Review for 1st Exam

Chapter 1-3.

Chapter 1

- What's an:
- element
- atom
- molecule
- compound
- ionic compound
- molecular compound
- 3 states of matter
- what distinquishes them?

Classification of matter (homogeneous, solution etc.

Chapter 1.

- Know:
- Si units
- prefixes (giga, deca, etc.)
- Significant figures
- Density mass/volume
- Accuracy vs. precision
- Dimensional analysis

Chapter 2.

- The atomic theory
- Cathode ray tubes (J. J. Thompson)
- Gold Foil experiment
- Oil drop experiment
- Radioactivity
- What is an α particle? (He nucleus)
- What is a β particle? (an electron)
- γ rays (electromagnetic radiation, light) subatomic particles

Chapter 2

- Symbols of elements

12
6

- Isotopes
- Average masses
- calculating ave. mass from nat. abundance
- Calculating nat. abundance from isotope data.

Chapter 2

- Periodic table

\square

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Nonmetals

Chapter 2

- The common groups

Group	Name	Elements
1A	Alkali metals	$\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Fr}$
2A	Alkaline earth metals	$\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Ra}$
6A	Chalcogens	$\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{Po}$
7A	Halogens	$\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{At}$
8A	Noble gases (or rare gases)	$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}, \mathrm{Rn}$

Chapter 2

- Molecular compounds
- Ionic compounds
- Diatomic elements/molecules.
- $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$,
- Molecular versus empirical formulas
- Glucose: molecular: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, empirical: $\mathrm{CH}_{2} \mathrm{O}$

Common Cations

Charge	Formula	Name	Formula	Name
1+	$\begin{aligned} & * \mathrm{H}^{+} \\ & * \mathrm{Li}^{+} \\ & * \mathrm{Na}^{+} \\ & * \mathrm{~K}^{+} \\ & * \mathrm{Cs}^{+} \\ & * \mathrm{Ag}^{+} \end{aligned}$	Hydrogen ion Lithium ion Sodium ion Potassium ion Cesium ion Silver ion	$\begin{aligned} & * \mathrm{NH}_{4}^{+} \\ & * \mathrm{Cu}^{+} \end{aligned}$	Ammonium ion Copper(I) or cuprous ion
2+	$\begin{aligned} & * \mathrm{Mg}^{2+} \\ & * \mathrm{Ca}^{2+} \\ & * \mathrm{Sr}^{2+} \\ & * \mathrm{Ba}^{2+} \\ & * \mathrm{Zn}^{2+} \\ & * \mathrm{Cd}^{2+} \end{aligned}$	Magnesium ion Calcium ion Strontium ion Barium ion Zinc ion Cadmium ion	$\begin{gathered} \mathrm{Co}^{2+} \\ * \mathrm{Cu}^{2+} \\ * \mathrm{Fe}^{2+} \\ \mathrm{Mn}^{2+} \\ \mathrm{Hg}_{2}{ }^{2+} \\ \mathrm{Hg}^{2+} \\ * \mathrm{Ni}^{2+} \\ * \mathrm{~Pb}^{2+} \\ \mathrm{Sn}^{2+} \end{gathered}$	Cobalt(II) or cobaltous ion Copper(II) or cupric ion Iron(II) or ferrous ion Manganese(II) or manganous ion Mercury(I) or mercurous ion Mercury(II) or mercuric ion Nickel(II) or nickelous ion Lead(II) or plumbous ion Tin(II) or stannous ion
$3+$	* Al^{3+}	Aluminum ion	$\begin{aligned} & * \mathrm{Cr}^{3+} \\ & * \mathrm{Fe}^{3+} \end{aligned}$	Chromium(III) or chromic ion Iron(III) or ferric ion

[^0]
*You should know these.

Common Anions

| Charge | Formula | Name | Formula | |
| :--- | :--- | :--- | :--- | :--- | Name

[^1]
Polyatomic anions

I_{3}^{-}
O_{2}^{-}
OH^{-}
CN^{-}
SCN
NO_{3}^{-}
NO_{2}^{-}
SO_{3}^{-2}
HSO_{3}^{-}
SO_{4}^{-2}
HSO_{4}^{-}
HCO_{3}^{-}
CO_{3}^{-2}
$\mathrm{CH}_{3} \mathrm{CO}_{2}$
triiodide
Superoxide
hydroxide
cyanide
thiocyanate
nitrate
nitrite
sulfite
bisulfite
sulfate
bisulfate
bicarbonate
carbonate
Acetate
$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{PO}_{4}{ }^{-3}$
ClO^{-}
$\mathrm{ClO}_{2}{ }^{-}$
$\mathrm{ClO}_{3}{ }^{-}$
ClO_{4}^{-}
MnO_{4}^{-}
$\mathrm{CrO}_{4}{ }^{-2}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$
hydrogen phosphate dihydrogen phosphate
Phosphate hypochlorite chlorite chlorate
perchlorate
Permanganate
Chromate
Dichromate

Chap. 2.

- Naming compounds
$-\mathrm{P}_{2} \mathrm{O}_{5}$ diphosphorous pentoxide
- Ammonium acetate $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
- Naming acids.

Chapter 3, stoichiometry

- Balancing chemical reactions.
- Reaction types
- precipitation
- Combustion (especially with hydrocarbons)
Computations
Stoichiometric calculations
limiting reagents
Yield.

Exam breakdown:

- 1 homogeneous/mixture/etc
- Density problem (buancy)
- (2)Subatomic particles (alpha/beta/ gamma)
- (2)Famous experiments (gold foil cathode ray tube, oil drop)
- Sig figs
- Dimensional analysis
- (2)Periodic table
- (2)Percent composition

Exam breakdown:

Isotope abundance
Naming polyatomic ions/acids (3)
Protons/neutrons/electrons in element
Balance equations
Calculate empirical formula
Calculate percent yield
Limiting reagent.

[^0]: *The most common ions are in boldface.

[^1]: *The most common ions are in boldface.

 ## *You should know these.

