Chapter 4 Aqueous Reactions and Solution Stoichiometry

Solutions:

- Homogeneous mixtures of two or more pure substances.
- The solvent is usually present in greatest abundance.
- Or, the solvent is the liquid when a solid is dissolved
- All other substances are solutes.

Dissociation

 ionic compound dissolves in water, the individual ions from the crystal are separated. This process is called dissociation.

ELECTROLYTIC PROPERTIES

One way to differentiate two aqueous solutions is to employ a device that measures their electrical conductivities. The ability of a solution to conduct electricity depends on the number of ions it contains. An electrolyte solution contains ions that serve as charge carriers, causing the bulb to light.

- Substances that dissociate into ions when dissolved in water are electrolytes.
- A nonelectrolyte may dissolve in water, but it does not dissociate into ions when it does so.

Electrolytes and Nonelectrolytes

Soluble ionic compounds tend to be electrolytes.

Electrolytes and Nonelectrolytes

Molecular compounds tend to be nonelectrolytes, except for acids and bases.

Electrolytes

- A strong electrolyte dissociates completely when dissolved in water.
- A weak electrolyte only dissociates partially when dissolved in water.
- A nonelectrolyte does not dissociate in water

а.	Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
Ionic Molecular	All Strong acids (see Table 4.2)	None Weak acids (H) Weak bases (NH ₃)	None All other compounds

Strong Electrolytes Are...

Strong acids

Strong Acids	Strong Bases
Hydrochloric, HCl	Group 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)
Hydrobromic, HBr	Heavy group 2A metal hydroxides [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]
Hydroiodic, HI Chloric, HClO ₃ Perchloric, HClO ₄ Nitric, HNO ₃ Sulfuric, H ₂ SO ₄	

The 7 common strong acids **KNOW THEM**

Strong Electrolytes Are...

- Strong acids
- Strong bases

NOTE THIS IS MORE STUFF YOU NEED TO KNOW

Strong Acids	Strong Bases
Hydrochloric, HCl	Group 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)
Hydrobromic, HBr	Heavy group 2A metal hydroxides [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]
Hydroiodic, HI	
Chloric, HClO ₃	The strong bases
Perchloric, HClO ₄	
Nitric, HNO ₃	
Sulfuric, H ₂ SO ₄	

Strong Electrolytes Are...

- Strong acids
- Strong bases
- Soluble ionic salts
- If the salt doesn't dissolve, it can't conduct.

Solubility trends

Soluble Ionic Compounds		Important Exceptions	
Compounds containing	NO_3^-	None	
	$C_2H_3O_2^{-}$	None	
	Cl^{-}	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}	
	Br^-	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}	
	I^-	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}	
	SO_4^{2-}	Compounds of Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}	
Insoluble Ionic Compounds		Important Exceptions	
Compounds containing	S ^{2–}	Compounds of NH_4^+ , the alkali metal cations, and Ca^{2+} , Sr^{2+} , and Ba^{2+}	
Compounds containing	S ^{2–} CO ₃ ^{2–}	Compounds of NH_4^+ , the alkali metal cations, and Ca^{2+} , Sr^{2+} , and Ba^{2+} Compounds of NH_4^+ and the alkali metal cations	
Compounds containing	S^{2-} CO_3^{2-} PO_4^{3-}	Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ Compounds of NH ₄ ⁺ and the alkali metal cations Compounds of NH ₄ ⁺ and the alkali metal cations	

NH₄⁺ salts are always soluble Alkali metal salts are always soluble

Precipitation Reactions

Metathesis (Exchange) Reactions

- Metathesis comes from a Greek word that means "to transpose"
- It appears the ions in the reactant compounds exchange, or transpose, ions

 $AgNO_{3(aq)} + KCI_{(aq)} \rightarrow$

Metathesis (Exchange) Reactions

- Metathesis comes from a Greek word that means "to transpose"
- It appears the ions in the reactant compounds exchange, or transpose, ions

$$AgNO_{3(aq)} + KCI_{(aq)} \longrightarrow AgCI_{(s)} + KNO_{3(aq)}$$

This is a "reaction" because the AgCl precipitates. Otherwise, nothing would be happening.

