
IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance 
 
The foundation of electronic spectroscopy is the exact solution of the time-independent 
Schrodinger equation for the hydrogen atom. This is the only atomic or molecular system for 
which there is an exact solution. 
 
In section I, the Bohr model of the hydrogen atom yielded correct energies with correlation of 
energy levels with the z-component of electronic orbital angular momentum. Greater angular 
momentum correlated with higher energy. 
 
The potential energy contribution to the Hamiltonian is the Coulombic interaction 
−(1/4πε 0)(e 

2/r). Polar coordinates (r, θ, φ ) are good for the hydrogen atom Schrodinger equation 
because the potential is radial: 
 
(2mr 

2)–1{–ħ 
2[d/dr(r 

2dψ/dr)] – ħ 
2[(1/sinθ ) d/dθ (sinθ dψ/dθ )] – ħ 

2[(1/sin2θ ) d 
2ψ/dφ 

2]} 
  

– (1/4πε 0)(e 
2/r)ψ  =  Eψ  (IV.1) 

 
The kinetic energy term in braces is split between the first term which only contains derivatives 
with respect to r and the second two terms which contain derivatives with respect to θ, φ . These 
second two terms are the squared angular momentum of the electron: 
 

(2mr 
2)–1{[(–ħ 

2 )d/dr (r 
2dψ/dr)] + L2ψ} – (1/4πε 0)(e 

2/r)ψ = Eψ   (IV.2) 
 
 L2 = L . L = (r × p) . (r × p)        (IV.3) 
 
 L = r × p = (x x + y y + z z) × –iħ {(d/dx ) x + (d/dy ) y + (d/dz ) z}   (IV.4) 
 
L2 can be written in spherical polar coordinates using the following equations: 
 
 x = r sinθ cosφ          (IV.5) 
 
 y = r sinθ sinφ          (IV.6) 
 
 z = r cosθ          (IV.7) 
 
In Eq. IV.2, the kinetic energy operator L2/2mr 

2 corresponds to the kinetic energy operator for an 
electron moving on a sphere of radius r. This operator is analogous to the kinetic energy operator 
of the radial atom Hamiltonian (Eq. II.39). The other kinetic energy operator in Eq. IV.2 
corresponds to kinetic energy along the r direction. 
 
Eq. IV.2 is solved by separation of variables: 
 

ψ(r,θ,φ ) = R(r)Y(θ ,φ )        (IV.8) 
 
 (2mr 

2)–1{[(–ħ2Y )d/dr (r 
2dR/dr)] + RL2Y } – (1/4πε 0)(e 

2/r)RY = E(RY )  (IV.9) 

 31



 
Note that L2 operates on Y which includes taking derivatives. Multiply Eq. IV.9 by 
2mr 

2/(RY ): 
 
 (–ħ 

2/R)d/dr (r 
2dR/dr) – (1/4πε 0)(2mre 

2) – 2mr 
2E + L2Y/Y = 0   (IV.10) 

 
The first three terms depend only on r while the last term depends only on θ and φ. Eq. (IV.10) is 
only possible for all r, θ, φ when the sum of the first three terms is equal to a constant and the 
last term is equal to –1 times that constant. With foresight, the constant is called –l (l + 1)ħ 

2 so 
that an equation can be written for the last term: 
 
 L2(Y ) = l (l + 1)ħ 

2Y          (IV.11) 
 
Consider: 
 
 Y(θ ,φ ) = Θ(θ ) Φ(φ )         (IV.12) 
 
Eq. IV.12 is rewritten using the expression for L2 from Eq. IV.1: 
  

–ħ 
2{[(1/sinθ ) d/dθ (sinθ d(ΘΦ)/dθ )] + [(1/sin2θ ) d 

2(ΘΦ)/dφ 
2]}  =  l (l + 1)ħ 

2 (ΘΦ) 

            (IV.13) 
 
