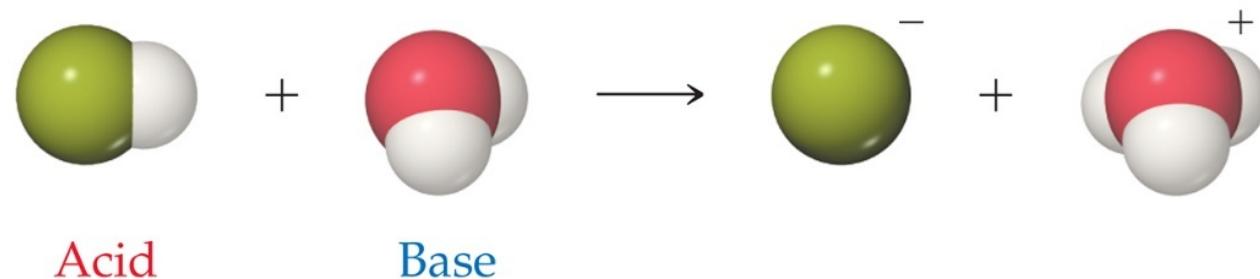
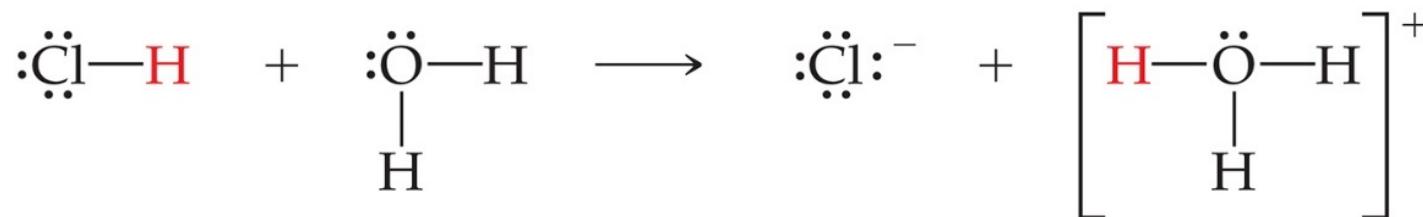


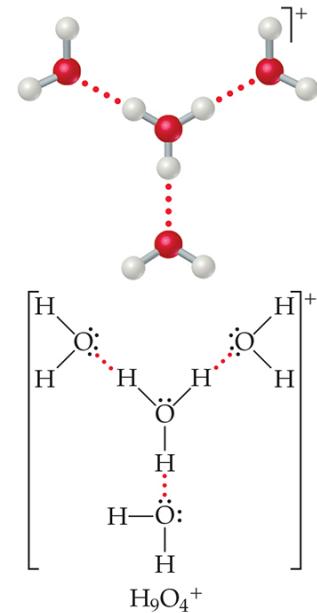
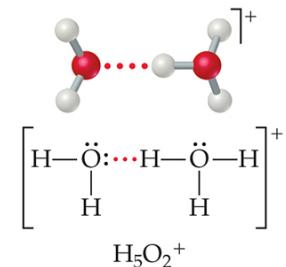
Chapter 16

Acid-Base
Equilibria



16.1 Definitions of Acids and Bases

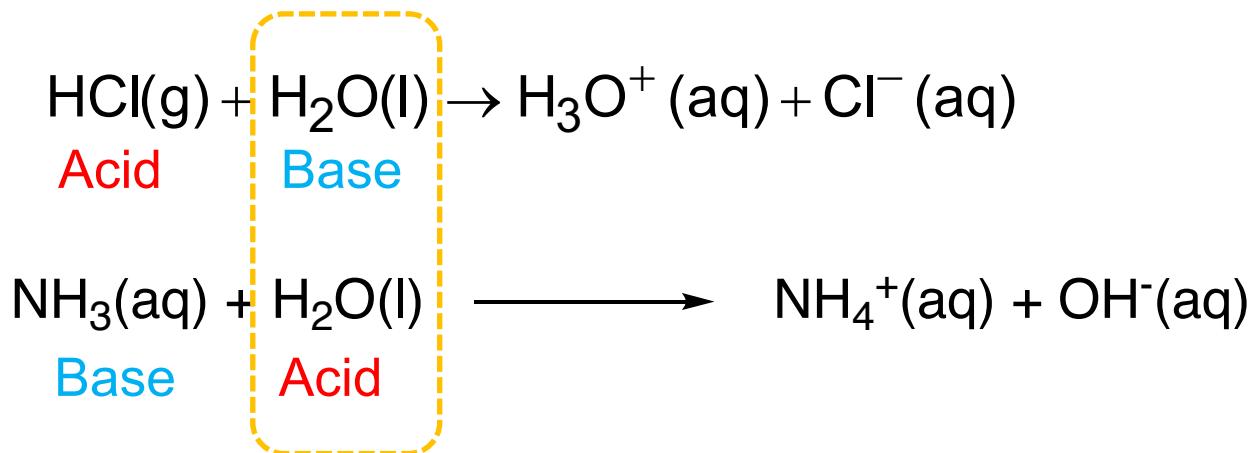
(From most specific to most general):

- **Arrhenius**
 - Acid: Increases the concentration of H_3O^+ ions ***in water***.
 - Base: Increases the concentration of OH^- ions ***in water***
- **Brønsted–Lowry**
 - Acid: a proton (H^+) ***donor***.
 - Base: a proton ***acceptor***.
- **Lewis**
 - Acid: an *electron pair acceptor*.
 - Base: an *electron pair donor*.

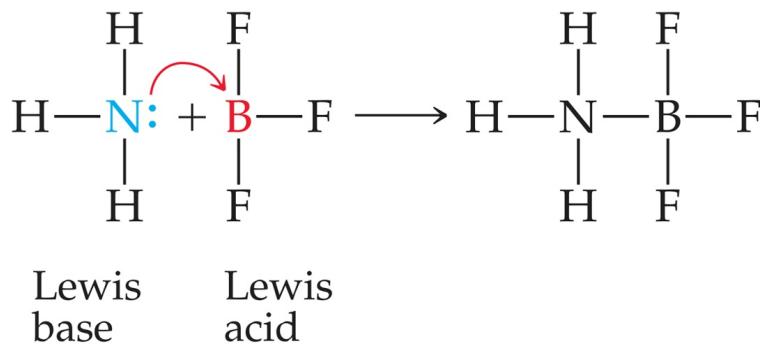
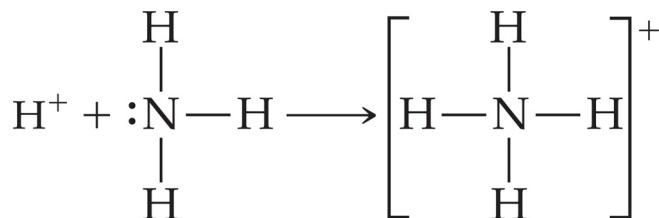



Brønsted–Lowry Acid and Base

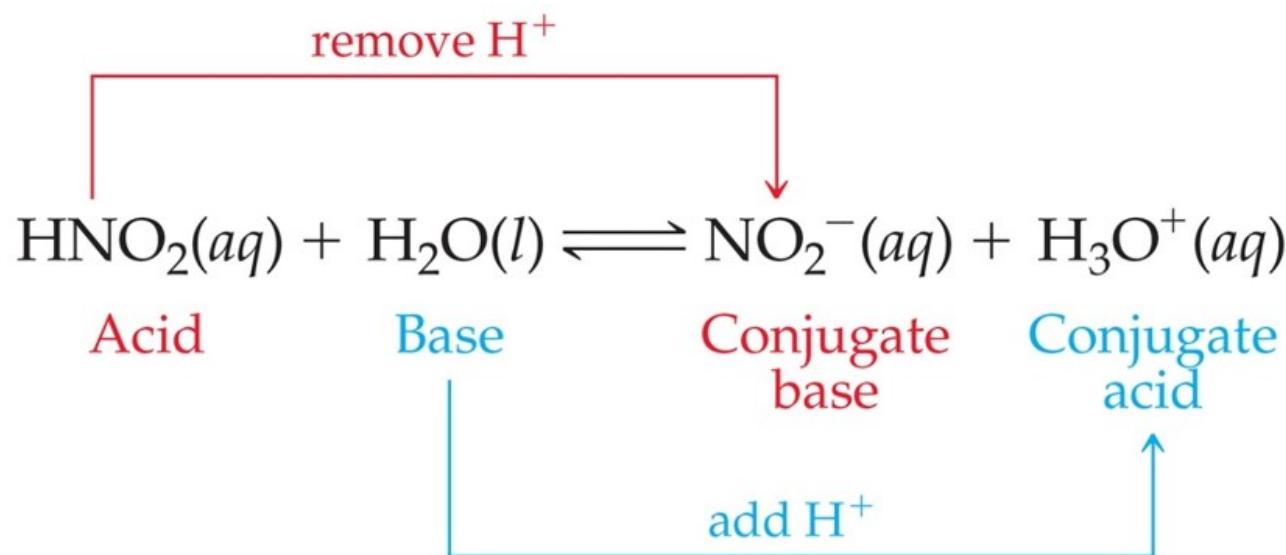
- A Brønsted–Lowry **acid** must have at least one removable H^+ to donate.
- A Brønsted–Lowry **base** must have at least one lone pair of electrons to accept an H^+


