chapter 3 stoichiometry:

Calculations with Chemical Formulas and Equations

Anatomy of a Chemical Equation

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

$+$

$\left(\begin{array}{ll}1 & C \\ 4 & H\end{array}\right)$
(4 O)
$\left(\begin{array}{ll}1 & C \\ 2 & \mathrm{O}\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$

Anatomy of a Chemical Equation

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Reactants appear on the left side of the equation.

Anatomy of a Chemical Equation

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Products appear on the right side of the equation.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The states of the reactants and products are written in parentheses to the right of each compound.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$\binom{1 \mathrm{C}}{4 \mathrm{H}}$
(4 O)
$\left(\begin{array}{ll}1 & C \\ 2 & \mathrm{O}\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$
Coefficients are inserted to balance the equation.
Balance: making the reaction agree with the conservation of mass.

Subscripts and Coefficients Give Different Information

- Subscripts tell the number of atoms of each element in a molecule

Subscripts and Coefficients Give Different Information

- Subscripts tell the number of atoms of each element in a molecule or compound
- Coefficients tell the number of molecules or entities. (compounds).

Examples of Reactions

Combination Reactions

- Examples:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
$\mathrm{C}_{3} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{Br}_{2(1)} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2(1)}$
$2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{MgO}_{(\mathrm{s})}$

Decomposition Reactions

One reactant decomposes to more than one or more products

- One substance breaks down into two or more substances
- Examples:
$\mathrm{CaCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}$
$2 \mathrm{NaN}_{3(s)} \longrightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}$

combustion Reactions

- Rapid reactions that have oxygen as a reactant
- sometimes produces a flame
- Most often involve hydrocarbons reacting with oxygen in the air to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
- For our purposes combustion will mean:
- Oxygen reacting with something to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
- Examples:
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Formula
weights

The amuu unit

- Defined (since 1961) as:
- $1 / 12$ mass of the ${ }^{12} \mathrm{C}$ isotope.
- ${ }^{12} \mathrm{C}=12 \mathrm{amu}$

Formula Weight (FW)

- Sum of the atomic weights for the atoms in a chemical formula
- So, the formula weight of calcium chloride, CaCl_{2}, would be

Ca: 1 (40.1 amu)

+ CI: $2(35.5 \mathrm{amu})$
111.1 amu
- These are generally reported for ionic compounds

Molecular Weight (MW)

- Sum of the atomic weights of the atoms in a molecule
- For the molecule ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, the molecular weight would be

$$
\begin{array}{r}
\text { C: } 2(12.0 \mathrm{amu}) \\
+\mathrm{H}: \quad 6(1.0 \mathrm{amu}) \\
\hline 30.0 \mathrm{amu}
\end{array}
$$

Percent Composition

The percent composition by element:

(\# of atoms of element)(atomic weight)
 $\%$ element $=\frac{(F W \text { or MW of the compound })}{} \times 100$

Percent Composition

So the percentage of carbon and hydrogen in ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right.$, molecular mass $=30.0$) is:

$$
\% \mathrm{C}=\frac{(2)(12.0 \mathrm{amu})}{(30.0 \mathrm{amu})}=\frac{24.0 \mathrm{amu}}{30.0 \mathrm{amu}} \times 100=80.0 \%
$$

$$
\% \mathrm{H}=\frac{(6)(1.01 \mathrm{amu})}{(30.0 \mathrm{amu})}=\frac{6.06 \mathrm{amu}}{30.0 \mathrm{amu}} \times 100=20.0 \%
$$

Moles

Making a Chemical Equation

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}-\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

How do I know how much methane and oxygen I need? My scale says grams, not number of atoms or molecules.x

Atomic mass unit and the mole

- amu definition: ${ }^{12} \mathrm{C}=12 \mathrm{amu}$.
- The atomic mass unit is defined this way.
- $1 \mathrm{amu}=1.6605 \times 10^{-24} \mathrm{~g}$
- How many ${ }^{12} \mathrm{C}$ atoms weigh 12 g ?
- $6.02221409 \times 10^{23}{ }^{12} \mathrm{C}$ weigh 12 g .
- Avogadro's number
- The mole

Atomic mass unit and the mole

- amu definition: ${ }^{12} \mathrm{C}=12 \mathrm{amu}$.
- $1 \mathrm{amu}=1.6605 \times 10^{-24} \mathrm{~g}$
- How many ${ }^{12} \mathrm{C}$ atoms weigh 12 g ?
- $6.0221409 \times 10^{23}{ }^{12} \mathrm{C}$ weigh 12 g .
- Avogadro’ s number
- The mole
- \#atoms $=\left(1^{12} \mathrm{C}\right.$ atom/12 amu $)\left(1 \mathrm{amu} / 1.66 \times 10^{-24}\right.$ $\mathrm{g})(12 \mathrm{~g})=6.02 \times 10^{23}{ }^{12} \mathrm{C}$ atoms weigh 12 g

Therefore:

- 6.02×10^{23}
- 1 mole of ${ }^{12} \mathrm{C}$ has a mass of 12 g
- 1 mole of $\mathrm{H}_{2} \mathrm{O}$ has a mass of 18.0 g !