Multiply Eq. IV.13 by –sin 

2θ /(ΘΦ): 
 
 ħ 

2 (sinθ /Θ) d/dθ (sinθ d Θ/dθ )  +  l (l + 1) ħ 
2 sin 

2θ  +  ħ 
2

 (1/Φ) d 
2Φ/dφ 

2  =  0 (IV.14) 
 
The first two terms depend only on θ and the last term depends only on φ. In order for the sum to 
be 0 for all θ, φ  , the first two terms and last term must be constants with opposite sign. Set the 
constants as m 

2
 ħ 

2 and –m 
2

 ħ 
2 . For the third term: 

 
 ħ 

2d 
2Φ/dφ 

2  =  –m 
2

 ħ 
2  Φ        (IV.15) 

 
  (–iħ d/dφ ) 

2 Φ =  m 
2

 ħ 
2  Φ        (IV.16) 

 
 Lz

2 Φ  =  m 
2

 ħ 
2  Φ         (IV.17) 

 
The eigenvalues and eigenfunctions for this equation are taken from Eqs. II.25 and II.41.   
 
 Φm(φ ) = (2π) 

–1/2 eimφ,  m = integer      (IV.18) 
 
These are the eigenfunctions of the angular momentum along the z direction. The eigenvalue for 
the projection of rotational angular momentum on the space-fixed z axis is mħ. This is the only 
cartesian projection of angular momentum which we know with certainty. 
 
The Θ eigenfunctions are the Legendre polynomials and are functions of cosθ :  
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 Θlm = Pl

|m| (cosθ )   l, m are integers with l ≥ 0    (IV.19) 
 
Ylm (θ,φ ) = Θlm (θ )Φm (φ ) are known as the spherical harmonics and a few representative 
normalized Ylm are presented: 
 
 |Y00〉 =  (1/4π)1/2

  
|Y10〉 =  (3/4π)1/2 cosθ 

  
|Y1±1〉 =  –+(3/8π)1/2 sinθ e 

±iφ

  
|Y20〉 = (5/16π)1/2 (3cos2θ  – 1)       (IV.20) 

  
|Y2±1〉 =  –+(15/8π)1/2 cosθ sinθ e 

±iφ

  
|Y2±2〉 =  (15/32π)1/2 sin 

2θ e 
±2iφ

 
Note: 
 

L2 |Ylm 〉  =  l (l + 1) ħ 
2

 |Ylm 〉        (IV.21) 
 

Lz |Ylm 〉  =  mħ |Ylm 〉         (IV.22) 
 
Lz

2 |Ylm 〉  =  m 
2ħ 

2
 |Ylm 〉         (IV.23) 

 
Note that 〈Lz

2
 〉 ≤ 〈L2

 〉 because the magnitude of angular momentum along one axis cannot be 
greater than the total magnitude of angular momentum. This physical limitation leads to the 
restriction |m| ≤ l . For example, for l = 2, m = –2, –1, 0, 1, 2. 
 
Ylm are commonly denoted by letters with l = 0, 1, 2, 3 referred to as s, p, d, and f orbitals. 
 
The parity or space inversion of Ylm has a (–1)l

 dependence.  The parity operation is described in 
cartesian coordinates by the operation x → –x, y → –y, z → –z or r → –r. In polar coordinates, 
the parity operation is described by θ → π – θ , φ → φ + π and: 
 
 Ylm (π – θ , φ + π) = (–1)l Ylm (π, φ )       (IV.24) 
 
The Ylm with even l have even parity and the Ylm with odd l have odd parity. The even parity Ylm 
do not change with coordinate inversion while the odd parity Ylm change sign with space 
inversion. 
 
The parity of the Ylm can be useful in calculating integrals over the angular θ, φ coordinates. An 
integral can only be non-zero if the parity of the total product of the wavefunctions and the 

 33



operator function is even. For two functions, odd × odd = even, even × even = even, and 
even × odd = odd.  
 