Water as a Proton Acceptor

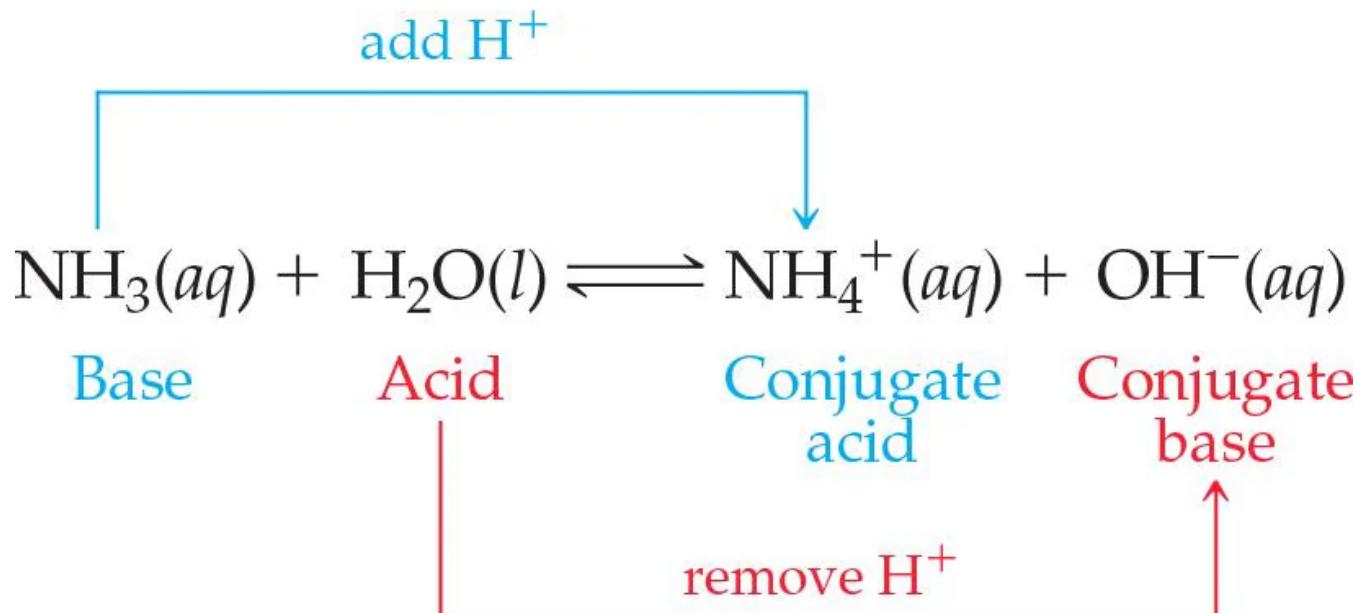
- H^+ ions don't exist in water.
- They become H_3O^+ molecules
- Hydrogen bonding stabilizes it.



Amphiprotic Substances

- act as **both acid** and **base**.
- Water can act as a Brønsted–Lowry base and accept (H^+) from an acid. It can act as a Bronsted-Lowery acid and donate (H^+) to a base.

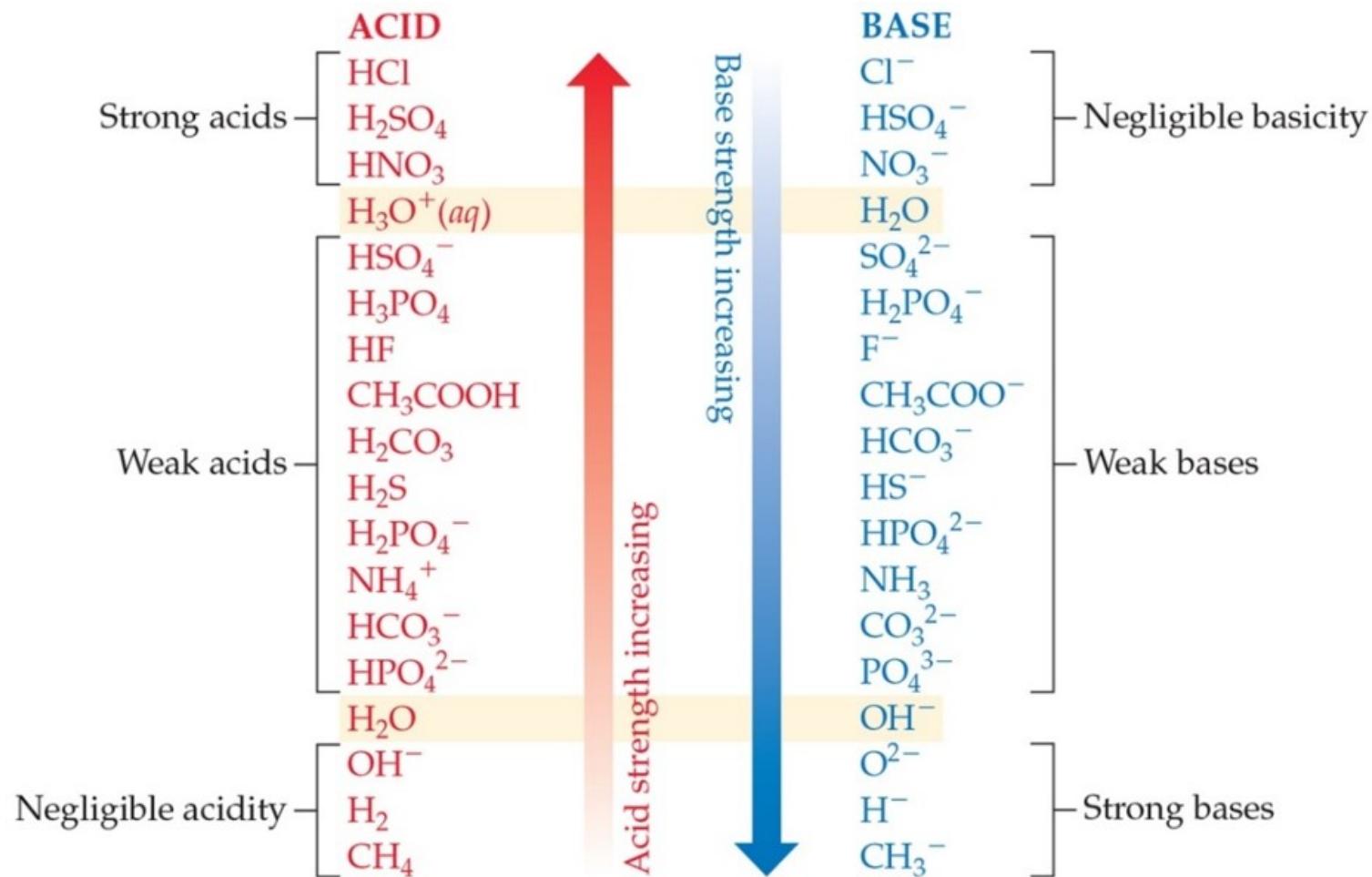

Lewis Acids and Bases

- All Brønsted–Lowry acids and bases are Lewis acids and bases.
- For a substance to be a proton acceptor, it must have an unshared pair of electrons for binding the proton.


16.2 Conjugate Acid-Base Pairs

- An acid and a base that differ by H^+ are called a **conjugate acid–base pair**.
- Reactions between acids and bases **always** yield their conjugate bases and acids.

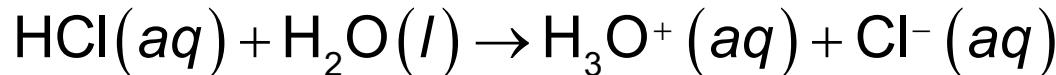
16.2 Conjugate Acid-Base Pairs


- An acid and a base that differ by H^+ are called a **conjugate acid–base pair**.
- Reactions between acids and bases **always** yield their conjugate bases and acids.

Relative Strengths of Acids and Bases (1 of 2)

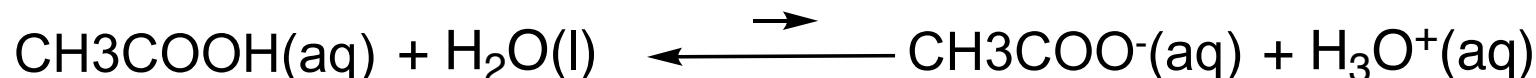
- Some acids are better proton donors, some bases are better proton acceptors.
- They can be arranged in order of reactivity.
- In water:
 - H_3O^+ defines the strongest **possible acid**.
 - OH^- defines the strongest **possible base**.
- There is an inverse relationship:
 - The **stronger** the acid, the **weaker** the conjugate base.
 - The **weaker** the acid, the **stronger** the conjugate base.

