Chapter 7 Periodic Properties of the Elements

- Elements in the same group generally have similar chemical properties.
- Properties are not identical, however.

Periodic Properties of the Elements

H																	
																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	C1	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

0	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
ן	Гh	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how elements should be grouped.

H																	He
Li	Be											B	C	N	0	F	Ne
Na	Mg											Al	Si	Р	S	C 1	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

 Ancient Times
 1735–1843
 1894–1918

 Middle Ages–1700
 1843–1886
 1923–1961

Mendeleev, for instance, in 1871 predicted germanium (which he called eka-silicon) to have an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.

1965 -

Periodic Properties of the Elements

Property	Mendeleev's Predictions for Eka-Silicon (made in 1871)	Observed Properties of Germanium (discovered in 1886)
Atomic weight	72	72.59
Density (g/cm^3)	5.5	5.35
Specific heat $(J/g-k)$	0.305	0.309
Melting point (°C)	High	947
Color	Dark gray	Grayish white
Formula of oxide	XO ₂	GeO ₂
Density of oxide (g/cm ³)	4.7	4.70
Formula of chloride	XCl_4	$GeCl_4$
Boiling point of chloride (°C)	A little under 100	84

Mendeleev's prediction was on the money

But why? (Mendeleev had no clue).

Periodic Trends

- In this chapter we'll explain why
- We'll then rationalize observed trends in
 Sizes of atoms and ions.
 Ionization energy.
 Electron affinity.

Na atom looks like this:

- In a many-electron atom, electrons are both attracted to the nucleus and repelled by other electrons.
- The nuclear charge that an electron "feels" depends on both factors.
- It's called Effective nuclear charge.
- electrons in lower energy levels "shield" outer electrons from positive charge of nucleus.

(a)

The effective nuclear charge, Z_{eff} , is: $Z_{\rm eff} = Z - S$ Where: Z = atomic numberS = screening constant, usually close to the number of inner (n-1) Periodic electrons. Properties of the lements

• Example: Which element's outer shell or "valence" electrons is predicted to have the largest Effective nuclear charge? Kr, Cl or O?

- Example: Which element's outer shell or "valence" electrons is predicted to have the largest Effective nuclear charge? Kr, Cl or O?
- CI: Z_{eff} ≈ 17 10 = 7
- O: $Z_{eff} \approx 8 2 = 6$
- N: $Z_{eff} \approx 7 2 = 5$
- Ca: Z_{eff} ≈ 20 18 = 2

Valence electrons

Many chemical properties depend on the valence electrons.

Valence electrons: The outer electrons, that are involved in bonding and most other chemical changes of elements. Rules for defining valence electrons.

- 1. In outer most energy level (or levels)
- 2. For main group (representative) elements (elements in s world or p world) electrons in filled d or f shells are not valence electrons
- 3. For transition metals, electrons in full f shells are not valence electrons.

Valence electrons

Many chemical properties depend on the valence electrons.

Valence electrons: The outer electrons, that are involved in bonding and most other chemical changes of elements.

Rules for defining valence electrons.

- 1. In outer most energy level (or levels)
- 2. For main group (representative) elements (elements in s world or p world) electrons in filled d or f shells are not valence electrons
- 3. For transition metals, electrons in full f shells are not valence electrons.

Examples: (valence electrons in blue)

- P: [Ne]3s²3p³
- As: [Ar] 4s²3d¹⁰4p3
- I: $[Kr]5s^24d^{10}5p^5$
- Ta: [Kr]6s²4f¹⁴5d³
- Zn: [Ar]4s²3d¹⁰

Sizes of Atoms

The bonding atomic radius is defined as one-half of the distance between covalently bonded nuclei.

Bonding atomic radius tends to...

...decrease from left to right across a row due to increasing Z_{eff} .

...increase from top to bottom of a column due to increasing value of n

Periodic Properties of the Elements Exams are being graded now but aren't finished. We may have them by the end of today.

My T.A.s had to sacrifice bunnys for science.

Ionic size depends upon: Nuclear charge. Number of electrons. Orbitals in which electrons reside.

Cations are smaller than their parent atoms.

The outermost electron is removed and repulsions are reduced.

Anions are larger than their parent atoms.

Electrons are added and repulsions are increased.

- lons increase in size as you go down a column.
 - Due to increasing value of n.

- In an isoelectronic series, ions have the same number of electrons.
- Ionic size decreases with an increasing nuclear charge.

atom/ion size examples

- Put the following in order of size, smallest to largest:
- Na, Na⁺, Mg, Mg²⁺, Al, Al³⁺, S, S²⁻, Cl, Cl⁻

Atom size examples

Al³⁺, Mg²⁺, Na⁺, Cl, S, Al, Mg, Na, Cl⁻, S²⁻

Start with atoms with no n=3 electrons, order isoelectronic by nuclear charge.

Next, neutral atoms highest $E_{\rm ff}$ first

Last, anions, highest E_{ff} first

Ambiguity: anions versus neutrals (is Cl⁻ really larger than Na?)

Don't worry about it.

Ionization Energy

- Amount of energy required to remove an electron from the ground state of a gaseous atom or ion.
 - First ionization energy is that energy required to remove first electron.
 - Second ionization energy is that energy required to remove second electron, etc.

Ionization Energy

- It requires more energy to remove each successive electron.
- When all valence electrons have been removed, the ionization energy takes a quantum leap.

Element	I_1	I_2	I_3	I_4	I_5	I_6	I_7	
Na	495	4562			(inner-sh	ell electrons)		
Mg	738	1451	7733	_				
Al	578	1817	2745	11,577				
Si	786	1577	3232	4356	16,091			
Р	1012	1907	2914	4964	6274	21,267		
S	1000	2252	3357	4556	7004	8496	27,107	
Cl	1251	2298	3822	5159	6542	9362	11,018	
Ar	1521	2666	3931	5771	7238	8781	11,995	Periodic
								Properties

going down a column, less energy to remove the first electron.

For atoms in the same group, Z_{eff} is essentially the same, but the valence electrons are farther from the nucleus.

- Generally, it gets harder to remove an electron going across.
 - As you go from left to to right, Z_{eff} increases.

On a smaller scale, there are two jags in each line. Why?

- The first occurs between Groups IIA and IIIA.
- Electron removed from p-orbital rather than sorbital
 - Electron farther from nucleus
 - Small amount of repulsion by s electrons.

- The second occurs between Groups VA and VIA.
 - Electron removed comes from doubly occupied orbital.
 - Repulsion from other electron in orbital helps in its removal.

Electron Affinity

Energy change accompanying addition of electron to gaseous atom:

$$CI + e^{-} \longrightarrow CI^{-}$$

In general, electron affinity becomes more exothermic as you go from left to right across a row.

Periodic Properties

of the Elements

There are also two discontinuities in this trend.

- The first occurs between Groups IA and IIA.
 - Added electron must go in *p*-orbital, not *s*orbital.
 - Electron is farther from nucleus and feels repulsion from s-electrons.

- The second occurs between Groups IVA and VA.
 - Group VA has no empty orbitals.
 - Extra electron must go into occupied orbital, creating repulsion.

Properties of Metals, Nonmetals, and Metalloids

							Incre	easin	g me	etallic	chai	racte	r					
	1A 1	1				-												8A 18
cter	1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
chara	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
allic	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	9 8B	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
meta	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
sing	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Icrea	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
Å ⊓	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	113	114	115	116		
		,																
		Metal	ls	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	odic
		Metal	lloids	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	perties
		Nonn	netals															ements

Metals versus Nonmetals

Metals	Nonmetals
Have a shiny luster; various colors, although most are silvery	Do not have a luster; various colors
Solids are malleable and ductile	Solids are usually brittle; some are hard, some are soft
Good conductors of heat and electricity	Poor conductors of heat and electricity
Most metal oxides are ionic solids that are basic	Most nonmetal oxides are molecular substances that form acidic solutions
Tend to form cations in aqueous solution	Tend to form anions or oxyanions in aqueous solution

Differences between metals and nonmetals tend to revolve around these properties.

Metals versus Nonmetals

- Metals tend to form cations.
- Nonmetals tend to form anions.

Note ions in s and p world all result from filling or empyting a subshell.

What about the transition metals? What's going on there? of the Properties

Transition Metal ions

Note: many have +2 charge. They actually lose all their ns electrons first! $Mn \rightarrow Mn^{2+}$: [Ar]4s²3d⁵ \rightarrow [Ar]3d⁵ $Cu \rightarrow Cu^+$ [Ar]4s²3d⁹ \rightarrow [Ar]3d¹⁰

Metals

Tend to be lustrous, malleable, ductile, and good conductors of heat and electricity.

Metals

- Compounds formed between metals and nonmetals tend to be ionic.
- Metal oxides tend to be basic.

Periodic Properties of the Elements

Nonmetals

- Dull, brittle substances that are poor conductors of heat and electricity.
- Tend to gain electrons in reactions with metals to acquire noble gas configuration.

Nonmetals

- Substances containing only nonmetals are molecular compounds.
- Most nonmetal oxides are acidic.

Periodic Properties of the Elements

Metalloids

- Have some characteristics of metals, some of nonmetals.
- For instance, silicon looks shiny, but is brittle and fairly poor conductor.

Group Trends

- Soft, metallic solids.
- Name comes from Arabic word for ashes.

Periodic Properties of the Elements

- Found only as compounds in nature.
- Have low densities and melting points.
- Also have low ionization energies.

Element	Electron Configuration	Melting Point (°C)	Density (g/cm ³)	Atomic Radius (Å)	I ₁ (kJ/mol)
Lithium	$[He]2s^1$	181	0.53	1.34	520
Sodium	$[Ne]3s^1$	98	0.97	1.54	496
Potassium	$[Ar]4s^1$	63	0.86	1.96	419
Rubidium	$[Kr]5s^{1}$	39	1.53	2.11	403
Cesium	$[Xe]6s^1$	28	1.88	2.25	376

Their reactions with water are famously exothermic.

- Alkali metals (except Li) react with oxygen to form peroxides.
- K, Rb, and Cs also form superoxides:

$$K + O_2 \longrightarrow KO_2$$

• Produce bright colors when placed in flame.

Alkaline Earth Metals

Element	Electron Configuration	Melting Point (°C)	Density (g/cm ³)	Atomic Radius (Å)	I ₁ (kJ/mol)
Beryllium	[He]2 <i>s</i> ²	1287	1.85	0.90	899
Magnesium	[Ne]3 <i>s</i> ²	650	1.74	1.30	738
Calcium	$[Ar]4s^2$	842	1.55	1.74	590
Strontium	$[Kr]5s^2$	777	2.63	1.92	549
Barium	[Xe]6 <i>s</i> ²	727	3.51	1.98	503

- Have higher densities and melting points than alkali metals.
- Have low ionization energies, but not as low as alkali metals.

Alkaline Earth Metals

- Be does not react with water, Mg reacts only with steam, but others react readily with water.
- Reactivity tends to increase as go down group.

Periodic Properties of the Elements

Group 6A

Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	I ₁ (kJ/mol)
Oxygen	$[He]2s^22p^4$	-218	1.43 g/L	0.73	1314
Sulfur	$[Ne]3s^23p^4$	15	1.96 g/cm^3	1.02	1000
Selenium	$[Ar]3d^{10}4s^24p^4$	221	4.82 g/cm^3	1.16	941
Tellurium	$[Kr]4d^{10}5s^25p^4$	450	6.24 g/cm^3	1.35	869
Polonium	$[Xe]4f^{14}5d^{10}6s^26p^4$	254	9.20 g/cm ³	_	812

- Oxygen, sulfur, and selenium are nonmetals.
- Tellurium is a metalloid.
- The radioactive polonium is a metal.

Oxygen

- Two allotropes:
 - > O₂
 - $> O_3$, ozone
- Three anions:
 - $> O^{2-}$, oxide
 - $> O_2^{2-}$, peroxide
 - $> O_2^{1-}$, superoxide
- Tends to take electrons from other elements (oxidation)

- Weaker oxidizing agent than oxygen.
- Most stable allotrope is S₈, a ringed molecule.

Group VIIA: Halogens

Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	I ₁ (kJ/mol)
Fluorine	[He] $2s^2 2p^5$	-220	1.69 g/L	0.71	1681
Chlorine	[Ne] $3s^2 3p^5$	-102	3.21 g/L	0.99	1251
Bromine	[Ar] $3d^{10} 4s^2 4p^5$	-7.3	3.12 g/cm ³	1.14	1140
Iodine	[Kr] $4d^{10} 5s^2 5p^5$	114	4.94 g/cm ³	1.33	1008

- Prototypical nonmetals
- Name comes from the Greek halos and gennao: "salt formers"

Group VIIA: Halogens

- Large, negative electron affinities
 - Therefore, tend to oxidize other elements easily
- React directly with metals to form metal halides
- Chlorine added to water supplies to serve as disinfectant

Group VIIIA: Noble Gases

Element	Electron Configuration	Boiling Point (K)	Density (g/L)	Atomic Radius* (Å)	I ₁ (kJ/mol)
Helium	$1s^{2}$	4.2	0.18	0.32	2372
Neon	$[He]2s^22p^6$	27.1	0.90	0.69	2081
Argon	$[Ne]3s^23p^6$	87.3	1.78	0.97	1521
Krypton	$[Ar]3d^{10}4s^24p^6$	120	3.75	1.10	1351
Xenon	$[Kr]4d^{10}5s^25p^6$	165	5.90	1.30	1170
Radon	$[Xe]4f^{14}5d^{10}6s^26p^6$	211	9.73	1.45	1037

*Only the heaviest of the noble-gas elements form chemical compounds. Thus, the atomic radii for the lighter noble-gas elements are estimated values.

- Astronomical ionization energies
- Positive electron affinities
 Therefore, relatively unreactive
- Monatomic gases

Group VIIIA: Noble Gases

- Xe forms three compounds:
 XeF₂
 XeF₄ (at right)
 XeF₆
- Kr forms only one stable compound:
 ≻ KrF₂
- The unstable HArF was synthesized in 2000.

Exam 2 review:

- Chapter 5, thermochemistry
- Chapter 6, atomic structure
- Chapter 7, periodic trends

Exam 2 review:

- Chapter 5
 - Heat vs. work, nature of energy
 - potential energy vs. kinetic energy
 - nature of temperature
 - system versus surroundings
 - > 1st law of thermodynamics:
 - **ΔE calculations**
 - example: Calculate the change in internal energy and whether the process is endo or exo thermic:
 - 100g of water is cooled from 90 °C to 40 °C.
 - Enthalpy of reaction. Using stoichiometry and enthalpy of reaction to calculate things:
 - example problem:
 - Ag⁺(aq) + Cl⁻(aq) -----> AgCl(s) ∆H = -65.5 kJ
 - a. Calculate ΔH for the formation of 2.5 g of AgCI

Exam 2 review:

- Ag⁺(aq) + Cl⁻(aq) -----> AgCl(s) ΔH = -65.5 kJ Calculate ΔH for the formation of 2.5 g of AgCl MW. 143.319 g/mol (AgCl). 2.5 g/143.319 g/mol = 0.0174 mole 0.0174 mol(-65.5 kJ/mol AgCl) = -1.14 kJ
- Calorimetry problem:
 - example problem:
 - 10 g of NaOH is dissolved in 100 mL of water in a calorimeter, the temperature changes from 23.6 to 47.4 °C. Calculate Δ H for the process, assume the specific heat of the solution is 4.184 j/°Kg, the same as water.

q = specific heat(g solution)(Δ T) q = 4.184j/Kmol(110 g)(26.4 -43.3) = -10953 J moles NaOH = 10g/40 g = .25 mole Δ H = -10953 J/.25 mol = -43812 = 40000 J/mol NaOH.

➤ Hess's law:

- Given a series of reactions, rearrange to find ΔH for the reaction in question:
- Example problem:
- Given the data:
- N₂(g) + O₂(g) ----> 2NO(g) ΔH =180.7 kJ
- 2NO(g) + O₂(g) -----> 2NO₂ ΔH = -113.1 kJ
- $2N_2O(g) ----> 2N_2(g) + O_2(g) \Delta H = -163.2 \text{ kJ}$
- Calculate: N₂O(g) +NO₂(g) ----> O₂(g)
- > Enthalpies of formation (the tables of enthalpies of formation):
- $\succ \Sigma \Delta H_{\text{prdts}} \Sigma \Delta H_{\text{reactants}} = \Delta H_{\text{reaction}}$

- Hess's law:
 - Given a series of reactions, rearrange to find ΔH for the reaction in question:
 - Example problem:
 - Given the data:
 - N₂(g) + O₂(g) ----> 2NO(g) △H =180.7 kJ
 - $2NO(g) + O_2(g) ----> 2NO_2$ $\Delta H = -113.1 \text{ kJ}$
 - $2N_2O(g) \rightarrow 2N_2(g) + O_2(g) \Delta H = -163.2 \text{ kJ}$
 - Calculate: $N_2O(q) + NO_2(q) ---> 3NO(q)$
 - NO₂ ---- NO(g) + 1/2O₂(g) 113.1/2
 - $N_2O(g) ----> N_2(g) + 1/2O_2(g) \Delta H = -163.2/2 kJ$
 - N₂(g) + O₂(g) ----> 2NO(g) ΔH =180.7 kJ
 N₂O(g) +NO₂(g) ----> 3NO(g) ΔH =155.6 kJ

- > Enthalpies of formation (the tables of enthalpies of formation):
- $\succ \Sigma \Delta H_{\text{prdts}} \Sigma \Delta H_{\text{reactants}} = \Delta H_{\text{reaction}}$

- Chapter 6
 - > Characteristics of waves (v = λv):
 - What is wavelength?
 - What is frequency?
 - > Electromagnetic radiation:
 - E = hv

- Chapter 6
 - > Characteristics of waves (v = λv):
 - Black body radiation
 - Photo-electric effect
 - > Heisenberg uncertainty: $(\Delta m v \Delta x \ge h)$
 - Line spectra of atoms

 \succ matter waves (De Brogli) $v = \lambda v$

$$v = \frac{v}{\lambda}$$
$$E = mv^{2} = hv = h\frac{v}{\lambda}$$
$$\lambda = \frac{h}{mv}$$

Periodic Properties of the Elements

- Chapter 6
 - Wavefunctions and quantum mechanics
 - wavefunction vs. probability distribution
 - orbitals and quantum numbers
 - Quantum numbers
 - what are the four?
 - principle (energy) n = 1,2,3...
 - azimuthal (shape) I = 0,1, 2... n-1
 - magnetic (orientation) $m_1 = -1, ...0, ...+1$
 - spin (differentiates two electrons in same orbital) (±1/2)
 - naming the I qm:
 - I=0, s, I=1, p, I=2, d, I=3, f
 - Shapes of orbitals

- Chapter 6
 - Many electron atoms
 - > Energy of orbitals in H versus other atoms with other electrons.

Chapter 6 •

- Pauli exclusion principle
- Hund's rule (don't pair until you have to)
- Electron configurations

f-Block metals

- Periodic trends
- Effective nuclear charge
- trends in atomic radius
- trends in ion radius
- Ionization energy, trends
- electron affinity, trends.