Consider the dipole selection rules for transition intensities between different RYlm  (Eq. III.21):  
 
I ∝ |〈 RYl2m2 | μ x | RYl1m1 〉|2 Є x 

2 +  |〈 RYl2m2 | μ y | RYl1m1 〉|2 Є y 

2  +  |〈 RYl2m2 | μ z | RYl1m1 〉|2 Є z 

2 (IV.25) 
 

〈 RYl2m2 | μ x | RYl1m1 〉 = – 〈 RYl2m2 | er sinθ cosφ | RYl1m1 〉 = – 〈 R | er | R 〉〈 Yl1m1 |  sinθ cosφ | Yl1m1 〉
 (IV.26) 

 
〈 RYl2m2 | μ y | RYl1m1 〉 = – 〈 RYl2m2 | er sinθ sinφ | RYl1m1 〉 = – 〈 R | er | R 〉〈 Yl2m2 |  sinθ sinφ | Yl1m1 〉 (IV.27) 

 
〈 RYl2m2 | μ z | RYl1m1 〉 =  – 〈 RYl2m2 | cosθ | RYl1m1 〉 =  – 〈 R | er | R 〉〈 Yl2m2 | cosθ | Yl1m1 〉  (IV.28) 
 
The integrals in Eqs. IV.26-28 are separated into r and θ, φ integrals. The dipole moment 
operator μ = – er and its three components μ x , μ y , and μ z  have odd parity and one dipole 
selection rule is that transitions only occur between Ylm with opposite parity. This is shown by 
Eqs. IV.26-28. Further analysis shows there are only non-zero transition dipole moments for 
Δl = ±1. 
 
The m selection rule can be derived from considering only the φ part of the transition dipole 
moment integrals. For the μ x component for a m 2 ← m 1 transition: 
 
 0 ∫ 

2π Φm2
* cosφ  Φm1 dφ  =  (2π)–1 0 ∫ 

2π e 
–im2φ cosφ  e 

im1φ  dφ   = 
 

(4π)–1 { 0 ∫ 
2π e 

–im2φ e 
iφ e 

im1φ  dφ   +  0 ∫ 
2π e 

–im2φ e 
–iφ e 

im1φ  dφ  } =  
 
(4π)–1 { 0 ∫ 

2π e 
i

 
(m1 – m2 + 1)

 
φ  dφ   +  0 ∫ 

2π e 
i

 
(m1 – m2 – 1)

 
φ  dφ  }    (IV.29) 

 
Each integral is only non-zero if the argument of the exponential is 0 and results in a Δm = ±1 
selection rule. Analysis of the μ y component also results in a Δm = ±1 selection rule and analysis 
of the μ z component results in a Δm = 0 selection rule. The overall m selection rule is then 
Δm = 0, ±1. 
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Magnetic Resonance 
 
Much of the quantum mechanics of angular momentum described for the electron can be directly 
applied to nuclear and electron spin magnetic resonance. Recall Eqs. I.2.23 and I.2.24 for the 
spin magnetic moment: 
 

μ  =  γ L =  γ ħ S  = γ ħ (Sx x + Sy y + Sz z)      (IV.30) 
 
S = L/ħ is the “spin operator” and is unitless. Assuming that Eqs. IV.21 and IV.22 are general for 
any angular momentum: 
 

S 
2 | S, m 〉  =  L 

2/ħ 
2 | S, m 〉  =  S (S + 1) | S, m 〉      (IV.31) 

 
Sz | S, m 〉  =  m | S, m 〉         (IV.32)  

 
There is a confusing convention that “ S ” refers both to the spin operator and to the spin 
quantum number S ≡ l. 
 
Unlike the orbital angular momentum of the electron which can have any integral l ≥ 0, S has a 
single integer or half-integer value specific to the electron or particular nuclear isotope. For 
example, S = ½ for e 

–, 1H, and 13C, S = 1 for 2H and 14N, and S = 3/2 for 23Na. The | m | ≤ S so 
that for 2H, m =  –1, 0, 1. 
 