Relative Strengths of Acids and Bases (2 of 2)



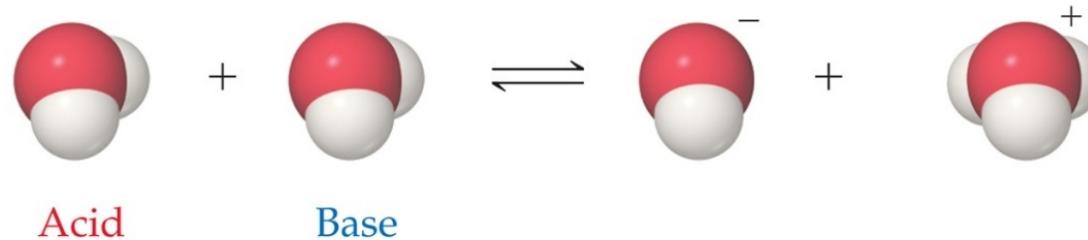
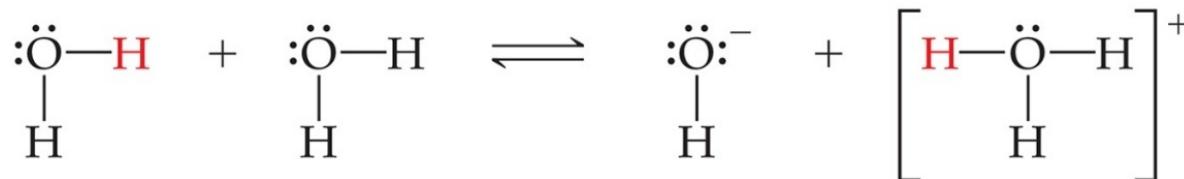
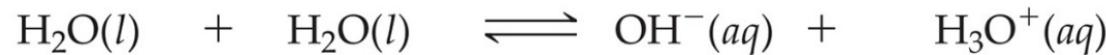
Note: HCl is a **strong** acid; Cl^- is a **negligible** base.

Note: Cl^- is often a **spectator ion**.

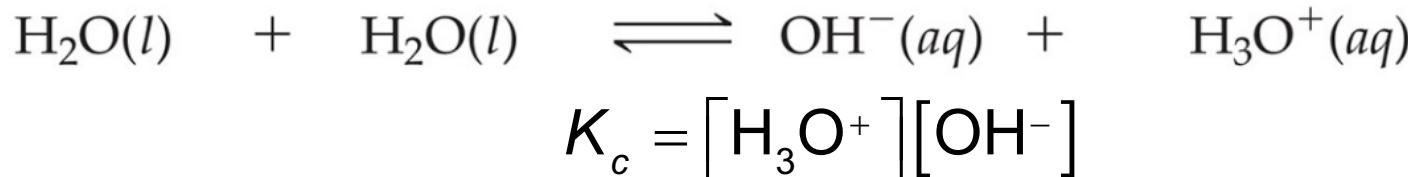

Acid–Base Equilibrium

- every acid–base reaction, equilibrium **favors**:
 - transfer of the proton from the stronger acid
 - to the stronger base forming:
 - the weaker acid
 - the weaker base.

H_2O is a much stronger **base** than Cl^-




so the equilibrium lies far to the right ($K \gg 1$).

Acetate ion is a stronger base than H_2O ,
so equilibrium favors the left side ($K < 1$).


16.3 Autoionization of Water

- Water is **amphoteric**.
- In the presence of acid, it acts as a base.
- In the presence of base, it acts as an acid.

The Ion Product of Water

- The equilibrium expression for autoionization is

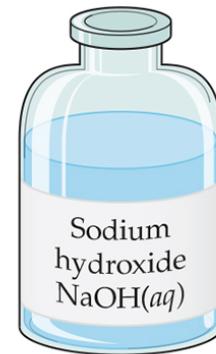
- The specific equilibrium constant is referred to as the ion product constant for water: K_w

At 25 °C, $K_w = 1.0 \times 10^{-14}$

- $1.0 \times 10^{-14} = [\text{H}_3\text{O}^+][\text{OH}^-] = [1 \times 10^{-7}][1 \times 10^{-7}]$

Aqueous Solutions Can Be Acidic, Basic, or Neutral

- If a solution is neutral, $[\text{H}^+] = [\text{OH}^-]$.
- If a solution is acidic, $[\text{H}^+] > [\text{OH}^-]$.
- If a solution is basic, $[\text{H}^+] < [\text{OH}^-]$.

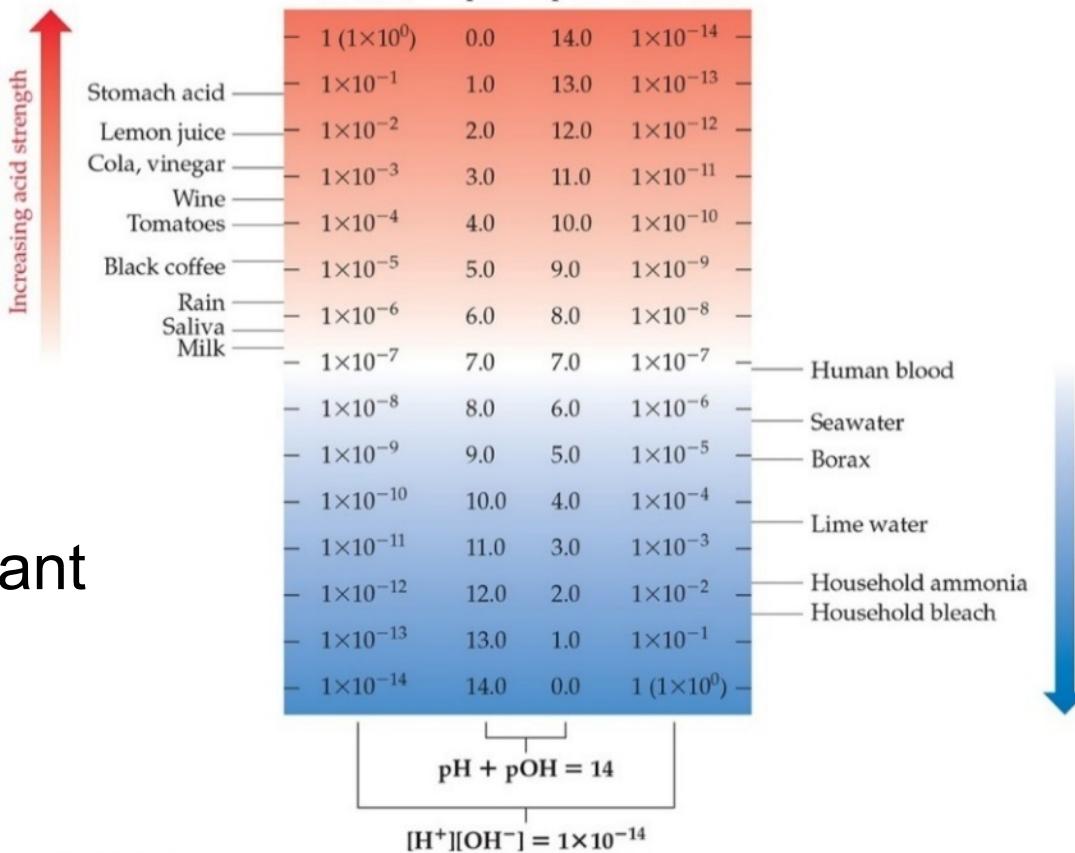

Acidic solution

$$[\text{H}^+] > [\text{OH}^-]$$
$$[\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

Neutral solution

$$[\text{H}^+] = [\text{OH}^-]$$
$$[\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

Basic solution


$$[\text{H}^+] < [\text{OH}^-]$$
$$[\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

16.4 The pH Scale

- pH is a method of reporting hydrogen ion concentration.

$$\text{pH} = -\log[\text{H}^+]$$

- Neutral: pH = 7.00.
- Acidic: pH is below 7.00.
- Basic: pH is above 7.00.
- Only the digits **after** the decimal point are significant figures in logarithms.

pOH and other “p” Scales

- The “p” in pH means **-log**

$$\text{pH} = -\log[\text{H}^+]$$

$$\text{pOH} = -\log[\text{OH}^-]$$

$$[\text{H}_3\text{O}^+][\text{OH}^-] = K_w = 1.0 \times 10^{-14}$$

$$\text{pH} + \text{pOH} = \text{p}K_w = 14.00$$

- **pK_a = -logK_a**
- **Which acid is stronger?**
 - pK_a = 1
 - pK_a = 10

pOH and other “p” Scales

- The “p” in pH means **-log**

$$\text{pH} = -\log[\text{H}^+]$$

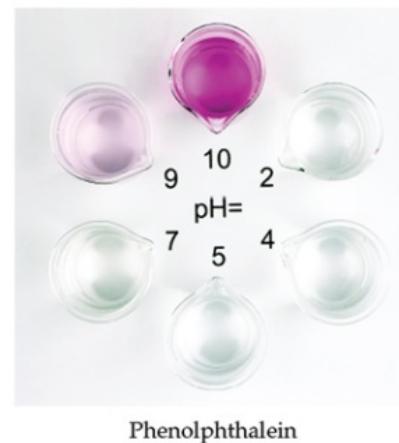
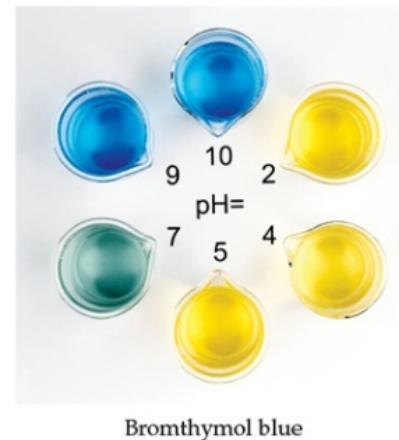
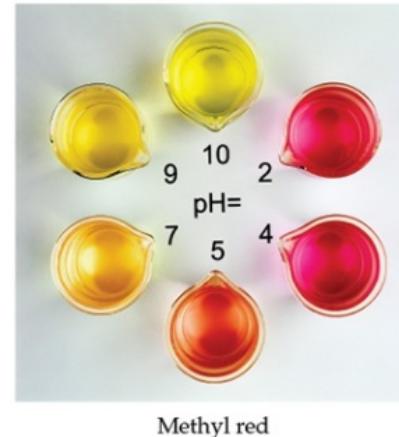
$$\text{pOH} = -\log[\text{OH}^-]$$

$$[\text{H}_3\text{O}^+][\text{OH}^-] = K_w = 1.0 \times 10^{-14}$$

$$\text{pH} + \text{pOH} = \text{p}K_w = 14.00$$

- **pK_a = -logK_a**
- **Which acid is stronger?**
 - pK_a = 1; **K_a = 1x10⁻¹ : much stronger**
 - pK_a = 10; **K_a = 1x10⁻¹⁰**