The mole

- The mole is just a number of things
- 1 dozen $=12$ things
- 1 pair $=2$ things
- 1 mole $=6.022141 \times 10^{23}$ things
- 6.022141×10^{23} atoms/mole
- SO
- 1 mole C atoms $=6.022 \times 10^{23} \mathrm{C}$ atoms

Molar Mass The trick:

- By definition, this is the mass of 1 mol of a substance (i.e., g/mol)
- The molar mass of an element is the mass number for the element that we find on the periodic table
- The formula weight (in amu's) will be the same number as the molar mass (in $\mathrm{g} / \mathrm{mol}$)

Using Moles

Moles provide a bridge from the molecular scale to the real-world scale
The number of moles correspond to the number of molecules. 1 mole of any substance has the same number of molecules.

Mole Relationships

Name of substance	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.022 \times 10^{23} \mathrm{~N}$ atoms
Molecular nitrogen	N_{2}	28.0	28.0	$\left\{\begin{array}{c} 6.022 \times 10^{23} \mathrm{~N}_{2} \text { molecules } \\ 2\left(6.022 \times 10^{23}\right) \mathrm{N} \text { atoms } \end{array}\right.$
Silver	Ag	107.9	107.9	$6.022 \times 10^{23} \mathrm{Ag}$ atoms
Silver ions	Ag^{+}	$107.9^{\text {a }}$	107.9	$6.022 \times 10^{23} \mathrm{Ag}^{+}$ions
Barium chloride	BaCl_{2}	208.2	208.2	$\left\{\begin{aligned} & 6.022 \times 10^{23} \mathrm{BaCl}_{2} \text { units } \\ & 6.022 \times 10^{23} \mathrm{Ba}^{2+} \text { ions } \\ & 2\left(6.022 \times 10^{23}\right) \mathrm{Cl}^{-} \text {ions } \end{aligned}\right.$

${ }^{a}$ Recall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

- One mole of atoms, ions, or molecules contains Avogadro's number of those particles
- One mole of molecules or formula units contains Avogadro's number times the number of atoms or ions of each element in the compound

$$
\begin{aligned}
& \text { Finding } \\
& \text { Empirical } \\
& \text { Formulas }
\end{aligned}
$$

Combustion Analysis gives \% composition

- Compounds containing C, H and O are routinely analyzed through combustion in a chamber like this
$-\% \mathrm{C}$ is determined from the mass of CO_{2} produced
$-\% \mathrm{H}$ is determined from the mass of $\mathrm{H}_{2} \mathrm{O}$ produced
- \%O is determined by difference after the C and H have been determined

Calculating Empirical Formulas

Find:

One can calculate the empirical formula from the percent composition

Calculating Empirical Formulas

The compound para-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen) is composed of carbon (61.31\%), hydrogen (5.14\%), nitrogen (10.21\%), and oxygen (23.33\%). Find the empirical formula of PABA.

Calculating Empirical Formulas

1. Assuming 100.00 g of para-aminobenzoic acid, find out how many moles of each element are in that 100 g .:

C: $\quad 61.31 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12.01 \mathrm{~g}}=5.105 \mathrm{~mol} \mathrm{C}$
H: $\quad 5.14 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{1.01 \mathrm{~g}}=5.09 \mathrm{~mol} \mathrm{H}$
$\mathrm{N}: \quad 10.21 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{14.01 \mathrm{~g}}=0.7288 \mathrm{~mol} \mathrm{~N}$
O: $\quad 23.33 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=1.456 \mathrm{~mol} \mathrm{O}$

Calculating Empirical Formulas

2. Calculate the mole ratio by dividing moles of each element by the number of moles of the element with the least number of moles:

$$
\begin{aligned}
& \mathrm{C}: \frac{5.105 \mathrm{~mol}}{0.7288 \mathrm{~mol}}=7.005 \approx 7 \\
& \mathrm{H}: \frac{5.09 \mathrm{~mol}}{0.7288 \mathrm{~mol}}=6.984 \approx 7 \\
& \mathrm{~N}: \frac{0.7288 \mathrm{~mol}}{0.7288 \mathrm{~mol}}=1.000 \\
& \mathrm{O}: \frac{1.458 \mathrm{~mol}}{0.7288 \mathrm{~mol}}=2.001 \approx 2
\end{aligned}
$$