Solution Chemistry

- pay attention to *exactly* what species are present in a reaction mixture (i.e., solid, liquid, gas, aqueous solution).
- we must be aware of what is changing during the course of a reaction.

Chemical Equation

The chemical equation lists the reactants and products, but some information must be assumed.

 $AgNO_3(aq) + KCI(aq) \longrightarrow AgCI(s) + KNO_3(aq)$

Ionic Equation

- In the ionic equation all strong electrolytes (strong acids, strong bases, and soluble ionic salts) are dissociated into their ions.
- reflects the species that are actually found in the reaction mixture.

 $\operatorname{Ag}^{+}(aq) + \operatorname{NO}_{3^{-}}(aq) + \operatorname{K}^{+}(aq) + \operatorname{Cl}^{-}(aq) \longrightarrow \operatorname{AgCl}(s) + \operatorname{K}^{+}(aq) + \operatorname{NO}_{3^{-}}(aq)$

Net Ionic Equation

 To form the net ionic equation, cross out anything that does not change from the left side of the equation to the right.

 $Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}(aq) + CI^{-}(aq) \longrightarrow$ $AgCI(s) + K^{+}(aq) + NO_{3}^{-}(aq)$

Net Ionic Equation

- To form the net ionic equation, cross out anything that does not change from the left side of the equation to the right.
- The only things left in the equation are those things that change (i.e., react) during the course of the reaction.

 $Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$

Net Ionic Equation

- To form the net ionic equation, cross out anything that does not change from the left side of the equation to the right.
- The only things left in the equation are those things that change (i.e., react) during the course of the reaction.
- Those things that didn't change (and were deleted from the net ionic equation) are called spectator ions.

 $Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}_{(aq)} + CI^{-}(aq) \longrightarrow$ $AgCI(s) + K^{+}(aq) + NO_{3}^{-}(aq)$

Writing Net Ionic Equations

- 1. Write a balanced chemical equation.
- 2. Dissociate all strong electrolytes.
- 3. Cross out anything that remains unchanged from the left side to the right side of the equation.
- 4. Write the net ionic equation with the species that remain.

Writing Net Ionic Equations1.
$$NaCl_{(aq)} + AgNO_{3(aq)} ----> AgCl_{(s)} + NaNO_{3(aq)}$$
 $Ma^{4} + Cl^{-} + Ag^{+} + NO_{3}^{-} ----> AgCl_{(s)} + Na^{4} + NO_{3}^{-}$ $Ag^{+} + Cl^{-} ----> AgCl_{(s)}$

2. $2NaBr_{(aq)} + MgCl_{2(aq)} ----> 2NaCl_{(aq)} + MgBr_{2(aq)}$ $2Na^{+} + 2Br^{-} + Mg^{2+} + 2Cl^{-} ---> 2Na^{+} + 2el^{-} + Mg^{2+} + 2Br^{-}$

 Substances that increase the concentration of H⁺ when dissolved in water.

Acids

Strong: Fully dissociate into anion and H⁺ (strong electrolytes)

Weak: Do not fully dissociate (weak electrolyte)

There are only seven strong acids:

- Hydrochloric (HCI)
- Hydrobromic (HBr)
- Hydroiodic (HI)
- Nitric (HNO₃)
- Sulfuric (H₂SO₄)
- Chloric (HClO₃)
- Perchloric (HClO₄)
- YOU MUST REMEMBER THESE.

Bases:

 Substances that increase the concentration of OH⁻ when dissolved in water.

Bases

The strong bases are the soluble salts of hydroxide ion:

- Alkali metals
- Calcium (Ca(OH)₂)
- Strontium (Sr(OH)₂
- Barium (Ba(OH)₂

Acid-Base Reactions

In an acid-base reaction, the acid donates a proton (H⁺) to the base.

Generally, when solutions of an acid and a base are combined, the products are a salt and water.

HCI (aq) + NaOH (aq) \longrightarrow NaCI (aq) + H₂O (/)

When a strong acid reacts with a strong base, the net ionic equation is...

HCI (aq) + NaOH (aq) \longrightarrow NaCI (aq) + H₂O (/)

 $H^{+}(aq) + CI^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow$ $Na^{+}(aq) + CI^{-}(aq) + H_{2}O(I)$

When a strong acid reacts with a strong base, the net ionic equation is...

HCI (aq) + NaOH (aq) \longrightarrow NaCI (aq) + H₂O (/)

 $H^{+}(aq) + CI^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow$ $Na^{+}(aq) + CI^{-}(aq) + H_{2}O(l)$

$$\begin{array}{l} \mathsf{H^{+}}\left(aq\right) + \mathsf{CH}\left(aq\right) + \mathsf{Na^{+}}\left(aq\right) + \mathsf{OH^{-}}\left(aq\right) \longrightarrow \\ \mathsf{Na^{+}}\left(aq\right) + \mathsf{CH}\left(aq\right) + \mathsf{H}_{2}\mathsf{O}\left(\prime\right) \\ \mathsf{H^{+}} + \mathsf{OH^{-}} \longrightarrow \mathsf{H}_{2}\mathsf{O}_{(\mathsf{I})} \end{array}$$

Observe the reaction between Milk of Magnesia, Mg(OH)₂, and HCI.

 $\begin{array}{l} \mathsf{Mg}(\mathsf{OH})_{2(s)} + 2\mathsf{HCI}_{(aq)} & ----> 2\mathsf{H}_2\mathsf{O} + \mathsf{Mg}\mathsf{CI}_{2(aq)} \\ \mathsf{Mg}(\mathsf{OH})_{2(s)} + 2\mathsf{H}^+ + 2\mathsf{CI}^- & ---> 2\mathsf{H}_2\mathsf{O} + \mathsf{Mg}^{2+} + 2\mathsf{CI}^- \\ \mathsf{Mg}(\mathsf{OH})_{2(s)} + 2\mathsf{H}^+ & ----> 2\mathsf{H}_2\mathsf{O} + \mathsf{Mg}^{2+} \end{array}$

Gas-Forming Reactions

- These metathesis reactions do not give the product expected.
- The expected product decomposes to give a gaseous product (CO₂ or SO₂).

 $\begin{aligned} \mathsf{CaCO}_{3}(s) + 2\mathsf{HCI}(aq) &\longrightarrow \mathsf{CaCI}_{2}(aq) + \mathsf{CO}_{2}(g) + \mathsf{H}_{2}\mathsf{O}(l) \\ \mathsf{NaHCO}_{3}(aq) + \mathsf{HBr}(aq) &\longrightarrow \mathsf{NaBr}(aq) + \mathsf{CO}_{2}(g) + \mathsf{H}_{2}\mathsf{O}(l) \\ \mathsf{SrSO}_{3}(s) + 2 \mathsf{HI}(aq) &\longrightarrow \mathsf{SrI}_{2}(aq) + \mathsf{SO}_{2}(g) + \mathsf{H}_{2}\mathsf{O}(l) \end{aligned}$

Gas-Forming Reactions

- This reaction gives the predicted product, but you had better carry it out in the hood, or you will be very unpopular!
- Just as in the previous examples, a gas is formed as a product of this reaction:

 $Na_2S(aq) + 2HCI(aq) \longrightarrow 2NaCI(aq) + H_2S(q)$

Stinky

Solution Stoichiometry

• Chemistry arithmetic in solution

Molarity

- Two solutions can contain the same compounds but be quite different because the proportions of those compounds are different.
- Molarity is a measure of concentration of a solution.

Molarity (M) = $\frac{\text{moles of solute}}{\text{volume of solution in liters}}$

A unit of concentration.

Make 300. mL of a 0.250 M solution of NaCl.

Needed: grams of NaCl. Must find: moles NaCl (M = mol/L) MW NaCl: 23 + 35.4 = 58.4 g/mol 300. mL = 0.300 L

0.250 mol/L(0.300 L)(58.4g/mol) = 4.38 g

Mixing a Solution

Example

What is the molarity of a solution that contains 15 g of sodium acetate in 0.25 L

MW NaC₂H₃O₂: 82 g/mol Needed: moles so you can calculate mol/L

<u>15g(1mol/82g)</u> = 0.73 mol/L 0.25 L

Dilution

Example

You have a stock solution of 4.2 M $(NH_4)_2SO_4$. How much do you need to make 2.5 L of a 0.3 M $(NH_4)_2SO_4$ solution?