Measuring pH (1 of 2)




- pH meter measures pH.
- Electrochemical cell.
 - Semipermeable membrane, only H_3O^+ ions pass to electrode.
 - Electrode indicate small changes in voltage to detect pH.

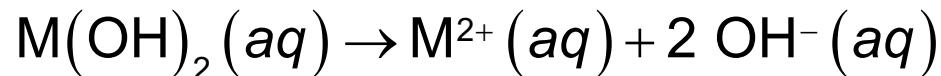
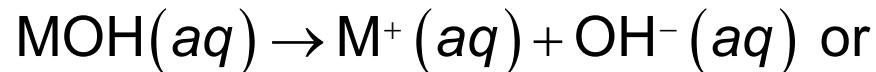
Measuring pH (2 of 2)

- Indicators also measure pH.
- less accurate, but quick.
- An indicator is a compound that has one color in its acid form and another color in its basic form.

	pH range for color change								
	0	2	4	6	8	10	12	14	
Methyl violet	Yellow	Violet							
Thymol blue		Red	Yellow		Yellow	Blue			
Methyl orange			Red	Yellow					
Methyl red			Red	Yellow					
Bromthymol blue				Yellow	Blue				
Phenolphthalein					Colorless	Pink			
Alizarin yellow R					Yellow	Red			

16.5 Strong Acids and Bases

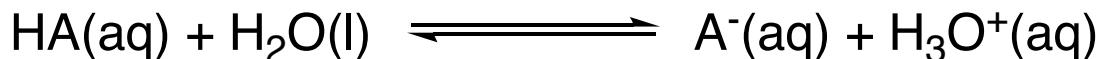
- the seven strong acids are:
 HCl , HBr , HI , HNO_3 , H_2SO_4 , HClO_3 , and HClO_4 .
- These are, by definition, strong electrolytes.
 - The acids that are stronger than H_3O^+
- They exist only as ions in aqueous solution:



- **All** HA become A^- . Equilibrium is **100%** to the right.
 - For the monoprotic strong acids,

$$[\text{H}_3\text{O}^+] = [\text{acid}]$$

Strong Bases

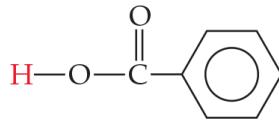
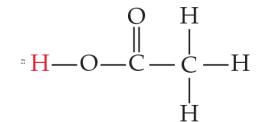
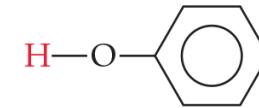
- Recall **strong bases** are the **soluble hydroxides**;
 - **All alkali metal hydroxides**
 - **Some heavier alkali earth hydroxides.**
- $\text{Ca}(\text{OH})_2$, $\text{Sr}(\text{OH})_2$ and $\text{Ba}(\text{OH})_2$ have ***limited*** water solubility.
- $\text{Be}(\text{OH})_2$, $\text{Mg}(\text{OH})_2$, are **not soluble**.


You can write dissociation equations:

Both equilibrium are 100% to the right.

16.6 Weak Acids (1 of 2)

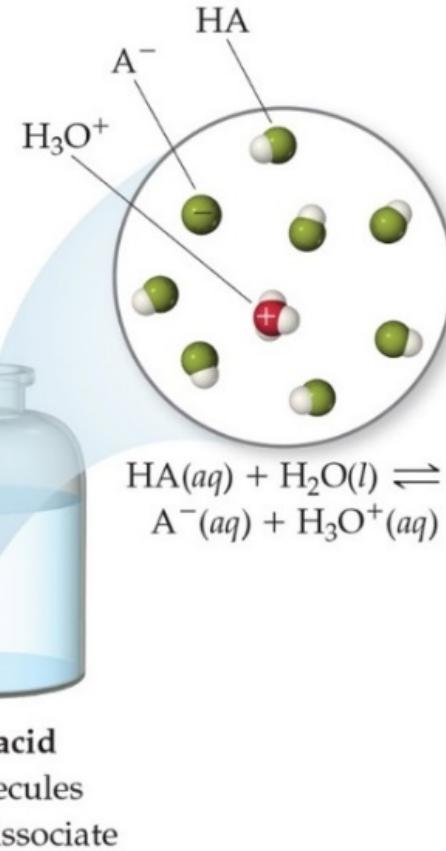
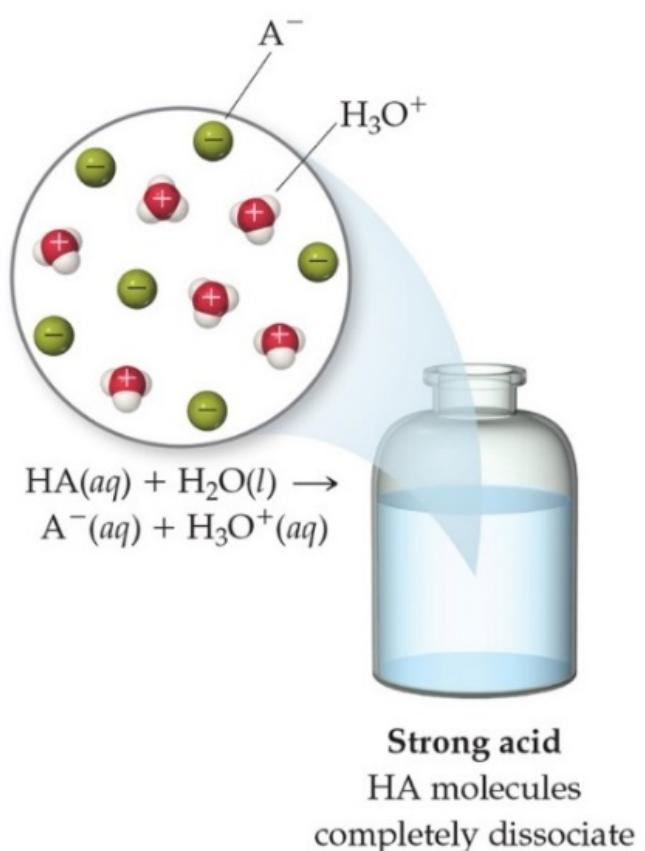
- For a weak acid, the equation for its dissociation is




- The equilibrium constant related to weak acids is called **acid-dissociation constant, K_a**

$$K_a : K_a = \frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]}$$

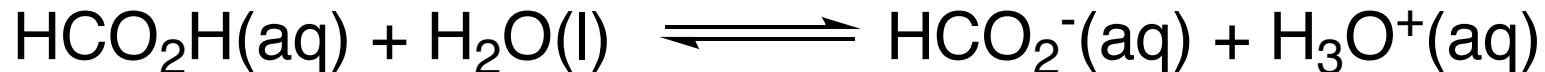
- The **larger** the K_a the **stronger** the acid.

16.6 Weak Acids



Table 16.2 Some Weak Acids in Water at 25 °C

Acid	Structural Formula*	Conjugate Base	K_a
Chlorous (HClO_2)	$\text{H}-\text{O}-\text{Cl}-\text{O}$	ClO_2^-	1.0×10^{-2}
Hydrofluoric (HF)	$\text{H}-\text{F}$	F^-	6.8×10^{-4}
Nitrous (HNO_2)	$\text{H}-\text{O}-\text{N}=\text{O}$	NO_2^-	4.5×10^{-4}
Benzoic ($\text{C}_6\text{H}_5\text{COOH}$)		$\text{C}_6\text{H}_5\text{COO}^-$	6.3×10^{-5}
Acetic (CH_3COOH)		CH_3COO^-	1.8×10^{-5}
Hypochlorous (HOCl)	$\text{H}-\text{O}-\text{Cl}$	OCl^-	3.0×10^{-8}
Hydrocyanic (HCN)	$\text{H}-\text{C}\equiv\text{N}$	CN^-	4.9×10^{-10}
Phenol (HOCH_3)		$\text{C}_6\text{H}_5\text{O}^-$	1.3×10^{-10}

*The proton that ionizes is shown in red.