A time-independent Schrodinger Equation for magnetic resonance in an external magnetic field 
BBext = B0 B z (Eq. I.2.22): 
 
 ,  | S, m 〉 = {–μ . BBext } | S, m 〉 = Em | S, m 〉      (IV.33) 
 
 {–γ ħ (Sx x + Sy y + Sz z) . BB0 z }| S, m 〉 = Em | S, m 〉     (IV.34) 
 
 –γ ħ BB0 Sz | S, m 〉 = Em | S, m 〉        (IV.35) 
 

Em = –γ ħ BB0 m          (IV.36) 
 
Determination of selection rules is aided by raising and lowering operators: 
 

S +  = L + / ħ  =  S x + i S y (raising operator)     (IV.37) 
     
 S –  = L – / ħ  =  S x – i S y   (lowering operator)     (IV.38) 
 
These operators have the properties: 
 
 S + | S, m 〉 = [S(S + 1) – m (m + 1)]1/2 | S, m + 1 〉     (IV.39) 
 
 S – | S, m 〉 = [S(S + 1) – m (m – 1)]1/2 | S, m – 1 〉     (IV.40) 
 

 35



The μ x transition dipole moment integral for the | S, m2 〉 ← | S, m1 〉 transition: 
 

〈 S, m2 | μ x | S, m1 〉 = (γ ħ /2 ){ 〈 S, m2 | S + | S, m1 〉 + 〈 S, m2 | S –  | S, m1 〉} 
 

= (γ ħ /2 ){[S(S + 1) – m (m + 1)]1/2 〈 S, m2 |  S, m1 + 1 〉 + [S(S + 1) – m (m – 1)]1/2 〈 S, m2 | S, m1 – 1 〉} 
 
            (IV.41) 
 
The first integral is non-zero for m2 = m1 + 1 and the second integral is non-zero for m2 = m1 – 1 
and result in a Δm = ±1 selection rule. This result is confirmed by the μ y and the μ z transition 
dipole moment integrals. 
 
The magnetic resonance transition frequency: 

 
ν  = γ BB0 / 2π          (IV.42) 

 
In addition to the large external field BB0 z, there are smaller internal magnetic fields within the 
molecule that vary with chemical and geometric structure. These internal or “local” fields are 
different for different nuclei and electrons and determination of these fields from the magnetic 
resonance spectrum provides most of the chemical and structural information. 
 
The most important internal fields are along the z direction: 
 
 B = (BB0 + Bint B ) z         (IV.43) 
 
 ν  = (γ /2π) (BB0 + Bint B )         (IV.44) 
 
For nuclear spins, the most important internal fields are due to chemical shielding. There are 
electronic currents induced by the external field and the chemical shielding fields are the 
magnetic fields of the induced currents (see page 1). The induced currents, chemical shielding, 
and NMR frequency depend on the chemical bonds of the nucleus: 
 

BBshield  =  – σ B0B  z         (IV.45) 
 
where σ  is typically positive and 10 

–6 < σ typical < 10 
–3 . Note that BBshield is typically antiparallel 

to BextB  and therefore reduces ν . 
 
The induced currents and σ  will also depend on the orientation of the chemical bonds in the 
magnetic field and this dependence is called the chemical shielding anisotropy. 
 
Inclusion of BBshield in Eq. IV.44: 
 
 νshield  = γ ħ BB0 (1 – σ )         (IV.46) 
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Experimental determination of σ  as defined in Eq. IV.44 is difficult because measurement of ν  
in a compound with σ = 0 corresponds to the nucleus with no electrons. It is more practical to 
measure Δν  and therefore σ  relative to some reference compound: 
 
 Δνshield  = – γ BB0σ / 2π         (IV.47) 
 
 δ  = – σ  = 2π Δνshield /γ BB0        (IV.48) 
 
The δ  is called the chemical shift and is typically reported in ppm. 
 