Needed, moles needed in final solution

Need: volume of stock that contains the required # of moles

moles NH_4SO_4 needed: 2.5 L(0.3 mol/L) Volume of stock: moles NH_4SO_4 needed(1/4.2 M (NH_4)₂SO₄) Volume stock = 2.5L(0.3mol/L)(1L stock/4.2mol stock)=0.18 L

Titration

Titration

[HCI] < [NaOH]

[HCI] = [NaOH]

[HCI] > [NaOH]

Add one reagent that reacts with another gradually, until the reagent is used up. Then determine amt. of reagent, if you know concentration of soln. added.

HCI + NaOH ----> NaCI + H_2O

Example

0.172 L of an NaOH solution is titrated to its endpoint with 80.32 mL of a 0.0423 M solution of HCI. What was the concentration of the NaOH solution?

HCI + NaOH ----> NaCI + H_2O

- [M] 0.0423 ?
- V 0.08032 L 0.172L

moles ??? ?? Need: moles HCI added = moles NaOH in unknown solution moles HCI = 0.08032 L(0.0423 mol/L) = 0.00339 mole HCI 0.00339 mole HCI = 0.00339 mol NaOH in unknown solution.

Demonstration:

 $2Mg + CO_2 ----> 2MgO + C (charcoal)$

Oxidation-Reduction Reactions

- An oxidation occurs when an atom or ion *loses* electrons.
- A reduction occurs when an atom or ion gains electrons.

Oxidation-Reduction Reactions

Substance **oxidized** (loses electron)

Substance reduced (gains electron)

One cannot occur without the other.

To determine if an oxidation-reduction reaction has occurred, we assign an oxidation number to each element in a neutral compound or charged entity.

Book-keeping for electrons

Assigning Oxidation Numbers

- Elements in their elemental form have an oxidation number of 0.
- The oxidation number of a monatomic ion is the same as its charge.

Na oxidation number 0 Na⁺ oxidation number +1

Assigning Oxidation Numbers

- Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions (when they are bound to other nonmetals).
 - Oxygen has an oxidation number of -2, except in the peroxide ion (O₂²⁻) in which it has an oxidation number of -1.
 CO₂, H₂O, CaO etc. O has -2 oxidation number
 - ➢ Hydrogen is −1 when bonded to a metal, +1 when bonded to a nonmetal.
 - NaH H has -1 oxidation number
 - HCI H has +1 oxidation number
 - > CH₄ H has +1 oxidation number

- Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions.
 - > Fluorine always has an oxidation number of -1.
 - The other halogens have an oxidation number of -1 when the oxidation number is negative;
 - they can have positive oxidation numbers, however, most notably in oxyanions.
 - ≻CCl₄, HCl, Cl o.n. -1
 - ClO₄- Cl o.n. +7 (must be because O is always negative)
 HCOCI Cl o.n. -1

- The sum of the oxidation numbers in a neutral compound is 0.
- The sum of the oxidation numbers in a polyatomic ion is the charge on the ion.

 CCI_4 Cl o.n. -1 -1(4) = -4. C o.n. +4

 $CIO_4^- O: -2(4) = -8 CI: +7 (7-8=-1)$

Displacement Reactions

- In displacement reactions, ions oxidize an element.
- The ions, then, are reduced.

A + BX -----> AX + B $2Li(s) + 2HBr ----> LiBr + H_2$ $Na(s) + AgNO_3 ----> NaNO_3 + Ag(s)$

Displacement Reactions

 $Cu(s) + 2 \operatorname{Ag}^+(aq) \longrightarrow Cu^{2+}(aq) + 2 \operatorname{Ag}(s)$

Displacement Reactions

The reverse reaction, however, does not occur.

 $Cu^{2+}(aq) + 2 Ag(s) \longrightarrow Cu(s) + 2 Ag^{+}(aq)$

Why not??

Activity Series

Oxidation Reaction			
$\text{Li}(s) \longrightarrow$	$Li^+(aq)$	+	e ⁻
$K(s) \longrightarrow$	$K^+(aq)$	+	e ⁻
$Ba(s) \longrightarrow$	$Ba^{2+}(aq)$	+	$2e^{-}$
$Ca(s) \longrightarrow$	$Ca^{2+}(aq)$	+	$2e^{-}$
$Na(s) \longrightarrow$	$Na^+(aq)$	+	e
$Mg(s) \longrightarrow$	$Mg^{2+}(aq)$	+	$2e^{-}$
Al(s) \longrightarrow	$Al^{3+}(aq)$	+	3e ⁻
$Mn(s) \longrightarrow$	$Mn^{2+}(aq)$	+	$2e^{-}$
$Zn(s) \longrightarrow$	$Zn^{2+}(aq)$	+	$2e^{-}$
$Cr(s) \longrightarrow$	$Cr^{3+}(aq)$	+	3e ⁻
$Fe(s) \longrightarrow$	$Fe^{2+}(aq)$	+	$2e^{-}$
$Co(s) \longrightarrow$	$Co^{2+}(aq)$	+	$2e^{-}$
Ni(s) \longrightarrow	$Ni^{2+}(aq)$	+	$2e^{-}$
$Sn(s) \longrightarrow$	$\operatorname{Sn}^{2+}(aq)$	+	$2e^{-}$
$Pb(s) \longrightarrow$	$Pb^{2+}(aq)$	+	$2e^{-}$
$H_2(g) \longrightarrow$	2 H ⁺ (<i>aq</i>)	+	2e ⁻
$Cu(s) \longrightarrow$	$Cu^{2+}(aq)$	+	$2e^{-}$
$Ag(s) \longrightarrow$	$Ag^+(aq)$	+	e ⁻
$Hg(l) \longrightarrow$	$\mathrm{Hg}^{2+}(aq)$	+	$2e^{-}$
$Pt(s) \longrightarrow$	$Pt^{2+}(aq)$	+	$2e^{-}$
$Au(s) \longrightarrow$	$Au^{3+}(aq)$	+	3e ⁻
	Oxidation R $Li(s)$ \longrightarrow $K(s)$ \longrightarrow $Ba(s)$ \longrightarrow $Ba(s)$ \longrightarrow $Ca(s)$ \longrightarrow $Na(s)$ \longrightarrow $Mg(s)$ \longrightarrow $Al(s)$ \longrightarrow $Al(s)$ \longrightarrow $Cr(s)$ \longrightarrow $Cr(s)$ \longrightarrow $Co(s)$ \longrightarrow $Fe(s)$ \longrightarrow $Ni(s)$ \longrightarrow $Ni(s)$ \longrightarrow $Pb(s)$ \longrightarrow $H_2(g)$ \longrightarrow $Hg(l)$ \longrightarrow $Hg(l)$ \longrightarrow $Au(s)$ \longrightarrow	Oxidation ReactionLi(s) \longrightarrow Li ⁺ (aq)K(s) \longrightarrow K ⁺ (aq)Ba(s) \longrightarrow Ba ²⁺ (aq)Ca(s) \longrightarrow Ca ²⁺ (aq)Na(s) \longrightarrow Na ⁺ (aq)Mg(s) \longrightarrow Mg ²⁺ (aq)Al(s) \longrightarrow Al ³⁺ (aq)Mn(s) \longrightarrow Mn ²⁺ (aq)Zn(s) \longrightarrow Zn ²⁺ (aq)Cr(s) \longrightarrow Cr ³⁺ (aq)Fe(s) \longrightarrow Fe ²⁺ (aq)Co(s) \longrightarrow Co ²⁺ (aq)Ni(s) \longrightarrow Ni ²⁺ (aq)Sn(s) \longrightarrow Sn ²⁺ (aq)Pb(s) \longrightarrow Pb ²⁺ (aq)H ₂ (g) \longrightarrow 2 H ⁺ (aq)Cu(s) \longrightarrow Cu ²⁺ (aq)Hg(l) \longrightarrow Hg ²⁺ (aq)Hg(l) \longrightarrow Hg ²⁺ (aq)Hg(l) \longrightarrow Hg ²⁺ (aq)Hg(l) \longrightarrow Hg ²⁺ (aq)Au(s) \longrightarrow Au ³⁺ (aq)	Oxidation ReactionLi(s) \longrightarrow Li ⁺ (aq) +K(s) \longrightarrow K ⁺ (aq) +Ba(s) \longrightarrow Ba ²⁺ (aq) +Ca(s) \longrightarrow Ca ²⁺ (aq) +Na(s) \longrightarrow Na ⁺ (aq) +Mg(s) \longrightarrow Mg ²⁺ (aq) +Al(s) \longrightarrow Al ³⁺ (aq) +Mn(s) \longrightarrow Mn ²⁺ (aq) +Cr(s) \longrightarrow Cr ³⁺ (aq) +Fe(s) \longrightarrow Fe ²⁺ (aq) +Co(s) \longrightarrow Co ²⁺ (aq) +Ni(s) \longrightarrow Ni ²⁺ (aq) +Ni(s) \longrightarrow Ni ²⁺ (aq) +Hq(s) \longrightarrow Pb ²⁺ (aq) +Hq(s) \longrightarrow Cu ²⁺ (aq) +Hq(s) \longrightarrow Cu ²⁺ (aq) +Hq(s) \longrightarrow Ag ⁺ (aq) +Hq(s) \longrightarrow Athresical Addition

Ease of axidation increases

Metal	Civity Series Oxidation Reaction	What happens?
Lithium Potassium Barium Calcium Sodium Magnesium Aluminum Manganese Zinc Chromium Iron Cobalt Nickel Tin Lead Hydrogen Copper Silver Mercury Platinum Gold	Li(s) \longrightarrow Li ⁺ (aq) + e ⁻ K(s) \longrightarrow K ⁺ (aq) + e ⁻ Ba(s) \longrightarrow Ba ²⁺ (aq) + 2e ⁻ Ca(s) \longrightarrow Ca ²⁺ (aq) + 2e ⁻ Na(s) \longrightarrow Na ⁺ (aq) + e ⁻ Mg(s) \longrightarrow Mg ²⁺ (aq) + 2e ⁻ Al(s) \longrightarrow Al ³⁺ (aq) + 3e ⁻ Mn(s) \longrightarrow Mn ²⁺ (aq) + 2e ⁻ Cr(s) \longrightarrow Cr ³⁺ (aq) + 2e ⁻ Cr(s) \longrightarrow Cr ³⁺ (aq) + 2e ⁻ Ni(s) \longrightarrow Ni ²⁺ (aq) + 2e ⁻ H ₂ (g) \longrightarrow 2H ⁺ (aq) + 2e ⁻ H ₂ (g) \longrightarrow 2H ⁺ (aq) + 2e ⁻ H ₂ (g) \longrightarrow Cu ²⁺ (aq) + 2e ⁻ H ₂ (g) \longrightarrow Cu ²⁺ (aq) + 2e ⁻ H ₂ (g) \longrightarrow Cu ²⁺ (aq) + 2e ⁻ Ag(s) \longrightarrow Ag ⁺ (aq) + 2e ⁻ H ₃ (l) \longrightarrow Hg ²⁺ (aq) + 2e ⁻ Au(s) \longrightarrow Au ³⁺ (aq) + 3e ⁻	Li + H ₂ > ?? Li + H ⁺ > ? Mn(s) + Fe ²⁺ > ? Cr(s) + K ⁺ > ? Ca(s) + Zn(s) + Mg ²⁺

?

Oxidation reduction reactions

A more complicated redox reaction:

 $P_{4} + 5O_{2} ----> P_{4}O_{10} +5 -2$ $P \qquad 0$ +5(4) = 20 -2(10) = -20

electrons hop from P to O redox reaction

Acid/base reaction is next:

 $P_4O_{10} + 6H_2O$ -----> $4H_3PO_4$ acidic solution