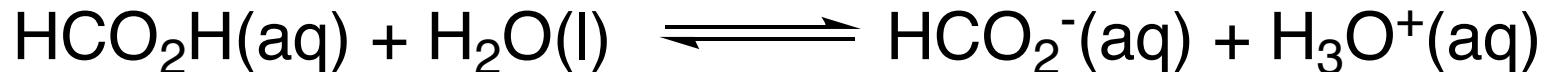

Comparing Strong and Weak Acids

- Strong acids (left) **completely** dissociate to ions.
- Weak acids (right) only **partially** dissociate to ions.

Calculating K_a from pH (1 of 4)

- The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate the K_a for formic acid.

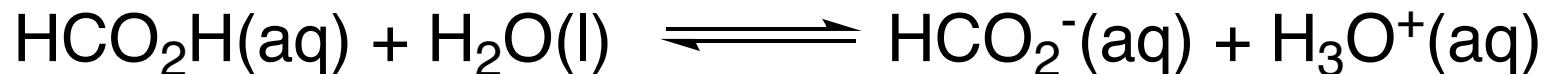
- We know that


$$K_a = \frac{[\text{H}_3\text{O}^+][\text{HCOO}^-]}{[\text{HCOOH}]}$$

- and

$$\text{pH} = -\log[\text{H}_3\text{O}^+] = 2.38 \text{ at equilibrium.}$$

Calculating K_a from pH (1 of 4)

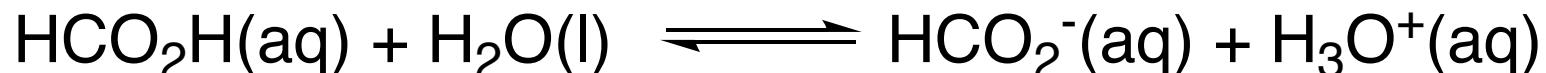

- The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate the K_a for formic acid.

- ICE table!

Initial concentration (M)			
Change in concentration (M)			
Equilibrium concentration (M)			

Calculating K_a from pH (2 of 4)

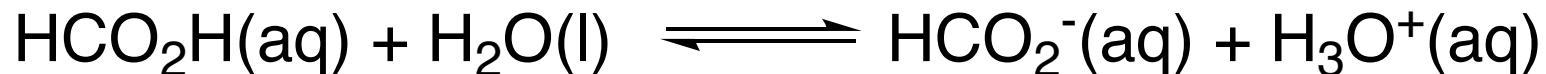
pH is $-\log[\text{H}_3\text{O}^+] = 2.38$ at equilibrium.


$$\text{pH} = 2.38 = -\log [\text{H}_3\text{O}^+], = 4.2 \times 10^{-3} \text{ M}$$

$[\text{HCO}_2^-] = [\text{H}_3\text{O}^+]$ (stoichiometry, reaction).

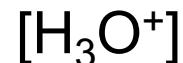
$$[\text{H}_3\text{O}^+] = [\text{HCO}_2^-] = 10^{-2.38} = 4.2 \times 10^{-3}$$

Calculating K_a from pH (3 of 4)


- Set up **ice table** (initial, change, and equilibrium).

	[HCO ₂ H]	[HCO ₂ ⁻]	[H ₃ O ⁺]
Initial concentration (M)	0.10	0	0
Change in concentration (M)			
Equilibrium concentration (M)			4.2×10^{-3}

Calculating K_a from pH (3 of 4)


- Set up **ice table** (initial, change, and equilibrium).

	[HCO ₂ H]	[HCO ₂ ⁻]	[H ₃ O ⁺]
Initial concentration (M)	0.10	0	0
Change in concentration (M)	-4.2×10^{-3}	$+4.2 \times 10^{-3}$	$+4.2 \times 10^{-3}$
Equilibrium concentration (M)	$(0.10 - 4.2 \times 10^{-3})$	4.2×10^{-3}	4.2×10^{-3}

Calculating K_a from pH (4 of 4)

-

Initial concentration (M)	0.10	0	0
Change in concentration (M)	-4.2×10^{-3}	$+4.2 \times 10^{-3}$	$+4.2 \times 10^{-3}$
Equilibrium concentration (M)	$(0.10 - 4.2 \times 10^{-3})$	4.2×10^{-3}	4.2×10^{-3}

- Substitute the equilibrium concentrations into the equilibrium expression.
- This allows us to calculate K_a

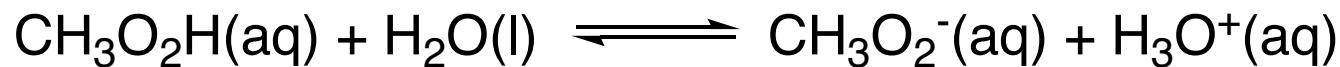
$$\begin{aligned}K_a &= \frac{[4.2 \times 10^{-3}][4.2 \times 10^{-3}]}{[0.10]} \\&= 1.8 \times 10^{-4}\end{aligned}$$

Calculating Percent Ionization

- Percent ionization = $\frac{[\text{H}_3\text{O}^+]_{\text{eq}}}{[\text{HA}]_{\text{initial}}} \times 100$
- In the example above,

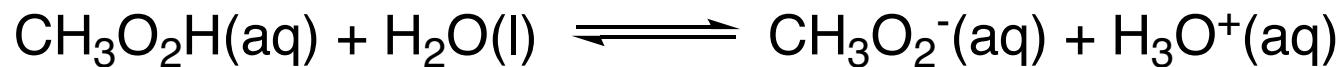
$$[\text{H}_3\text{O}^+]_{\text{eq}} = 4.2 \times 10^{-3} M$$

$$[\text{HCOOH}]_{\text{initial}} = 0.10 M$$


$$\begin{aligned}\text{Percent ionization} &= \frac{4.2 \times 10^{-3}}{0.10} \times 100 \\ &= 4.2\%\end{aligned}$$

Calculate pH Using K_a

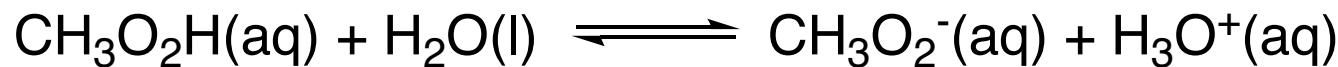
- 1) Write the chemical equation for the ionization equilibrium.
- 2) Write the equilibrium constant expression.
- 3) Set up ICE table using (x) as the variable.
- 4) Substitute equilibrium concentrations into the equilibrium constant expression and solve for x.
- 5) Make *assumptions* if you can.


Calculating pH Using K_a Example

- Calculate the pH of a **0.30 M** solution of acetic acid ($\text{CH}_3\text{CO}_2\text{H}$). The $K_a = 1.8 \times 10^{-5}$

Calculating pH Using K_a Example

- Calculate the pH of a **0.30 M** solution of acetic acid ($\text{CH}_3\text{CO}_2\text{H}$). The $K_a = 1.8 \times 10^{-5}$


$$K_a = \frac{[\text{H}_3\text{O}^+][\text{CH}_3\text{O}_2^-]}{[\text{CH}_3\text{O}_2\text{H}]}$$

Initial concentration (M)	0.30	0	0
Change in concentration (M)			
Equilibrium concentration (M)			

Calculating pH Using K_a Example

- Calculate the pH of a **0.30 M** solution of acetic acid ($\text{CH}_3\text{CO}_2\text{H}$). The $K_a = 1.8 \times 10^{-5}$

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{CH}_3\text{O}_2^-]}{[\text{CH}_3\text{O}_2\text{H}]}$$

Initial concentration (M)	0.30	0	0
Change in concentration (M)	$-x$	$+x$	$+x$
Equilibrium concentration (M)	$(0.30 - x)$	x	x