Another significant internal field is scalar or J-coupling : 
 
 BBscalar  =  – (2π JM /γ )  z        (IV.49) 
 
  νscalar  =  JM           (IV.50) 
 
In these equations, M refers to the m value of a nearby nuclear spin which has chemical bond 
connectivity with the nuclear spin undergoing a transition and J is a “coupling constant” 
particular to the two spins and their chemical bond connectivity. For example, J ~ 150 Hz for a 
directly bonded 1H-13C spin pair. 
 
In a typical sample, the nearby spin has nearly equal probabilities of being in any of its M states. 
A multiplet of transitions are observed and each transition corresponds to a different M value. 
For example, consider detection of 13C in a 1H-13C spin pair. S (1H) = ½ and J = 150 Hz: 
 
 M = ½  νscalar  =  J/2  =  75 Hz 
            (IV.51)  
 M = – ½    νscalar  =  – J/2  =  – 75 Hz 
 
 Δνscalar  = J = 150 Hz         (IV.52)  
 
The scalar fields result in splittings in the spectra. 
 
The chemical shift and scalar couplings are both sensitive to the local bonding of the nucleus and 
measurement of these parameters in the NMR spectrum is helpful in assignment of individual 
peaks to specific nuclei. Because the chemical shifts and scalar couplings of particular functional 
groups are well-known, NMR spectra are also very useful for determination of the chemical 
structures of unknown compounds. 
 
Distinguishing between Δνshield and Δνscalar is most straightforwardly done by taking NMR 
spectra at two different BB0 fields. Note that Δνshield ∝ B0B  while Δνscalar is independent of BB0. 
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Return to Hydrogen Atom 
 
The radial part of the time-independent Schrodinger equation for the hydrogen atom will now be 
solved. The first three terms of Eq. IV. 10: 
 

(–ħ 
2/R) d/dr (r 

2dR/dr) – (1/4πε 0)(2mre 
2) – 2mr 

2E  =  – ħ 
2

 l (l + 1)   (IV.53) 
 
Multiply by R / 2mr 

2 and rearrange terms: 
 

(–ħ 
2/ 2mr 

2 ) d/dr (r 
2dR/dr) + [(ħ 

2/ 2mr 
2 ) l (l + 1) – (1/4πε 0)(e 

2/r)]R  =  ER  (IV.54) 
 
The first term in this equation is the radial kinetic energy, the second term is the centrifugal 
potential, and the third term is the Coulomb potential. The centrifugal potential reflects the 
“conservation” of angular momentum; i.e. L2 = ħ 

2
 l (l + 1) ≡ constant. In order for L2 = |r × p|2 to 

be independent of r, p2 and the kinetic energy associated with angular motion (centrifugal 
potential) are proportional to r 

–2. The centrifugal potential is also apparent in the classical 
mechanics solution of two particles with an attractive radial potential. 
 
The R eigenfunctions are the associated Laguerre Polynomials Rnl (r) which are indexed by the 
radial or “principal” quantum number n, an integer greater to or equal to 1 and the angular 
momentum or “azimuthal” quantum number l with n > l , l = 0 ≡ s, l = 1 ≡ p, l = 2 ≡ d . 
 
