TOTAL SYNTHESIS OF APLYDACTONE

Chenguang Liu, Rwnzhi Chen, Yang Shen, Zhanhao Liang, Yuhui Hua and Yandong Zhang*

Xiamen University, Fujian, China

Presenter: Arzoo Chhabra

APLYDACTONE

- Halogenated ladderane sesquiterpenoid natural product
- First disclosed by Stonik and coworkers in 2001
- possess an unprecedented **tetracyclic** skeleton
- Paper dedicated to Samuel Danishefsky
- "Spotted sea hare" Aplysia Dactylomela dwells in tropical seas and feast on algae that produces halogenated terpenoids.

RETROSYNTHETIC ANALYSIS

THE BIOSYNTHETIC RELATIONSHIP

CONFORMATIONAL ANALYSIS OF 6/4/4 RINGS

chair chair Twist boat boat

 Δ Ggas (kCal/mol) 0.0

2.0

1.5

SYNTHESIS

OH OH OH
$$\frac{\text{Zn, NH}_{4}\text{Cl}}{\text{Br}}$$
 OH $\frac{\text{Zn, NH}_{4}\text{Cl}}{\text{Br}}$ OH $\frac{\text{ThF, 90\%}}{\text{6}}$ OH $\frac{\text{EtOAc, 63\%}}{\text{9a/9b=3:2}}$ 9 $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{ThF, 65 °C}}{\text{OH}}$ $\frac{\text{OH}}{\text{Et}_{3}\text{N}}$ $\frac{\text{N}_{2}}{\text{Et}_{3}\text{N}}$ OH $\frac{\text{N}_{2}\text{OH}}{\text{Et}_{3}\text{N}}$ $\frac{\text{N}_{2}\text{OH}}{\text{N}_{2}\text{N}}$ $\frac{\text{N}_{2}\text{OH}}{\text{N}_{2}\text{N}}$ $\frac{\text{N}_{2}\text{OH}}{\text{N}_{2}\text{N}}$ $\frac{\text{N}_{2}\text{OH}}{\text{N}_{2}\text{N}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{2}\text{N}}{\text{N}_{2}}$ $\frac{\text{N}_{$

LDA

CONT..

12

NBS

DMP

CONT..

SYNTHESIS OF STARTING MATERIAL

Reference: Day-Shin Hsu, Chih-Hao Chen and Chi-Wei Hsu, Synthesis of Spiranes by Thiol-Mediated Acyl Radical Cyclization, *Eur J. Org. Chem.* **2016**,589

MECHANISM (WOLFF CONTRACTION)

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

FORMATION OF VINYL BROMIDE

Reference: D. P. Ojha, K. R. Prabhu, Org Lett. 2015, 17,18

C-H CARBENOID INSERTION MECHANISM

$$\operatorname{\mathsf{Rh}}_2(\operatorname{\mathsf{tfa}})_4$$
 $\operatorname{\mathsf{Rh}}_2(\operatorname{\mathsf{tfa}})_4$
 $\operatorname{\mathsf{Rh}}_2(\operatorname{\mathsf{tfa}})_4$
 $\operatorname{\mathsf{Rh}}_2(\operatorname{\mathsf{tfa}})_4$