Calculating pH Using K_a Example

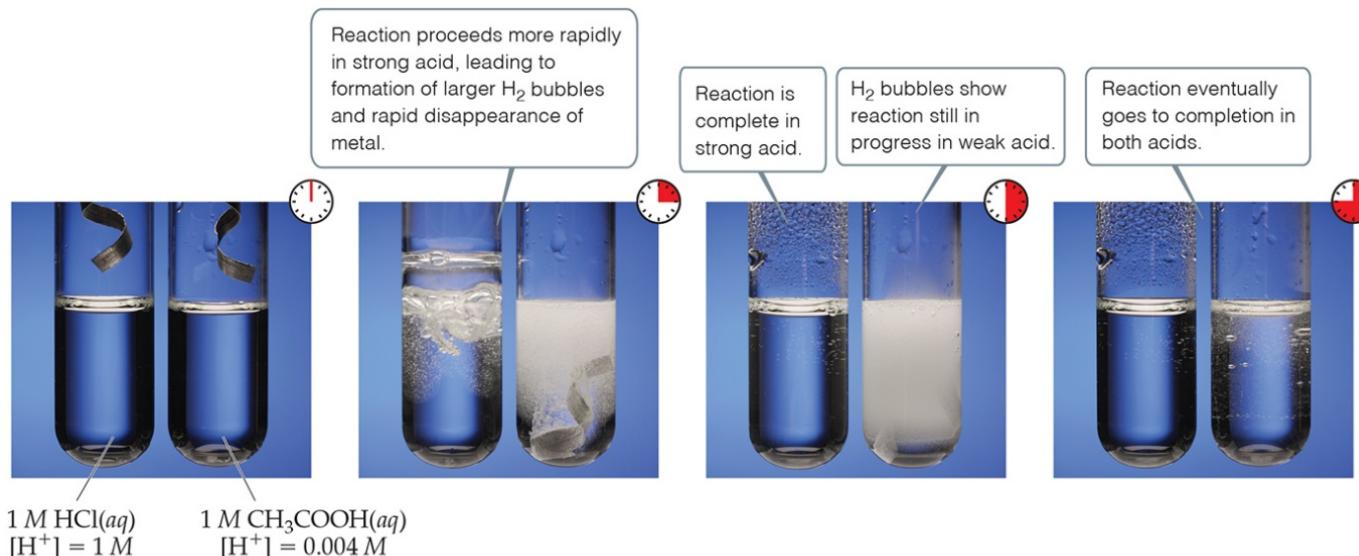
Initial concentration (M)	0.30	0	0
Change in concentration (M)	$-X$	$+x$	$+x$
Equilibrium concentration (M)	$(0.30 - x)$	x	x

$$\begin{aligned} K_a &= \frac{[\text{H}_3\text{O}^+][\text{C}_2\text{H}_3\text{O}_2^-]}{[\text{HC}_2\text{H}_3\text{O}_2]} \\ &= \frac{(x)(x)}{(0.30 - x)} \end{aligned}$$

Since $K_a = 1.8 \times 10^{-5}$ is very tiny (much smaller than 0.3 M):

x also has to be pretty tiny.

So we can assume $0.3\text{M} - x = 0.3\text{M}$


Works when [acid] > 1000 times K_a .

$$K_a = 1.8 \times 10^{-5} \approx \frac{x^2}{0.30}, \text{ so } x = 2.3 \times 10^{-3}$$

$$x = [\text{H}_3\text{O}^+], \text{ so pH} = -\log(2.3 \times 10^{-3}) = 2.64$$

Strong vs Weak Acids

- Strong acid: $[\text{H}^+]_{\text{eq}} = [\text{HA}]_{\text{init}}$
- Weak acid: $[\text{H}^+]_{\text{eq}} < [\text{HA}]_{\text{init}}$
- This creates a difference in conductivity and in rates of chemical reactions. Weak acid has a slower reaction.
- $\text{Zn(s)} + 2\text{H}_3\text{O}^+ \longrightarrow \text{Zn}^{2+} + \text{H}_2\text{(g)}$

Polyprotic Acids (1 of 2)

- Polyprotic acids have more than one acidic proton.
- The first proton is always the most acidic.
- Each K_a has a specific value, i.e., K_{a1} , K_{a2} , etc.
- If the K_{a1} and K_{a2} differ by a factor of 10^3 (1000), the pH generally depends only on the first dissociation.
- The dianion concentration will equal K_{a2} .

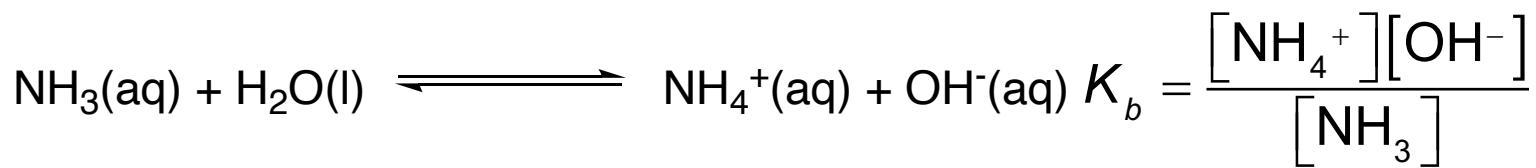
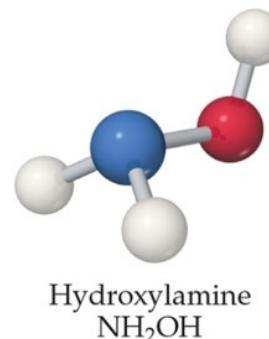
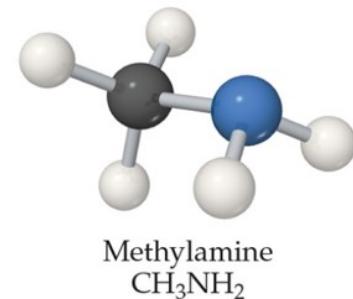
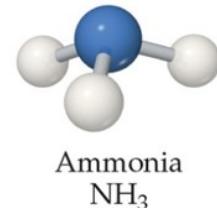
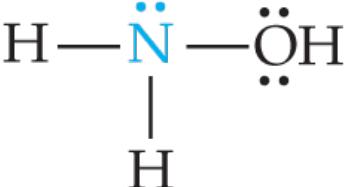

Polyprotic Acids (2 of 2)

Table 16.3 Acid-Dissociation Constants of Some Common Polyprotic Acids

Name	Formula	K_{a1}	K_{a2}	K_{a3}
Ascorbic	$\text{H}_2\text{C}_6\text{H}_6\text{O}_6$	8.0×10^{-5}	1.6×10^{-12}	-
Carbonic	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	-
Citric	$\text{H}_3\text{C}_6\text{H}_5\text{O}_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Oxalic	HOOC—COOH	5.9×10^{-2}	6.4×10^{-5}	-
Phosphoric	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Sulfurous	H_2SO_3	1.7×10^{-2}	6.4×10^{-8}	-
Sulfuric	H_2SO_4	Large	1.2×10^{-2}	-
Tartaric	$\text{C}_2\text{H}_2\text{O}_2(\text{COOH})_2$	1.0×10^{-3}	4.6×10^{-5}	-




16.7 Weak Bases

- Ammonia, NH_3 , is a weak base.
- Like weak acids, weak bases have an equilibrium constant called the **base-dissociation constant**, K_b .
- Equilibrium calculations work the **same** as for acids, using the base-dissociation (K_b) constant instead.
- Many bases contain N as an element due to the lone pair; organic derivatives of ammonia are called **amines**.



Types of Weak Bases

- Two main categories:
 - 1) Neutral substances with an atom that has a lone pair of electrons that can accept H^+
(like ammonia and the **amines**).
 - 2) Anions of weak acids, which are their conjugate bases, i.e., HF and F^- .

Base-Dissociation Constants (1 of 2)

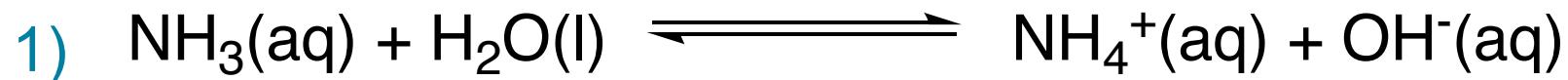
Table 16.4 Some Weak Bases in Water at 25 °C

Base	Structural Formula*	Conjugate Acid	K_b
Ammonia (NH ₃)		NH ₄ ⁺	1.8 × 10 ⁻⁵
Pyridine (C ₅ H ₅ N)		C ₅ H ₅ NH ⁺	1.7 × 10 ⁻⁹
Hydroxylamine (HONH ₂)		HONH ₃ ⁺	1.1 × 10 ⁻⁸

*The atom that accepts the proton is shown in blue.

Base-Dissociation Constants (2 of 2)

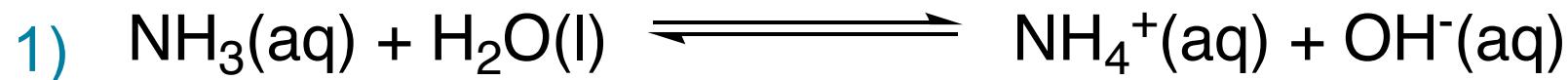
Table 16.4 [continued]


Base	Structural Formula*	Conjugate Acid	K_b
Methylamine (CH_3NH_2)	$\text{H}-\begin{array}{c} \ddot{\text{N}} \\ \\ \text{H} \end{array}-\text{CH}_3$	CH_3NH_3^+	4.4×10^{-4}
Hydrosulfide ion (HS^-)	$\text{H}-\begin{array}{c} \ddot{\text{S}}: \\ \\ \text{H} \end{array}^-$	H_2S	1.8×10^{-7}
Carbonate ion (CO_3^{2-})	$\begin{array}{c} \text{C} \\ \\ \text{O} \end{array} \begin{array}{c} \text{O} \\ \text{O} \end{array}^{2-}$	HCO_3^-	1.8×10^{-4}
Hypochlorite ion (ClO^-)	$\begin{array}{c} \text{Cl} \\ \text{..} \\ \text{..} \end{array} \begin{array}{c} \text{O} \\ \text{O} \end{array}^-$	HClO	3.3×10^{-7}

Calculating pH Using K_b Example

- What is the pH of 0.15 M NH_3 ?

Calculating pH Using K_b Example (1 of 2)


- What is the pH of 0.15 M NH_3 ?

$$2) K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = 1.8 \times 10^{-5}$$

Calculating pH Using K_b Example (1 of 2)

- What is the pH of 0.15 M NH_3 ?

$$2) K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = 1.8 \times 10^{-5}$$

3) NH₃ NH₄⁺ OH⁻

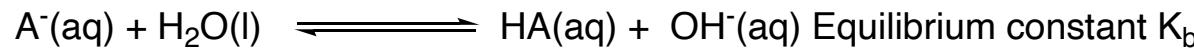
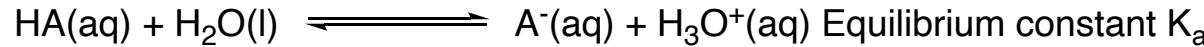
Initial concentration (M)	0.15		0	0
Change in concentration (M)	$-X$		$+x$	$+x$
Equilibrium concentration (M)	$(0.15 - x)$		x	x

Calculating pH Using K_b Example (2 of 2)

3)

	NH_3		NH_4^+	OH^-
Initial concentration (M)	0.15	-	0	0
Change in concentration (M)	$-X$	-	$+x$	$+x$
Equilibrium concentration (M)	$(0.15 - x)$	-	x	x

$$1.8 \times 10^{-5} = \frac{x^2}{0.15 - x}$$



If we assume that $0.15 - x = 0.15$ (assuming x very small)

$$\text{Then: } 1.8 \times 10^{-5} = \frac{x^2}{0.15}$$

$$\text{and: } x = 1.6 \times 10^{-3}$$

Note: x is the molarity of OH^- , so $-\log(x)$ will be the pOH ($\text{pOH} = 2.80$) and $[14.00 - \text{pOH}]$ is pH ($\text{pH} = 11.20$).

16.8 Relationship Between K_a and K_b (1 of 2)

$$K_a = \frac{[\text{A}^-][\text{H}_3\text{O}]}{[\text{HA}]} \quad K_b = \frac{[\text{HA}][\text{OH}^-]}{[\text{A}^-]}$$

$$K_a K_b = \frac{[\text{A}^-][\text{H}_3\text{O}][\text{HA}][\text{OH}^-]}{[\text{HA}][\text{A}^-]} = \frac{[\text{H}_3\text{O}][\text{OH}^-]}{1} = K_W$$

For a **conjugate acid–base pair**, K_a and K_b are related in this way:

$$K_a \times K_b = K_W$$

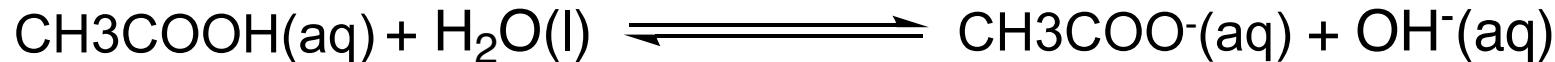
The product is the ion-product constant for water.

If you know either K_a or K_b , you can calculate the other.

16.8 Relationship Between K_a and K_b (2 of 2)

Table 16.5 Some Conjugate Acid-Base Pairs

Acid	K_a	Base	K_b
HNO_3	(Strong acid)	NO_3^-	(Negligible basicity)
HF	6.8×10^{-4}	F^-	1.5×10^{-11}
CH_3COOH	1.8×10^{-5}	CH_3COO^-	5.6×10^{-10}
H_2CO_3	4.3×10^{-7}	HCO_3^-	2.3×10^{-8}
NH_4^+	5.6×10^{-10}	NH_3	1.8×10^{-5}
HCO_3^-	5.6×10^{-11}	CO_3^{2-}	1.8×10^{-4}
OH^-	(Negligible acidity)	O^{2-}	(Strong base)


16.9 Acid–Base Properties of Salt Solutions

- Many ions react with water to create H^+ or OH^- .
The reaction with water is called **hydrolysis**.
- To determine whether a salt is an acid or a base, you need to look at the cation and anion separately.
- Assume 100% ionization of the ionic substance.
 - The cation can be acidic or neutral.
 - The anion can be acidic, basic, or neutral.

Examples: NaCl , NaF , NH_4Cl , NH_4F

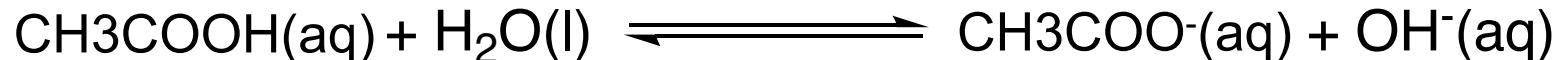
Anion Hydrolysis

- Anions of strong acids are neutral.
 - Cl^- does not react with water.
- Anions of **weak acids** are conjugate **bases**. They create OH^- in water forming **basic solutions**, i.e., acetate:

- **Protonated** anions from polyprotic acids can be acids or bases: if $K_a > K_b$, the anion is acidic; if $K_b > K_a$, basic.

(From Na_2HPO_4)

$$K_a = 4.2 \times 10^{-13}$$



$$K_b = 1.6 \times 10^{-7}$$

acidic or basic?????

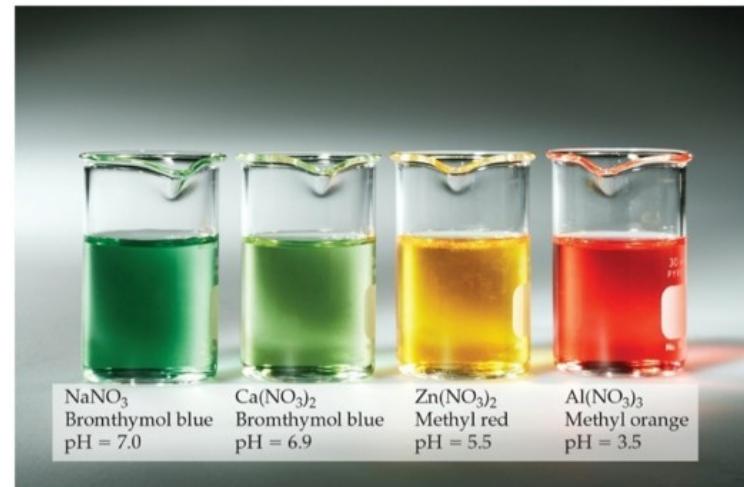
Anion Hydrolysis

- Anions of strong acids are neutral.
 - Cl^- does not react with water.
- Anions of **weak acids** are conjugate **bases**. They create OH^- in water forming **basic solutions**, i.e., acetate:

- **Protonated** anions from polyprotic acids can be acids or bases: if $K_a > K_b$, the anion is acidic; if $K_b > K_a$, basic.

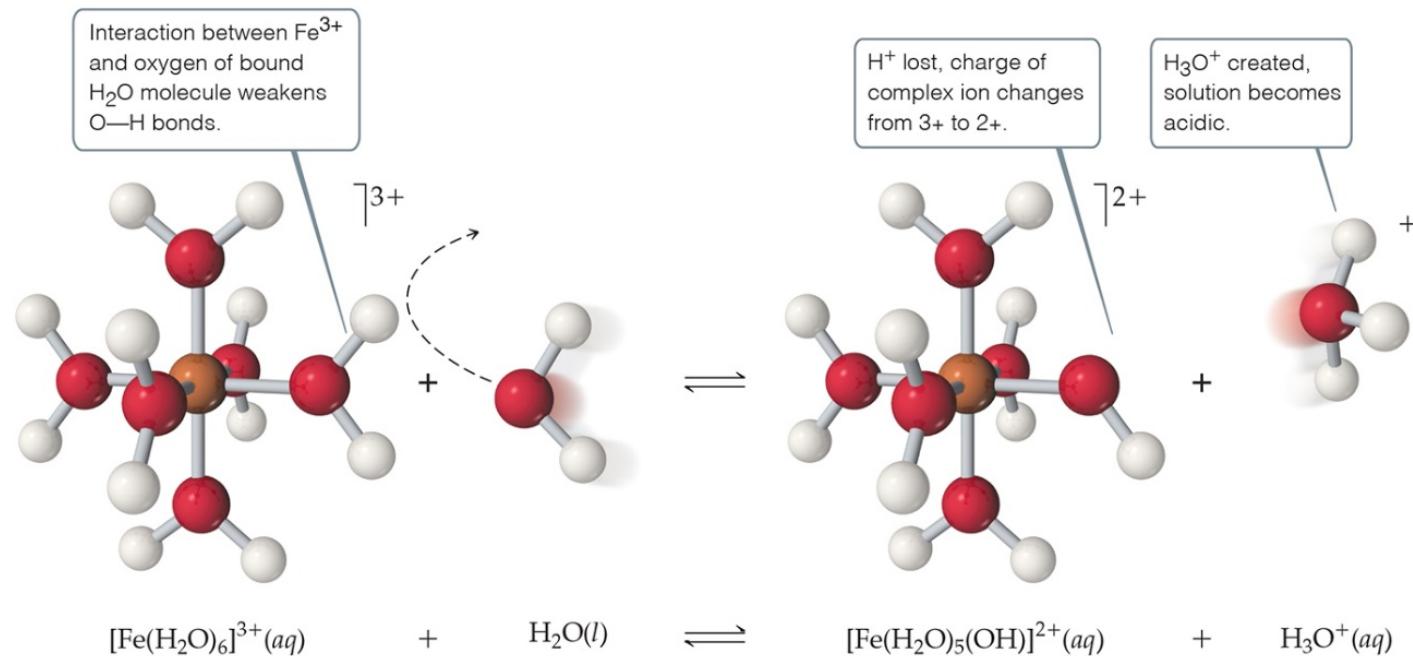
(From Na_2HPO_4)

$$K_a = 4.2 \times 10^{-13}$$

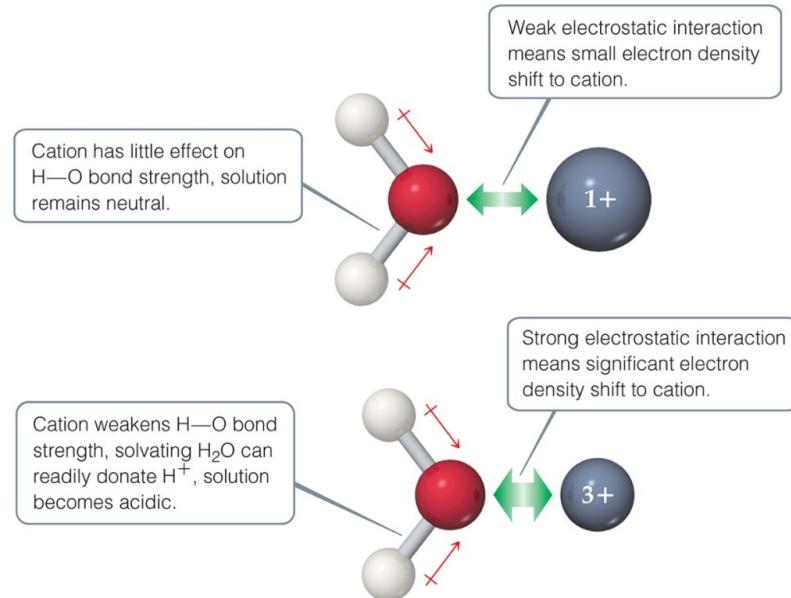


$$K_b = 1.6 \times 10^{-7}$$

$K_a < K_b$ HPO_4^{2-} is more acidic than basic


Cation Hydrolysis

- Group I or group II metal cations are neutral.
- Polyatomic cations are typically the conjugate acids of a weak base, i.e., NH_4^+ . They create H^+ forming **acidic solutions**.
- Transition and post-transition metal cations are acidic. Why? It is a Lewis acid–base reaction of the hydrated cation complex.


Select Hydrated Cations (1 of 3)

- Transition and post-transition metals form hydrated cations.
- The water attached to the metal is more acidic than free water molecules, making the hydrated ions acidic.

Select Hydrated Cations (2 of 3)

- The hydrated metal cations are primary examples of electron pair donor/acceptor chemistry.
- Higher charges result in stronger water to metal bonds, making them stronger acids.

Select Hydrated Cations (3 of 3)

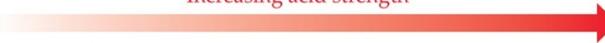
Table 16.6 Acid-Dissociation Constants for Metal Cations in Aqueous Solution at 25 °C

Cation	K_a
Fe ³⁺	6.3×10^{-3}
Cr ³⁺	1.6×10^{-4}
Al ³⁺	1.4×10^{-5}
Fe ²⁺	3.2×10^{-10}
Zn ²⁺	2.5×10^{-10}
Ni ²⁺	2.5×10^{-11}

Salt Solutions—Acidic, Basic, or Neutral?

- 1) If the salt contains both an anion and a cation that does not react with water, we expect the pH to be **neutral**. Examples:
 NaCl , $\text{Ba}(\text{NO}_3)_2$, RbClO_4 .
- 2) If the salt contains an **anion that reacts with water to produce hydroxide ions**, and a **cation** that does **not** react with water, we expect the pH to be **basic**. Examples: NaClO , RbF ,
 BaSO_3 .
- 3) If the salt contains a **cation that reacts** with water to produce hydronium ions, and an **anion that does not** react with water, we expect the pH to be acidic. Example: NH_4NO_3 , AlCl_3
- 4) If the salt contains both an anion and a cation that reacts with water, the values of K (K_a , K_b) determine whether the solution is acidic or basic. The larger K value determines pH.

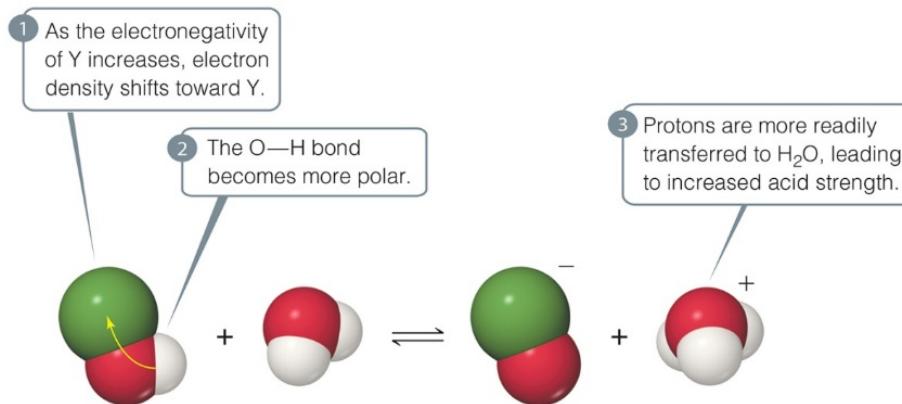
16.10 Acid–Base Behavior and Chemical Structure


Factors that affect acid strength:

- 1) Bond polarity: H—A bond must be polarized with $\delta +$ on the H atom and $\delta -$ on the A atom.
- 2) Bond strength: the **strength** of an acid **increases** as H—A bond strength **decreases**.
- 3) Stability of A^- : the more stable the conjugate base (anion), the stronger the acid.

Binary Acids

- Binary acids consist of H and one other element.
- Within a group,
 - H-A bond strength usually most important
- Within a period,
 - bond polarity is the most important factor


4A	5A	6A	7A
CH_4 Neither acid nor base	NH_3 Weak base $K_b = 1.8 \times 10^{-5}$	H_2O	HF Weak acid $K_a = 6.8 \times 10^{-4}$
SiH_4 Neither acid nor base	PH_3 Very weak base $K_b = 4 \times 10^{-28}$	H_2S Weak acid $K_a = 9.5 \times 10^{-8}$	HCl Strong acid
		H_2Se Weak acid $K_a = 1.3 \times 10^{-4}$	HBr Strong acid

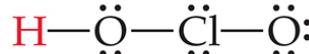
Increasing acid strength

Increasing acid strength

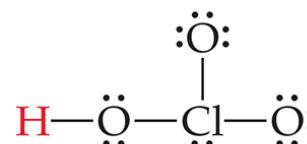
Oxyacids

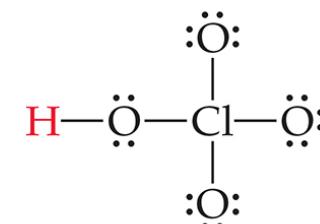
- **Oxyacids** consist of H, O, and one other element, which is a nonmetal.
- Generally, as the **electronegativity** of the nonmetal **increases**, the **acidity increases** for acids with the same structure.

Substance	Y—OH	Electronegativity of Y	Dissociation constant
Hypochlorous acid	Cl—OH	3.0	$K_a = 3.0 \times 10^{-8}$
Hypobromous acid	Br—OH	2.8	$K_a = 2.5 \times 10^{-9}$
Hypoiodous acid	I—OH	2.5	$K_a = 2.3 \times 10^{-11}$
Water	H—OH	2.1	$K_w = 1.0 \times 10^{-14}$


Oxyacids with more than one “O”

- If an element can form **more than one oxyacid**,
 - The one with **more O atoms** is more **acidic**;
 - sulfuric acid (strong) versus sulfurous acid (weak).
- as the **oxidation number** increases, the acidity increases.


Hypochlorous

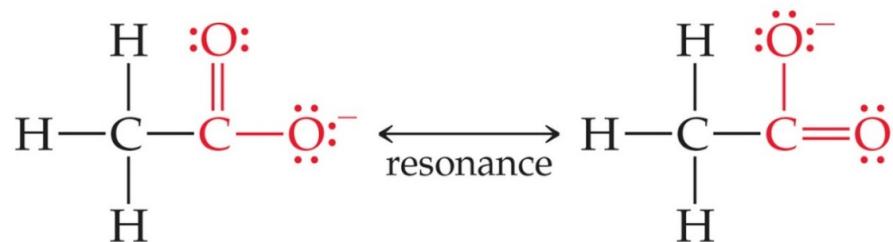

Chlorous

Chloric

Perchloric

$$K_a = 3.0 \times 10^{-8}$$

$$K_a = 1.1 \times 10^{-2}$$


Strong acid

Strong acid

Increasing acid strength

Carboxylic Acids

- **Carboxylic acids** are organic acids containing the $-\text{COOH}$ group.
- Factors contributing to their acidic behavior:
 - Other O attached to C draws electron density from O—H bond, increasing polarity.
 - resonance forms to stabilize the anion.

