Chapter 15 Chemical Equilibrium

15.1 The Concept of Chemical Equilibrium

Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. In the figure above, equilibrium is finally reached in the third picture.

15.1 The Concept of Chemical Equilibrium

- As a system approaches equilibrium, both the forward and reverse reactions are occurring.
- At equilibrium, the forward and reverse reactions are proceeding at the same rate (vertical dashed line).
- At equilibrium, the amount of each reactant and product remains constant.

15.2 The Equilibrium Constant

In a system at equilibrium, both the forward and reverse reactions are being carried out. The equation is written with a double arrow:

 $N_2O_4(g) \implies 2NO_2(g)$

• For the forward reaction: $N_2O_4(g) \rightarrow 2NO_2(g)$

Rate =
$$k_f \left[N_2 O_4 \right]$$

• For the reverse reaction: $2 NO_2(g) \rightarrow N_2O_4(g)$

Rate = $k_r [NO_2]^2$

Equilibrium Constant Expression

At equilibrium

 $\operatorname{Rate}_{f} = \operatorname{Rate}_{r}$ $k_{f} \left[\operatorname{N}_{2} \operatorname{O}_{4} \right] = k_{r} \left[\operatorname{NO}_{2} \right]^{2}$

Rewriting, it becomes the expression for the equilibrium constant (K):

$$\frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]} = \frac{k_{f}}{k_{r}} = \text{a constant}$$

The Equilibrium Constant

Consider the generalized reaction

aA + bB ← dD +eE

The equilibrium expression for this reaction would be

$$K_{c} = \frac{\left[\mathsf{D}\right]^{d} \left[\mathsf{E}\right]^{e}}{\left[\mathsf{A}\right]^{a} \left[\mathsf{B}\right]^{b}} \quad \leftarrow \text{ products}$$

• Also, since *pressure* is proportional to concentration for gases in a closed system, the equilibrium expression can also be written $(P_{D})^{d} (P_{E})^{e}$

$$\mathcal{K}_{p} = \frac{\left(\mathcal{P}_{D}\right) \left(\mathcal{P}_{E}\right)}{\left(\mathcal{P}_{A}\right)^{a} \left(\mathcal{P}_{B}\right)^{b}}$$

• How does the rate law figure into all of this?

The Equilibrium Constant

Consider the generalized reaction

aA + bB ← dD +eE

The equilibrium expression for this reaction would be

$$K_{c} = \frac{\left[\mathsf{D}\right]^{d} \left[\mathsf{E}\right]^{e}}{\left[\mathsf{A}\right]^{a} \left[\mathsf{B}\right]^{b}} \quad \leftarrow \text{ products}$$

• Also, since *pressure* is proportional to concentration for gases in a closed system, the equilibrium expression can also be written $(P_{a})^{d}(P_{a})^{e}$

$$K_{p} = \frac{\left(P_{\rm D}\right)^{a} \left(P_{\rm E}\right)^{e}}{\left(P_{\rm A}\right)^{a} \left(P_{\rm B}\right)^{b}}$$

- How does the rate law figure into all of this?
- It doesn't!!!!!!!!!!

The Haber Process

Consider the Haber process, which is the industrial preparation of ammonia:

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

The equilibrium constant depends on stoichiometry:

$$K_{c} = \frac{\left[\mathsf{NH}_{3} \right]^{2}}{\left[\mathsf{N}_{2} \right] \left[\mathsf{H}_{2} \right]^{3}}$$

Achieving Equilibrium

 $N_{2}(g) + 3H_{2}(g) \iff 2NH_{3}(g) \quad \mathcal{K}_{c} = \frac{\left[NH_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}$ The same equilibrium is reached.

Relative amount of *change* is based on stoichiometry.

Evaluating K_c (1 of 2)

Table 15.1 Initial and Equilibrium Concentrations of $N_2O_4(g)$ and $NO_2(g)$ at 100 °C

Experiment	Initial $[N_2O_4](M)$	Initial $[NO_2](M)$	Equilibrium $[N_2O_4](M)$	Equilibrium $[NO_2](M)$	K _c
1	0.0	0.0200	0.00140	0.0172	0.211
2	0.0	0.0300	0.00280	0.0243	0.211
3	0.0	0.0400	0.00452	0.0310	0.213
4	0.0200	0.0	0.00452	0.0310	0.213

Each experiment can begin and end with different concentrations. But all end with the *same* equilibrium.