Calculating Empirical Formulas

These are the subscripts for the empirical formula:

$$
\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}
$$

Elemental Analyses

Compounds
containing other
elements are analyzed using methods analogous to those used for C, H and O

Stoichiometric Calculations

Equation:	$2 \mathrm{H}_{2}(\mathrm{~g})$	$+$	$\mathrm{O}_{2}(\mathrm{~g})$	\longrightarrow	$2 \mathrm{H}_{2} \mathrm{O}(l)$
Molecules:	2 molecules H_{2}	$+$	1 molecule O_{2}	\longrightarrow	2 molecules $\mathrm{H}_{2} \mathrm{O}$
			(3)		
Mass (amu):	4.0 amu H 2	+	$32.0 \mathrm{amu} \mathrm{O}_{2}$	\rightarrow	36.0 amu $\mathrm{H}_{2} \mathrm{O}$
Amount (mol):	2 mol H	$+$	1 mol O 2	\longrightarrow	$2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
Mass (g):	$4.0 \mathrm{~g} \mathrm{H}_{2}$	+	$32.0 \mathrm{~g} \mathrm{O}_{2}$	\rightarrow	$36.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

The coefficients in the balanced equation give the ratio of moles of reactants and products

Stoichiometric Calculations
 $\mathrm{A}_{(\mathrm{g})}+2 \mathrm{~B}_{(\mathrm{g})} \longrightarrow \mathrm{C}_{(\mathrm{g})}+2 \mathrm{D}_{(\mathrm{g})}$

Given:

Stoichiometric Calculations

Example: 10 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ react in a combustion reaction with excess oxygen. How many grams of each product are produced?

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
10 . \mathrm{g} & \longrightarrow ?+?
\end{aligned}
$$

Starting with 10. g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \ldots$

1. calculate the moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \ldots$
2. use the coefficients to find the moles of $\mathrm{H}_{2} \mathrm{O} \& \mathrm{CO}_{2}$
3. then turn the moles to grams of $\mathrm{H}_{2} \mathrm{O} \& \mathrm{CO}_{2}$

Stoichiometric calculations

$$
\begin{array}{llll}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} & \rightarrow 6 \mathrm{CO}_{2} & +6 \mathrm{H}_{2} \mathrm{O} \\
10 . \mathrm{g} & & \longrightarrow & ? \\
\text { MW: } 180 \mathrm{~g} / \mathrm{mol} & & & ? \\
44 \mathrm{~g} / \mathrm{mol} & & \text { 18g/mol. 1. (what 's known) }
\end{array}
$$

How many grams of oxygen reacted?

Stoichiometric calculations

How many grams of oxygen reacted?

Stoichiometric calculations

How many grams of oxygen reacted?

Stoichiometric calculations

How many grams of oxygen reacted?

Stoichiometric calculations

How many grams of oxygen reacted?
$15+5.9-10=10.9 \mathrm{~g}$

$$
\begin{gathered}
\text { Limiting } \\
\text { Reactants }
\end{gathered}
$$

How Many Cookies Can I Make?

- You can make cookies until you run out of one of the ingredients
- Once you run out of sugar, you will stop making cookies

How Many Cookies Can I Make?

- In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make

Limiting Reactants

- The limiting reactant is the reactant present in the smallest stoichiometric amount

Before reaction

$10 \mathrm{H}_{2}$ and $7 \mathrm{O}_{2}$
\#moles

Left:

14
10
0

After reaction

$10 \mathrm{H}_{2} \mathrm{O}$ and $2 \mathrm{O}_{2}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2}$-------> $2 \mathrm{H}_{2} \mathrm{O}$

10
10

Limiting Reactants

In the example below, the O_{2} would be the excess reagent

Before reaction

$10 \mathrm{H}_{2}$ and $7 \mathrm{O}_{2}$

After reaction

$10 \mathrm{H}_{2} \mathrm{O}$ and $2 \mathrm{O}_{2}$

Limiting reagent, example:

Soda fizz comes from sodium bicarbonate and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ reacting to make carbon dioxide, sodium citrate $\left(\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ and water. If 1.0 g of sodium bicarbonate and 1.0 g citric acid are reacted, which is limiting? How much carbon dioxide is produced?

$3 \mathrm{NaHCO}_{3(a q)}+$	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7(\mathrm{aq})}-\cdots--->$	$3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$	
1.0 g	1.0 g		
$84 \mathrm{~g} / \mathrm{mol}$	$192 \mathrm{~g} / \mathrm{mol}$	$44 \mathrm{~g} / \mathrm{mol}$.	(knowns)

Limiting reagent, example:

Soda fizz comes from sodium bicarbonate and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ reacting to make carbon dioxide, sodium citrate $\left(\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ and water. If 1.0 g of sodium bicarbonate and 1.0 g citric acid are reacted, which is limiting? How much carbon dioxide is produced?

$3 \mathrm{NaHCO}_{3(\text { aq })}+$	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7(\text { aq })}----->$	$3 \mathrm{CO}_{2}(\mathrm{~g})+$	$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$
1.0 g	1.0 g		
$84 \mathrm{~g} / \mathrm{mol}$	$192 \mathrm{~g} / \mathrm{mol}$	$44 \mathrm{~g} / \mathrm{mol}$.	(knowns)
$1.0 \mathrm{~g}(1 \mathrm{~mol} / 84 \mathrm{~g})$	$1.0 \mathrm{~g}(1 \mathrm{~mol} / 192 \mathrm{~g})$		
0.012 mol	0.0052 mol		(calculate moles)

Limiting reagent, example:

Soda fizz comes from sodium bicarbonate and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ reacting to make carbon dioxide, sodium citrate $\left(\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ and water. If 1.0 g of sodium bicarbonate and 1.0 g citric acid are reacted, which is limiting? How much carbon dioxide is produced?

$3 \mathrm{NaHCO}_{3(\text { aq })}+$	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7(\text { aq })}-\cdots--->$	$3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$
1.0 g	1.0 g	
$84 \mathrm{~g} / \mathrm{mol}$	$192 \mathrm{~g} / \mathrm{mol}$	$44 \mathrm{~g} / \mathrm{mol}$. (knowns)
$1.0 \mathrm{~g}(1 \mathrm{~mol} / 84 \mathrm{~g})$	$1.0 \mathrm{~g}(1 \mathrm{~mol} / 192 \mathrm{~g})$	
0.012 mol	0.0052 mol	(calculate moles)

(Make an assumption)
(if citrate limiting)
$0.0052(3)=0.016$ moles bicarbonate, but only have 0.012 moles
Bummer, wrong assumption.

Limiting reagent, example:

Soda fizz comes from sodium bicarbonate and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ reacting to make carbon dioxide, sodium citrate $\left(\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ and water. If 1.0 g of sodium bicarbonate and 1.0 g citric acid are reacted, which is limiting? How much carbon dioxide is produced?

```
3NaHCO
```

1.0 g
$84 \mathrm{~g} / \mathrm{mol}$
$1.0 \mathrm{~g}(1 \mathrm{~mol} / 84 \mathrm{~g}) \quad 1.0 \mathrm{~g}(1 \mathrm{~mol} / 192 \mathrm{~g})$
0.012 mol
$192 \mathrm{~g} / \mathrm{mol} \quad 44 \mathrm{~g} / \mathrm{mol}$
(if citrate limiting)
$0.0052(3)=0$.
So bicarbonate limiting:
0.012 mol
$0.012(1 / 3)=.0040 \mathrm{~mol} \quad 0.012$ moles CO_{2}
$44 \mathrm{~g} / \mathrm{mol}(0.012 \mathrm{~mol})=0.53 \mathrm{~g} \mathrm{CO}_{2}$
.0052-.0040=.0012mol left
$0.0012 \mathrm{~mol}(192 \mathrm{~g} / \mathrm{mol})=$ 0.23 g left .

Theoretical Yield

- The theoretical yield is the amount of product that can be made
- In other words it's the amount of product possible from stoichiometry. The "perfect reaction."
- The actual yield is the amount actually produced.

Percent Yield

A comparison of the amount actually obtained to the amount it was possible to make

Percent Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100$

Example

Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ reacts with Bromine to produce bromobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$ and hydrobromic acid. If 30 g of benzene reacts with 65 g of bromine and produces 56.7 g of bromobenzene, what is the percent yield of the reaction?

$\mathrm{C}_{6} \mathrm{H}_{6}$	Br_{2}------>	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	+ HBr
30.9	65 g	56.7 g	(knowns)
$78 \mathrm{~g} / \mathrm{mol}$	$160 . \mathrm{g} / \mathrm{mol}$	157g/mol	
$30 . \mathrm{g}(1 \mathrm{~mol} / 78 \mathrm{~g})$	$65 \mathrm{~g}(1 \mathrm{~mol} / 160 \mathrm{~g})$.		
0.38 mol	0.41 mol		(moles)
(If Br_{2} limiting)			
0.41 mor	0.41 mol		(assumption)
(If $\mathrm{C}_{6} \mathrm{H}_{6}$ limiting)			
0.38 mol	0.38 mol	$0.38 \mathrm{~mol}(1$ $56.7 \mathrm{~g} / 60$	$7 \mathrm{~g} / 1 \mathrm{~mol})=60 . \mathrm{g}$ $(100)=94.5 \%=95 \%$

Example, one more

React 1.5 g of NH_{3} with 2.75 g of O_{2}. How much NO and $\mathrm{H}_{2} \mathrm{O}$ is produced? What is left?

$4 \mathrm{NH}_{3}+$	$5 \mathrm{O}_{2}$------->	4NO	+	$6 \mathrm{H}_{2} \mathrm{O}$
1.5 g	2.75 g	?		?
$17 \mathrm{~g} / \mathrm{mol}$	$32 \mathrm{~g} / \mathrm{mol}$	$30 . \mathrm{g} / \mathrm{mol}$		$18 \mathrm{~g} / \mathrm{mol}$
$1.5 \mathrm{~g}(1 \mathrm{~mol} / 17 \mathrm{~g})=$	$2.75 \mathrm{~g}(1 \mathrm{~mol} / 32 \mathrm{~g})=$			
. 088 mol	. 086			
(If NH_{3} limiting): .088 mol	.088(5/4)= $/$ /			

O_{2} limiting:

$.086(4 / 5)=$.086 mol	$.086 \mathrm{~mol}(4 / 5)=$	$.086(6 / 5)=$
.069 mol		.069 mol	.10 mol
$.069 \mathrm{~mol}(17 \mathrm{~g} / \mathrm{mol})$		$.069 \mathrm{~mol}(30 . \mathrm{g} / \mathrm{mol})$	$.10 \mathrm{~mol}(18 \mathrm{~g} / \mathrm{mol})$
1.2 g	2.75 g	$\mathbf{2 . 1 \mathrm { g }}$	$\mathbf{1 . 8 \mathrm { g }}$

$1.5 \mathrm{~g}-1.2 \mathrm{~g}=.3 \mathrm{~g}$

Barking Dog

$2 \mathrm{HNO}_{3}+2 \mathrm{Cu}----->\mathrm{NO}+\mathrm{NO}_{2}+2 \mathrm{Cu}^{2+}+2 \mathrm{H}^{+}$
$3 \mathrm{NO}+\mathrm{CS}_{2}->3 / 2 \mathrm{~N}_{2}+\mathrm{CO}+\mathrm{SO}_{2}+1 / 8 \mathrm{~S}_{8}$
$4 \mathrm{NO}+\mathrm{CS}_{2}->2 \mathrm{~N}_{2}+\mathrm{CO}_{2}+\mathrm{SO}_{2}+1 / 8 \mathrm{~S}_{8}$

Gun powder reaction

$10 \mathrm{KNO}_{3(\mathrm{~s})}+3 \mathrm{~S}_{(\mathrm{s})}+8 \mathrm{C}_{(\mathrm{s})}--->2 \mathrm{~K}_{2} \mathrm{CO}_{3(\mathrm{~s})}+3 \mathrm{~K}_{2} \mathrm{SO}_{4(\mathrm{~s})}+6 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{~N}_{2(\mathrm{~g})}$ Salt peter sulfur charcoal And heat.

What is interesting about this reaction?
What kind of reaction is it?
What do you think makes it so powerful?

Gun powder reaction

Oxidizing agent	Oxidizing agent	Reducing agent
$10 \mathrm{KNO}_{3(\mathrm{~s})}$	$+3 \mathrm{~S}_{(\mathrm{s})}+8 \mathrm{C}_{(\mathrm{s})} \ldots--->$	$2 \mathrm{~K}_{2} \mathrm{CO}_{3(\mathrm{~s})}+3 \mathrm{~K}_{2} \mathrm{SO}_{4(\mathrm{~s})}+6 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{~N}_{2(\mathrm{~g})}$
Salt peter	sulfur charcoal	And heat.

What is interesting about this reaction?
Lots of energy, no oxygen
What kind of reaction is it?
Oxidation reduction
What do you think makes it so powerful and explosive?
Makes a lot of gas!!!!

White phosphorous and Oxygen under water

$2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{MgO}_{(s)}$