 1s R10  =  (a 0) 

–3/2 2 e 
–r/a0        (IV.55) 

  
2s R20  =  (a 0) 

–3/2 (1/8)1/2 [2 – (r/a0)] e 
–2

 
r/a0     (IV.56) 

  
2p  R21  =  (a 0) 

–3/2 (1/24)1/2 (r/a0) e 
–2

 
r/a0      (IV.57)  

 
3s  R30  =  (a 0) 

–3/2 (1/243)1/2 [6 – (4r/a0) + (4r 
2/9a0

2 )] e 
–3

 
r/a0   (IV.58) 

 
3p R31  =  (a 0) 

–3/2 (1/486)1/2 [4 – (2r/3a0)] e 
–3

 
r/a0    (IV.59) 

 
3d  R32  =  (a 0) 

–3/2 (1/2430)1/2 (r /a0
 ) 

2 e 
–3

 
r/a0     (IV.60) 

 
The total eigenfunction: 
 

ψnlm (r, θ , φ ) = R nl (r) Ylm (θ , φ )       (IV.61) 
 
It is interesting to calculate the integrated probability for the electron over a spherical shell of 
radius r. This “radial probability density” is independent of θ , φ and is proportional to the 
surface area of the sphere = 4πr 2: 
 

(Radial probability density) nl  ∝  r 2 Rnl 
2      (IV.62) 

 
(Angular probability density) lm  ∝  Ylm

2      (IV.63) 
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The hydrogen atom enegy eigenvalues: 
 
 E = – (1/4πε 0)2 × (1/n 

2) × me 
4/2ħ 

2       (IV.64) 
 
This is the same solution as the Bohr atom semiclassical approach, Eq.1.2.9. Note though that the 
‘n’ in the Bohr atom is the component of angular momentum along the z axis. In the quantum 
mechanical solution, the Bohr atom ‘n’ is the “magnetic” quantum number ‘m’ whose value has 
no effect on the energy. In the quantum mechanical approach, the energy for a give n is 
independent of l and m. So, the energy (although not the wavefunction) is independent of the 
angular momentum. Note that as n increases, 〈 r  〉 increases, 〈 Vcoulomb  〉 increases, and E increases. 
 
Different eigenfunctions with the same energy are “degenerate”. For example, n = 1 has a 
degeneracy of 1 (1s), n = 2 has a degeneracy of 4 (1s, 2p), and n = 3 has a degeneracy of 9 (3s, 
3p, 3d ). 
 
The selection rule for changes in the radial quantum number n are calculated from the integration 
over r in Eqs. IV.26-IV.28 along with incorporation of the Δl = ±1 selection rule: 
 
 – 〈 Rn 2, l + 1 | er | R n 1 , l  〉         (IV.65) 
 
 – 〈 Rn 2, l – 1 | er | R n 1, l  〉         (IV.66) 
 
The radial quantum number selection rule: 
 
 Δn = anything           (IV.67) 
 
This selection rule and energy levels are consistent with the experimental hydrogen atom 
spectrum. 
 
One interesting aspect of the hydrogen atom is that although there is kinetic energy associated 
with θ , φ  motion, the total energy is only dependent on the the radial quantum number n: 
 
 〈 Lz

2/2mr 
2

 〉nl  =  [l (l + 1)ħ 
2/2m][〈 r –

 
2

 〉nl ]      (IV.68) 
 
 〈 – (1/4πε 0)(e 

2/r) 〉nl  =  – (e 
2/4πε 0)(〈r 

–1
 〉nl      (IV.69) 

 
In order for the 2s (l = 0) and 2p (l = 1) orbitals to have the same energy, 〈 r 

 〉 21 < 〈 r 
 〉 20 . In 

general, as l increases for fixed n, 〈 r 
 〉 nl decreases. The decreased Coulomb energy compensates 

for the increased angular kinetic energy. 
 
Because S = ½ for electrons, the total electron wavefunction is |ψnlm 〉|½ , m 〉 where the first part 
is the spatial function and the second part is the electron spin function. Each spatial function can 
be associated with either the m = ½ or the m = – ½ spin function. 
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The orbitals for atoms with larger numbers of electrons are based on the hydrogen atom orbitals. 
Electrons are fermions which means that there can be only one electron per hydrogen atom 
wavefunction. For example, the ten electrons in neon are considered to occupy all of the n = 1 
and n = 2 orbitals (5 spatial orbitals: 1s, 2s, 2p (m = – 1, 0, 1). 
 