Evaluating K_c (2 of 2)

The ratio of $[NO_2]^2$ to $[N_2O_4]$ remains constant at 100°C no matter the initial concentrations of NO_2 and N_2O_4

Equilibrium Constants in Terms of Pressure, K_p

- For gases, *PV* = *nRT* (the ideal-gas law).
- Rearranging, P = (n/V)RT; (n/V) is []. P = MRT

Substituting into
$$K_p : K_p = K_c (RT)^{\Delta n}$$

where

 $\Delta n = (\text{moles of gaseous product}) - (\text{moles of gaseous reactant})$

15.2 Using Equilibrium Constants

Magnitude of K

- If K >> 1, the reaction
 favors products; products
 predominate at equilibrium.
- If K << 1, the reaction
 favors reactants; reactants
 predominate at equilibrium.

The Direction of the Chemical Equation and *K*

The equilibrium constant of a reaction in the reverse reaction is the reciprocal of the equilibrium constant of the forward reaction:

1/0.212 = 4.72

- 2

Realating Stoichiometry and Equilibrium Constants

- To find the new equilibrium constant of a reaction when the equation has been
 - multiplied by a number, simply raise the original equilibrium constant to that power. Here, the stoichiometry is doubled; the constant is the squared

$$N_2O_4(g) \iff 2NO_2(g)$$
 $K_c = \frac{\left[NO_2\right]^2}{\left[N_2O_4\right]} = 0.212 \text{ at } 100 \text{ °C}$
 $2N_2O_4(g) \iff 4NO_2(g)$ $K_c = \frac{\left[NO_2\right]^4}{\left[N_2O_4\right]^2} = (0.212)^2 \text{ at } 100 \text{ °C}$

 divided by a number, take the appropriate root. If divided by two, take the square root.

Topics:

The Ideal gas law.
 PV=nRT. Can you rearrange it?
 Can you use it in terms of density?
 Any other permutation you saw in homework or recitation.

-Partial pressures

Gases act like they're all alone when mixed.

• Topics:

-Partial pressures Gases act like they're all alone when mixed. $P_{tot} = P_A + P_B + \dots P_n$ -Effusion/diffusion: $\frac{rate_2}{rate_1} = \sqrt{\frac{M_1}{M_2}}$

- Topics:
 - -Nonideal gases
 - What makes a gas non ideal?
 - -Attraction
 - -Size.
 - -Intermolecular forces
 - Dipole/dipole
 - -Hydrogen bonding
 - Induced dipole(London dispersion)
 - Trends? Who's more sticky
 - -Higher boiling point/viscosity etc.

• Topics:

-Kinetics

Rate laws from experimental data –1st/2nd/3rd order.

-Overall order

Elementary steps/molecularity

Integrated rate laws

-Amount of stuff versus time.

Mechanisms

-Mechanisms from rate laws.

Predicting a rate law from mechanism.

Exam 1, the Breakdown.

Breakdown:

Gas Laws.	III
Effusion/diffusion	I
Kinetic/molecular theory	I
Nonideal gases	I
Partial Pressures	I
Intermolecular forces	III
Rate Law	I
Integrated rate law	I
Mechanisms	I
General kinetics	I
Rate law from a mechanism	I

Combining Equilibrium Expressions

- When two consecutive equilibria occur, the equations can be added to give a single equilibrium.
- The equilibrium constant of the new reaction is the product of the two constants:

$$K_3 = K_1 \times K_2$$

• Example:

 $2\text{NOBr } (g) \xleftarrow{} \text{NO} (g) + \text{Br}_2 \qquad K_1 = 0.014$ $\frac{\text{Br}_2 + \text{Cl}_2 (g)}{2\text{BrCl}} \qquad 2\text{BrCl} \qquad K_2 = 7.2$ $2\text{NOBr} + \text{Cl}_2 \xleftarrow{} 2\text{NO} (g) + 2\text{BrCl} \qquad K_3 = \text{K}_1 \times \text{K}_2$

 $K_3 = K_1 \times K_2 = 0.014 \times 7.2 = 0.10$

15.4 Heterogeneous Equilibria

- Homogeneous equilibria all reactants and products are in the same phase.
- Heterogeneous equilibria occur when a component in the equilibrium is in a different phase.
- Whenever a pure solid (s) or pure liquid (l) is involved in a heterogeneous equilibrium, its concentration is not included in the equilibrium-constant expression.

The Decomposition of CaCO₃—A Heterogeneous Equilibrium

The equation for the reaction is

 $CaCO_3$ (s) \Longrightarrow CaO (s) +CO₂ (g)

• This results in $K_c = [CO_2] \text{ and } K_p = P_{CO_2}$ $_{CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)}$

15.5 Calculating Equilibrium Constants

- 1) Tabulate all known initial and equilibrium concentrations.
- 2) Where the initial **and** equilibrium concentrations are known, calculate the change.
- 3) Use the balanced equation to find change for all other reactants and products.
- 4) Use initial concentrations and changes to find equilibrium concentration of all species.
- 5) Calculate the equilibrium constant using the equilibrium concentrations.

A K_c Calculation Example (1 of 6)

A closed system initially containing $1.000 \times 10^{-3} M H_2$ and $2.000 \times 10^{-3} M I_2$ at 448 °C is allowed to reach equilibrium. At equilibrium mixture shows concentration of HI is 1.87 x 10⁻³ *M*. Calculate K_c at 448 °C.

$$\mathsf{H}_{2}(g) + \mathsf{I}_{2}(g) \Longrightarrow 2\mathsf{HI}(g)$$

AK_c Calculation Example (2 of 6)

Make a table using the known information.

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$

-	$\begin{bmatrix} H_2 \end{bmatrix}, M$	$\begin{bmatrix} I_2 \end{bmatrix}, M$	[HI], <i>M</i>
Initially	1.000×10 ⁻³	2.000×10 ⁻³	0
Change	~	-	-
At equilibrium	-	-	1.87×10⁻³

AK_c Calculation Example (3 of 6)

Change line of [HI] is known.

$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$

-	$\left[H_{2}\right], M$	$\begin{bmatrix} I_2 \end{bmatrix}, M$	[HI], <i>M</i>
Initially	1.000×10 ⁻³	2.000×10 ⁻³	0
Change	-	-	+1.87×10⁻³
At equilibrium	-	-	1.87×10 ⁻³

A K_c Calculation Example (4 of 6)

Use equation stoichiometry to complete change line.

-	$\left[H_{2}\right], M$	$\begin{bmatrix} I_2 \end{bmatrix}, M$	[HI], <i>M</i>
Initially	1.000×10^{-3}	2.000×10 ⁻³	0
Change	-9.35×10 ⁻⁴	–9.35×10 ^{-₄}	+1.87×10⁻³
At equilibrium	-	-	1.87×10 ⁻³

AK_c Calculation Example (5 of 6)

Calculate the equilibrium H_2 and I_2 concentrations

$H_2(g)$	+	$I_2\left(g ight)$	\rightarrow	2HI (g)

-	$[H_2], M$	$\begin{bmatrix} I_2 \end{bmatrix}, M$	[HI], <i>M</i>
Initially	1.000×10 ⁻³	2.000×10 ⁻³	0
Change	-9.35×10-₄	-9.35×10 ⁻⁴	+1.87×10 ⁻³
At equilibrium	6.5×10⁻⁵	1.065×10⁻³	1.87×10 ⁻³

A K_c Calculation Example (6 of 6)

Substitute values into the K_c expression.

Do not include molarity labels. Equilibrium constants are unitless.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
$$= \frac{(1.87 \times 10^{-3})^{2}}{(6.5 \times 10^{-5})(1.065 \times 10^{-3})}$$
$$= 51$$

15.6 The reaction quotient, **Q** When your not at equilibrium.

- Is a mixture in equilibrium? Which way does the reaction go?
- To answer these questions, we calculate the reaction quotient, Q.
- The expression for Q is identical to the equilibrium constant expression, but the values used to calculate it are the current conditions, not necessarily those for equilibrium.
- To calculate Q, substitute the concentrations or pressures of reactants and products at any given time during a reaction into the equilibrium expression.

Comparing Q and K

- Nature wants Q = K.
- If Q < K, nature will make the reaction proceed to products.
- If Q = K, the reaction is in equilibrium.
- If Q > K, nature will make the reaction proceed to reactants.

Calculating Equilibrium Concentrations

- If you know the equilibrium constant, you can find equilibrium concentrations from initial concentrations and changes (based on stoichiometry).
- You will set up a table similar to the ones used to find the equilibrium concentration, but the "change in concentration" row will be a factor of "*x*" based on the stoichiometry.

An Equilibrium Concentration Calculation Example

A 1.000 L flask is filled with 1.000 mol of H₂ (g) 2.000 mol of I₂ (g) at 448 °C. Given K_c = 50.5 at 448 °C, what are the equilibrium concentrations of H₂ (g), I₂ (g) and HI (g)?

	$H_{2}(g) +$	$I_2\left(g\right)$ =	<u>→</u> 2HI (g)
Initial concentration (M)	1.000	2.000	0
Change in concentration (<i>M</i>)	-X	-X	+2x
Equilibrium concentration (<i>M</i>)	1.000 – <i>x</i>	2.000 – <i>x</i>	2 <i>x</i>

An Equilibrium Concentration Calculation Example (2 of 3)

• Set up the equilibrium constant expression, filling in equilibrium concentration expressions from the table.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = \frac{(2x)^{2}}{(1.000 - x)(2.000 - x)} = 50.5$$

$$50.5(2 - 3x + x^{2}) = 4x^{2}$$

(2 - 3x + x^{2}) = 4/50.5x^{2}
0.9207x^{2} - 3x + 2 = 0
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

 Solving for x is done using the quadratic formula, resulting in x = 2.323 or 0.935.

An Equilibrium Concentration Calculation Example (3 of 3)

 Since x must be subtracted from 1.000 M, 2.323 makes no physical sense. (It results in a negative concentration!) The value **must** be 0.935.

• So

•
$$[H_2]_{eq} = 1.000 - 0.935 = 0.065 M$$

•
$$[I_2]_{eq} = 2.000 - 0.935 = 1.065 M$$

• $[HI]_{eq} = 2(0.935) = 1.87 M$

15.7 Le Châtelier's Principle

"If a system at equilibrium is disturbed by a change in temperature, pressure, or a component concentration, the system will shift its equilibrium position so as to counteract the effect of the disturbance."

- After the shift, the system will return to equilibrium.
- Concentration and pressure will change but the value of the equilibrium constant remains the same.

How Conditions Change Equilibrium

We use Le Châtelier's Principle qualitatively to predict shifts in equilibrium based on changes in conditions.

Change in Reactant or Product Concentration

- If the system is in equilibrium
 - adding a reaction component will result in some of it being used up.
 - removing a reaction component will result in some of it being produced.
 - magnitude of equilibrium constant remains the same.

Change in Volume or Pressure

When gases are involved in an equilibrium, a change in pressure or volume will affect equilibrium: Higher volume or lower pressure favors the side of the equation with more moles (and vice versa). K remains the same.

Change in Temperature

- Is the reaction endothermic or exothermic as written?
- Decide, then assess as you would for a concentration change.
 - Unlike concentration or pressure changes, K changes in value.
- Endothermic: Heat acts like a reactant; adding heat drives a reaction toward products. K increases.
 - Reactants plus heat forms products
- Exothermic: Heat acts like a product; adding heat drives a reaction toward reactants. K decreases.
 - Reactants form products plus heat

Equilibrium Affected by Temperature

The Effect of Catalysts

- **Catalysts** increase the rate of both the forward **and** reverse reactions.
- Equilibrium is achieved faster, but the equilibrium composition remains unaltered.
- Activation energy is lowered, allowing equilibrium to be established at lower temperatures.

