightleftharpoons \text{Fe}(\text{CN})_6^{3-}(aq)$
$\text{Zn}(\text{OH})_4^{2-}$	4.6×10^{17}	$\text{Zn}^{2+}(aq) + 4\text{OH}^-(aq) \rightleftharpoons \text{Zn}(\text{OH})_4^{2-}(aq)$

Sample Exercise 17.16 Evaluating an Equilibrium Involving a Complex Ion (1 of 5)

Calculate the equilibrium concentration of Ag^+ when concentrated NH_3 is added to 0.01 M AgNO_3 solution to give equilibrium concentration $[\text{NH}_3]=0.20$ M

Sample Exercise 17.16 Evaluating an Equilibrium Involving a Complex Ion (1 of 5)

Calculate the equilibrium concentration of Ag^+ when concentrated NH_3 is added to 0.01 M AgNO_3 solution to give equilibrium concentration $[\text{NH}_3]=0.20$ M



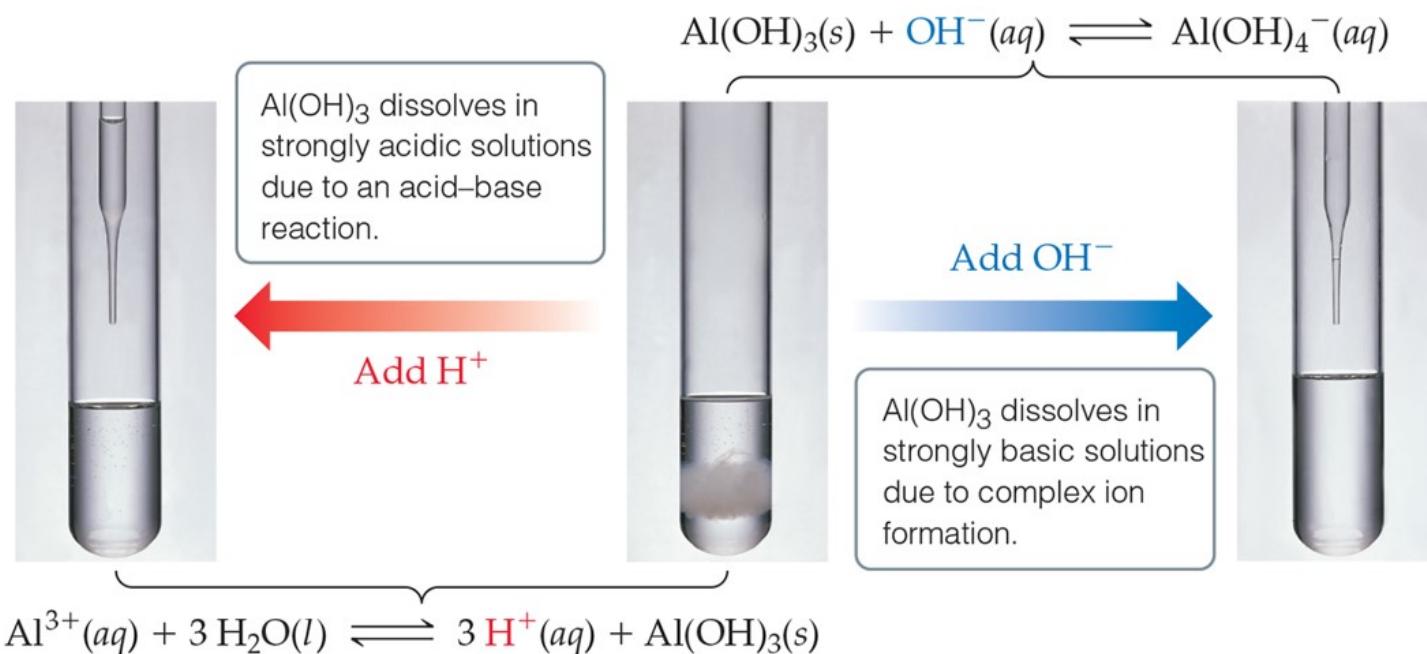
Initial (M)	0.010	0	---
Change (M)	$-x$	$+x$	---
Equilibrium (M)	$0.010-x$	x	0.20

$$\frac{[\text{Ag}^+][\text{NH}_3]^2}{[\text{Ag}(\text{NH}_3)_2^+]} = \frac{(x)(0.20)^2}{0.010} = 5.9 \times 10^{-8}$$

$$x = 1.5 \times 10^{-8} \text{ M} = [\text{Ag}^+]$$

Amphotericism

- **Amphoteric oxides and hydroxides**
 - Insoluble in water, but soluble in strong acids or base, because they can act either as acids or bases.
- Examples: Al^{3+} , Cr^{3+} , Zn^{2+} , and Sn^{2+} .



17.6 Precipitation and Ion Separation

- To decide if precipitation will occur, calculate the reaction quotient, Q , and compare it to K_{sp} .
- Q uses the given conditions and has the same form as the K expression.
 - If $Q = K_{sp}$, the system is at equilibrium and the solution is saturated.
 - If $Q < K_{sp}$, more solid can dissolve, no precipitate forms.
 - If $Q > K_{sp}$, a precipitate will form.

Sample Exercise 17.17 Predicting Whether a Precipitate Forms (1 of 3)

Does a precipitate form when 0.10 L of $8.0 \times 10^{-3} M$ $\text{Pb}(\text{NO}_3)_2$ is added to 0.40 L of $5.0 \times 10^{-3} M$ Na_2SO_4 ?

NaNO_3 is soluble.

PbSO_4 has $K_{sp} = 6.3 \times 10^{-7}$ So, we need to find out

Sample Exercise 17.17 Predicting Whether a Precipitate Forms (2 of 3)

Solve

When the two solutions are mixed, the volume is $0.10\text{ L} + 0.40\text{ L} = 0.50\text{ L}$. The number of moles of Pb^{2+} in 0.10 L of $8.0 \times 10^{-3}\text{ M}\text{ Pb}(\text{NO}_3)_2$ is:

$$(0.10\text{ L}) \left(\frac{8.0 \times 10^{-3}\text{ mol}}{\text{L}} \right) = 8.0 \times 10^{-4}\text{ mol}$$

The concentration of Pb^{2+} in the 0.50-L mixture is therefore:

$$[\text{Pb}^{2+}] = \frac{8.0 \times 10^{-4}\text{ mol}}{0.50\text{ L}} = 1.6 \times 10^{-3}\text{ M}$$

The number of moles of SO_4^{2-} in 0.40 L of $5.0 \times 10^{-3}\text{ M}\text{ Na}_2\text{SO}_4$ is:

$$(0.40\text{ L}) \left(\frac{5.0 \times 10^{-3}\text{ mol}}{\text{L}} \right) = 2.0 \times 10^{-3}\text{ mol}$$

Sample Exercise 17.17 Predicting Whether a Precipitate Forms (3 of 3)

Therefore:

$$[\text{SO}_4^{2-}] = \frac{2.0 \times 10^{-3} \text{ mol}}{0.50 \text{ L}} = 4.0 \times 10^{-3} M$$

and:

$$Q = [\text{Pb}^{2+}][\text{SO}_4^{2-}] = (1.6 \times 10^{-3})(4.0 \times 10^{-3}) = 6.4 \times 10^{-6}$$

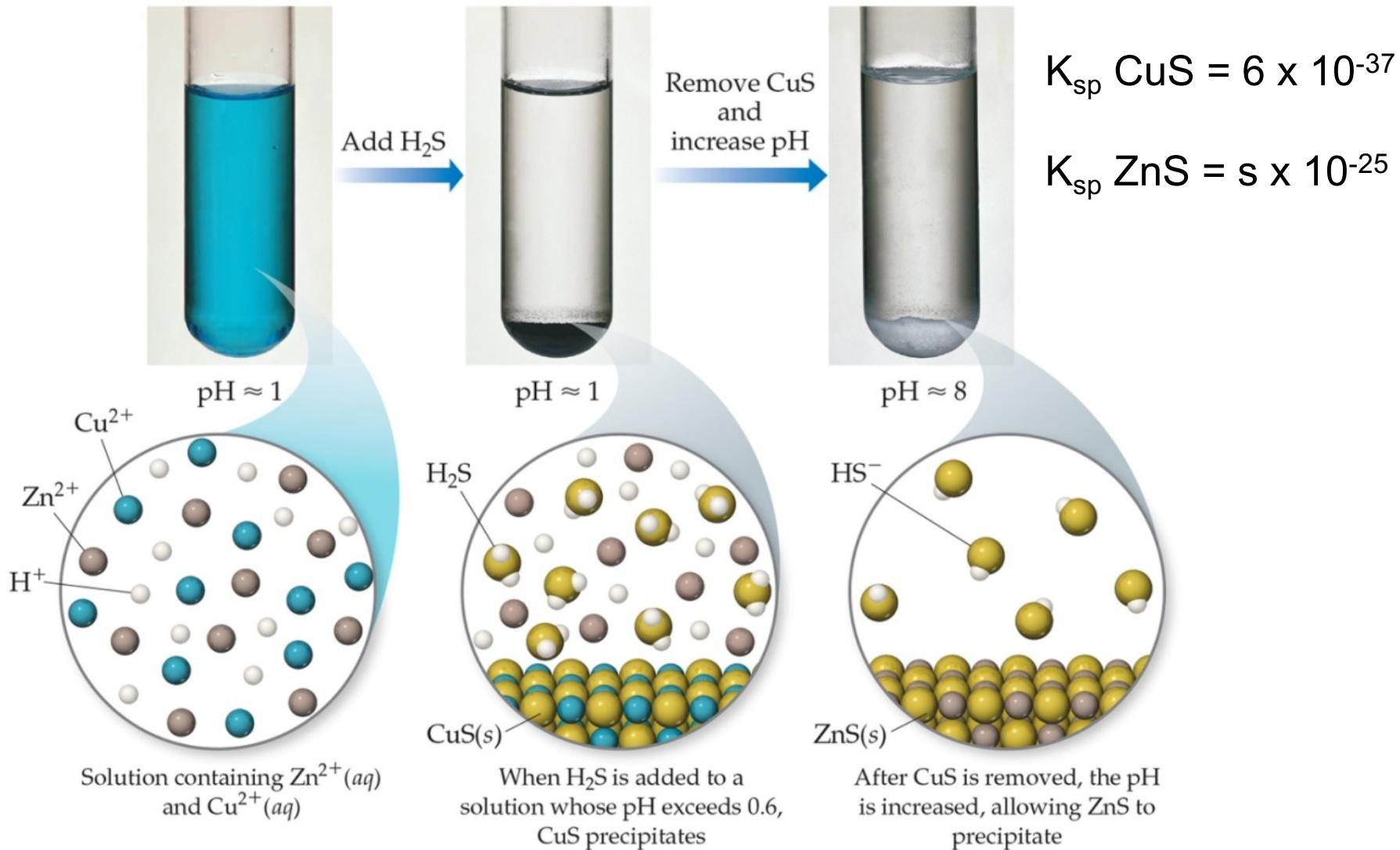
Because $Q > K_{sp}$, PbSO_4 precipitates.

Practice Exercise

Does a precipitate form when 0.050 L of $2.0 \times 10^{-2} M$ NaF is mixed with 0.010 L of $1.0 \times 10^{-2} M$ $\text{Ca}(\text{NO}_3)_2$?

Selective Precipitation of Ions

- Ions can be separated from solution based on their solubilities in the presence of different ions.



17.7 Qualitative Analysis of Ions

One can use differences in solubilities of salts to **separate ions in a mixture.**

This has been used for qualitative analysis of the presence of ions in a solution. A new application is recovery of metal ions from batteries used in electric vehicles.