The independence of energy on l for the hydrogen atom is not obtained for other atoms. The 
difference is interelectron repulsion. 
 
Understanding electronic structure in molecules begins with creation of atomic orbitals whose 
spatial orientations are the same as those of the chemical bonds. These orbitals are linear 
combinations of the hydrogen atom orbitals. For example, the l = 1, m = ±1 hydrogen orbitals 
have no preferred orientation in the xy plane but defined direction can be created by linear 
combinations of these orbitals. In particular: 
 
 ψpx ∝ (ψ1, +1  +  ψ1, –1 )  ∝  sinθ (e 

iφ  +  e 
–

 
iφ ) /2  =  sinθ cosφ      (IV.70) 

 
 ψpy ∝ (ψ1, +1  –  ψ1, –1 )  ∝  sinθ (e 

iφ  –  e 
–

 
iφ ) /2  =  sinθ sinφ      (IV.71) 

 
Some molecular electronic spectra are interpreted in terms of perturbed atomic orbitals. For 
example, visible spectra of first-row transition metal complexes are often interpreted in terms of 
3d ← 3d transitions of the metal ion. Directional 3d hydrogen atom orbitals are perturbed by the 
ligands of the complex. Note that these transitions violate the Δl = 1 selection rule for hydrogen 
atom transitions. 
 
Most molecular electronic spectra are understood as transitions between “molecular orbitals” 
which are linear combinations of atomic orbitals of different different atoms in the molecule. The 
individual atomic orbitals may be “hybridized” as linear combinations of the hydrogen atom 
orbitals which point along the chemical bond directions. A specific example is the tetrahedrally 
oriented 2sp 

3 orbitals of carbon which are formed from linear combinations of the 2s, 2px, 2py, 
and 2pz (l = 1, m = 0) orbitals. 
 
 ½ 2s  +  (3/4)½ 2pz points along z direction     (IV.72) 
 
 ½ 2s  –  (1/12)½ 2pz  +  (2/3)½ 2px lies in xz plane     (IV.73) 
 
 ½ 2s  –  (1/12)½ 2pz  –  (1/6)½ 2px  +  ( ½ )½ 2py     (IV.74) 
 
 ½ 2s  –  (1/12)½ 2pz  –  (1/6)½ 2px  –  ( ½ )½ 2py     (IV.75) 
 
Note that the four sp 

3 orbitals are orthonormal and that the total number of hybridized orbitals 
equals the number of input hydrogen atom orbitals. 
 
The hydrogen molecule with hydrogen atoms A and B is the simplest example of molecular 
orbitals: 
 

1sσ  ∝  1sA + 1sB         (IV.76) B
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1sσ 

*  ∝  1sA – 1sB         (IV.77) B

 
An electron in the 1sσ  “bonding” orbital has a higher probability of being between the two 
hydrogen nuclei than does an electron in the 1sA or the 1sB orbital. Electrons in this in-between 
region experience the attractive Coulomb interaction with both hydrogen nuclei and leads to 
lower overall energy relative to the atomic orbitals. 

B

 
An electron in the 1sσ 

* “anti-bonding” orbital has lower probability of being between the two 
nuclei and has higher energy relative to the atomic orbitals. 
 
Because they have opposite values of the spin quantum number m, the two electrons can both be 
in the 1sσ  orbital and form the chemical bond, i.e. a region of significant electron density 
between two nuclei. 
 
A π molecular orbital is formed by a linear combination of p atomic orbitals whose direction is 
perpendicular to the internuclear axes. 
 
Electronic spectral transitions are typically localized to molecular orbitals of a specific functional 
group within the molecule. In this context, the functional group is called a “chromophore”. 
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	The m selection rule can be derived from considering only the  part of the transition dipole moment integrals. For the ( x component for a m 2 ( m 1 transition:

