
Chemistry 882 Notes – Weliky 
 
I.1 Introduction 
 
Spectroscopy deals with the interaction of light with matter. Light and matter can be considered 
both as waves and as particles. First consider these two views for light. 
 
Light as a Transverse Electromagnetic Wave: We consider light which propagates (moves) in the 
x direction. There are associated electric and magnetic fields which oscillate perpendicular to 
each other and to the propagation direction. 
 
An electric field is created by any distribution of electric charges and exerts a force on other 
charges. For example, a point charge q1 has an associated electric field: 
 

Є(r) = (1/40)  (q1/r
3)  r        (1.1.1)  

 
where r is a vector whose origin is at the charge and (1/40) = 8.99  109 Newton-
meter2/coulomb2. The  means “times”. The constant 0 is the “permittivity of free space”. An SI 
unit of Є is Newton/coulomb (N/C). The electric field of q1 will exert a force on another charge 
q2: 
 

F(r) = q2  Є          (1.1.2)  
 
The energy of the two charges: 
 

E(r) =  
r
 –(F . dr)  = (1/40)  (q1q2/r)      (1.1.3) 

 
The “.” refers to the dot product between two vectors. The attractive negative force and energy of 
positively charged nuclei and negatively charged electrons is the basis of atomic and molecular 
stability. 
 
The electric potential V(r) of q1: 
 

 V(r) = 
r
 –(Є . dr)  =  (1/40)  (q1/r)  =  E(r)/q2     (1.1.4) 

 
The common SI unit of V is the Volt  Joule/Coulomb (J/C) and the common SI unit of Є is 
Volt/meter (V/m). 
 
The electric field of a charge exerts force on another charge and the electric potential of a charge 
gives rise to an electrostatic energy with another charge. 
 
A magnetic field is created by moving charges (i.e. electric currents) and exerts a force on other 
moving charges. For example, a solenoid coil whose axis is along the z direction with N 
turns/length and counterclockwise current I1 has a field B = 0NI1z where 0 is the “permeability 
of free space” and equals 4  10–7 kg-m/C2. The SI unit of B is kg/C-s or “Tesla” (T). 
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Now consider a current loop of area A and counterclockwise current I2. The current loop is 
considered to have “magnetic moment”  which is a vector with magnitude I2A  and direction 
perpendicular to the plane of the loop. In the uniaxial magnetic field, there is a torque on the 
current loop: 
 
 N =   B          (1.1.5) 
 
The “” refers to the cross product between two vectors. The energy is: 
 
 E = – . B          (1.1.6) 
 
N = 0 and most negative E are achieved when  and B are parallel. 
 
Let us return to electromagnetic radiation propagating along the x direction. The equations for 
the fields as a function of position and time are: 
 

Є(x, t)  = Є0 cos[2(kx – t) + ] y       (I.1.7) 
B(x, t)  = B0 cos[2(kx – t) + ] z       (I.1.8) 

 
Note that there is an oscillation in both position and in time and  is a “phase factor” and is just a 
number. 
 
These equations contain the wavenumber k and frequency . 
 
 k = 1/where  is the wavelength of the light.     (I.1.9) 
 = 1/T  where T is the time period of the light.     (I.1.10) 
 
The unit of k is commonly cm-1 while that of  is nearly always Hertz (Hz) or sec-1. 
 
The speed of the radiation is given: 
 

c =           
 
In vacuum, c = 2.997925  108 m/s in vacuum while in materials, the speed is reduced by 
nmaterial  1 where n is the index of refraction and has value 1 in vacuum. For example, n = 1.40 
for KCl. The frequency of the radiation is constant in all materials. The wavelength changes 
proportionally with the speed.   
 
Є0 and B0 are related: 
 
 B0 = Є0k/c         (1.1.12) 
 
The total energy of the wave is given: 
 
 E =  0Є0

2 cos2[2(kx – t) + ]      (1.1.13) 
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For cos2[2(kx – t) +  = ½ where   the average value over one period of the wave, E = 
 0Є0

2/2. Thus, the average energy of the radiation is proportional to the (electric field)2. 
 
Very often, we are only interested in the time variation of the fields at a particular position (x = 
0). We can then write a simplified set of equations: 
 

Є(x, t)  = Є0 cos[2t + ] y        (I.1.14) 
B(x, t)  = B0 cos[2t + ] z        (I.1.15)  

 
The  in Eqs. 1.1.14 and 1.1.15 have opposite sign to those in Eqs. 1.1.7 and 1.1.8. 
 
Light as a Particle: We consider light as a stream of particles (photons). The energy of each 
photon is: 
 
 E = h= hc/         (I.1.16)

The h refers to Planck’s constant and has value 6.626 x 10-34 Joule-sec. 
 
The electromagnetic spectrum is the whole range of light frequencies and energies. Different 
regions of the spectrum can be used to excite different kinds of motion in molecules. You should 
consider the spectral frequencies typical for NMR, ESR, rotational transitions, vibrational 
transitions, electronic transitions, a microwave oven, the cosmic interstellar background, and 
room temperature. 
 
Experimentally, it is known that energy levels in atoms and molecules are quantized (discrete). 
Light is used to excite transitions between these discrete energy levels. The energy level 
difference must satisfy the Bohr condition. 
 

E = h          (I.1.17)
 
The spectrum of a molecule is typically the energy absorbed or emitted by the molecule as a 
function of spectral frequency. Emission is divided into at least two categories, fluorescence and 
phosphorescence.  
 
Fluorescence is emission from the initial excited state or a nearby excited state.  
 
Sometimes, the initial excited state changes non-radiatively (without light) into a much lower 
energy state. This change is often the result of a collision with another molecule. The emission 
from this lower energy state is called phosphorescence and can last for ~ 1 sec. after the initial 
absorption. 
 
I.2. Orders of Magnitudes of Energy (from T. Oka, Atkins) 
 
I.2.A Atoms 
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In looking at the electromagnetic spectrum, one obvious question is: 
 
Why are certain electronic or nuclear motions excited by certain regions of the electromagnetic 
spectrum?  I give a semiquantitative answer to the question and will provide you with a 
framework for estimating atomic and molecular spectral parameters. 
 
We start with the Bohr (circular planetary orbit) model of the H atom. M is the mass of the 
proton and m is the mass of the electron.  
 

M = 1.67239  10-27 kg        (I.2.1) 
 m = 9.10908  10-31 kg        (I.2.2) 
 
Note that M ~ 2000m. Both the proton and electron have charge e = 1.602  10–19 Coulomb. 

 
 
 
 
 
 
 
 
 
 
 
 
 

v 
proton r electron 

 
 
 
 
To zeroth order, the electron orbits around the proton. 
 
In classical mechanics, this circular orbit requires equal magnitudes of centripetal and coulombic 
forces: 
 
 mv2/r = (1/40)  e2/r2         (I.2.3) 
 
Bohr’s insight was to quantize electronic orbital angular momentum in integral units of ħ = h/2. 
 
  L  =  r  p  =  r  mv   =  mrv = neħ  ne is a positive integer  (I.2.4) 
 
Bohr’s insight is consistent with the DeBroglie relationship: 
 
  = h/ p           (I.2.5)  
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This relationship is based on the hypothesis that a particle has an associated oscillation (“wave”) 
and that the wavelength of the oscillation is given by Eq. 1.2.5. It is reasonable that an integer 
times the DeBroglie wavelength should equal the circumference of the orbit so that the particle 
forms a “standing wave” in the orbit; i.e. there is constructive interference of the wave at all 
points along the circumference with each orbital revolution. 
 

2r = ne = neh/ p  = neh/mv  mrv = neħ      (1.2.6)  
 

Combining Eqs. I.2.3 and I.2.4:  
 
 v = (1/4 0)  e2/mrv = (1/4 0)  e2/neħ      (I.2.7) 
 
 r = (1/4 0)  e2/mv2 = (1/4 0)

–1  ne
2ħ2/me2     (I.2.8) 

 
Calculate total energy E by summing kinetic and potential energies using Eq. 1.2.3: 
 
 E = (mv2/2) – [(1/40)  (e2/r)]  =  – mv2/2  =  – (1/40)

2  (1/ne
2)  me4/2ħ2  (I.2.9) 

 
The quantity (1/4 0)

2  me4/2ħ2 is known as a Rydberg and has energy 13.6 eV  2.18  10–18 J 
 314 kcal/mol. A more meaningful spectroscopic quantity is E/hc which has units 1/wavelength:   

 
(1/4 0)

2  me4/4ħ3c = 109700 cm-1       (I.2.10) 
 
The H atom transitions will occur between smaller ne1 and larger ne2 at wavenumber: 
 
 E/hc = 109700 cm-1  (1/ne1

2 – 1/ne2
2 )      (I.2.11) 

 
The E/hc calculated from this equation agree very well with the transition wavenumbers 
measured in experimental H atom spectra. 
 
For ne1=1, E are in the ultraviolet, for ne1=2, the visible, and ne1=3, the near infrared. This gives 
us an order of magnitude about the spectral regions reasonable for electronic transitions. 
 
It is observed that these spectral regions correlate with electronic transitions of all molecules 
which is consistent with the idea that electronic transitions are localized to particular functional 
groups in molecules. The electrons associated with the transition are contained in a region with 
dimension of order-of-magnitude of the H atom. 
 
The Bohr atom equations show v  1/ne , r  ne

2 , and E  –1/ne
2

 . As ne increases, the velocity 
and kinetic energy decrease, the radius and potential energy increase, and the overall energy 
increases.  
 
For the ne=1 lowest energy state: 
 
 v/c = (1/4 0)  e2/ħc ~ 1/137       (I.2.12) 
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The small value of suggests that relativistic effects are relatively minor. The proton-electron 
distance is known as the Bohr radius: 
 
 a0 = (1/4 0)

–1  ħ2/me2  = 0.529 Å       (I.2.13) 
 
This provides a measure of atomic size. 
 
In atoms and molecules, important quantities are multipole moments. Moments are a convenient 
means of expressing the electric or magnetic fields of a system of static or moving charges, 
respectively. The electric moments of molecules are calculated from the static charge 
distributions within the molecule while the magnetic moments are calculated from currents 
within the molecule. The total electric or magnetic field is the sum of the moment fields. 
 
Consider the electric moments: 
 

Moment  Order Order-of-Magnitude  Order-of-Magnitude of 
(M)   ( j) of Moment   Electric Field of Moment 
_____________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

monopole  0 e    (1/4 0)  j qj /R
2 

 
dipole ()  1 ea0    (1/4 0)  /R3 

            (I.2.14) 
quadrupole (Q) 2 ea0

2    (1/4 0)  Q/R4 
 

octupole (O)  3 ea0
3    (1/4 0)  O/R5 

 
hexadecapole (H) 4 ea0

4    (1/4 0)  H/R6 
 
You can see from this table that Mj ~ e  (a0) 

j and that the order-of-magnitude of the electric 
field of Mj is (1/4 0)(e)(a0/R) 

j(1/R2). The R in this expression is the distance from the molecule 
to some point far from the molecule. Because a0 << R, the fields decrease rapidly with increasing 
j. Thus, we typically only consider the lowest order moments when calculating the electric and 
magnetic fields of an atom or molecule. 
 
The lowest order electric moment is the monopole and is the charge of the molecule. 
 
The next order is the electric dipole moment which plays a large role in molecular interactions 
with radiative electric fields. The electric dipole moment reflects spatial separation of positive 
and negative charge in the molecule and is a vector from the center of the negative charge to the 
center of the positive charge of the molecule. The simplest example of such charge separation are 
heteronuclear diatomic molecules like HCl and the electric dipole moment is along the 
internuclear axis with vector head nearer the negatively charged Cl atom and tail nearer the 
positively charged H atom. 
 
The order of magnitude of the electric dipole moment: 
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 e  ~ ea0 = 8.475  10–30 Coulomb-meter   2.55 Debye    (I.2.15) 
 
The Debye is a commonly used “cgs” unit for dipole moment. Small molecule dipole moments 
are ~1 Debye while dipole moments in macromolecules can be much larger because the 
molecular dimensions are much greater than a0. 
 
There is an energy associated with an electric dipole moment in an electric field Є: 
 
 Eelec.dipole = –e . Є         (I.2.16) 
 
The lowest energy is associated with the dipole moment vector parallel to the electric field vector 
and the highest energy is associated with the dipole moment antiparallel with the electric field 
vector. 
 
Consider a constant uniaxial electric field such as the one produced between two plates with 
different voltages. The Є points from the higher voltage plate to the lower voltage plate. The 
most energetically favorable dipole orientation is the positive end of the dipole closest to the 
lower voltage plate and the negative end of the dipole closest to the higher voltage plate. 
 
An achievable experimental field is 105 V/m and yields an electric dipole energy for the Bohr 
atom of ~.04 cm-1, seven orders of magnitude smaller than the Rydberg. This result points out 
that electric fields internal to atoms and molecules are typically much greater than the fields 
achievable with laboratory apparatus. 
 
Another interesting example is the radiative electric field. From Eq. I.1.7, we know that the 
radiative electric field oscillates symmetrically and periodically in time about zero so that for a 
static electric dipole, e . Є  = 0. However, in the Bohr atom, e periodically changes direction 
as the electron orbits the proton. There can be a non-zero e . Є when the e frequency and the 
Є frequency are close to one another. This is an example of resonance. 
 
The higher electric multipole moments correspond to more complex distributions of charge. For 
example, the electric quadrupole moment corresponds to two positive charges on a line and two 
negative charges on a line which bisects the positive charge line in a perpendicular fashion. The 
charge distributions of homonuclear diatomics such as H2 are approximated by an electric 
quadrupole. 
 
The quadrupole moment interacts with electric field gradients; i.e. the derivatives of the electric 
field with respect to position: 
 
 Eelec.quadrupole ~ (Q)(Є )        (I.2.17) 
 
This interaction is important in NMR of nuclei with large spin quantum numbers (e.g. 2H, 14N, 
23Na) . The Q  is associated with the electric charge distribution in the nucleus and the Є is 
associated with the chemical bonds of the nucleus. 
 

 7



There is no magnetic monopole moment. The magnetic dipole moment is a vector associated 
with electronic motion in the Bohr atom and is calculated as the product of the counter-clockwise 
electronic current and the area enclosed by the electronic orbit. If we consider that the electron 
orbit is in the xy plane, then m will be along the –z direction. 
 

m = (I  A) z = (– ev/2r)  (r2) z = (– evr/2) z = – e  (e2/neħ)(ne
2ħ2/2me2) z =  


 (neeħ/2m) z         (I.2.18) 

 
For ne = 1, m  = B and is called the Bohr magneton and has value 9.28  10–24 C-m2/s. 
 
Both the nucleus and electron orbit about their center of mass so that there is also an electric 
current and magnetic dipole moment associated with the nucleus: 
 
 m = (neeħ/2M) z         (I.2.19) 
 
Note that m for the nucleus lies along the positive z direction because the nucleus is positively 
charged. For ne = 1, m  = N and is called the nuclear magneton and has value 5.05  10–27 C-
m2/s. Note that N ~ B/2000. 
 
For the Bohr atom, Le = neħ z and in the center-of-mass frame LN  = neħ z. Eqs. 1.2.18 and 1.2.19 
can be written: 
 

m =  –(e/2m)  Le         (I.2.20)  
    
 m =  (e/2M)  LN         (I.2.21) 
 
The sign difference between electrons and nuclei is due to their different charge signs. The key 
finding is that the electronic and nuclear magnetic moments are proportional and collinear with 
their respective angular momenta.  
 
Consider the Bohr atom in a constant uniaxial magnetic field B0z. Using Eq. 1.1.6, the magnetic 
dipole energy of the atom: 
 
 E = – m . B  = –(eB0/2m)  Lez        (I.2.22) 
 
Spin 
  
For electrons and nuclei, there is an additional angular momentum, spin, which also has an 
associated magnetic moment. This type of angular momentum is a result of relativistic effects 
which are not considered in the Bohr atom. Although it is tempting to think of the electrons and 
nuclei as ‘spinning’ as in a planetary model, this is not a correct physical picture. 
 
For our purposes, we simply think of spin as another type of angular momentum. Unlike orbital 
angular momentum, spin angular momentum can have half-integral n. 
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Eqs. I.2.20 and 1.2.21 hold for spin with the inclusion of an extra “g factor” in the 
proportionality. 
 

m = – g  (e/2m)  Le         (I.2.23)  
    
 m =  gN  (e/2M)  LN        (I.2.24) 
 
The electron g factor is 2.0032 while the nuclear gN factor is nucleus isotope-specific and varies 
from about –2 to +6 (e.g. 5.58 for 1H, 1.40 for 13C, –1.11 for 29Si). The ratio /L  is known 
as the gyromagnetic ratio and is usually denoted . 
 
The magnitude of spin angular momentum: 
 

L = S(S+1)  ħ          (I.2.25) 
 
S is the spin quantum number. S = ½ for an electron while S for a nucleus depends on the specific 
nuclear isotope. Some examples: S = 0  12C, 16O; S = ½  1H, 13C; S = 1  2H, 14N; S = 3/2 
 23Na. 
 
Spin interactions are typically probed in a uniaxial magnetic field B0z and the energies are 
derived with Eq. 1.1.6. The Lz are quantized: 
 

Lz = mSħ z with mS = –S, –S + 1, …, S     (1.2.26) 
 
Eq. 1.1.6 yields: 
 
 E = – . B = mS ħB0        (1.2.27) 
 
Spectroscopic transitions are observed for mS = 1 and yield: 
 
  = E /h =  B0 /2       (1.2.28) 
 
For electrons,  = –1.76  1011 C/kg. One typical electron spin resonance magnetic field is B0 = 
0.32 kg/C-s  0.32 Tesla (T) and results in  = 8.97  109 Hz which is in the microwave region 
of the spectrum. For protons,  = 2.675  108 C/kg. A typical nuclear magnetic resonance B0 = 
9.4 T which yields  = 4.00  108 Hz in the radiofrequency region of the spectrum. 
 
The magnetic field in Eq. I.2.28 is a sum of the large external field and smaller “local fields” due 
to the magnetic moments of the surrounding electrons and nuclei. For example, the electrons 
associated with the chemical bonds of a nucleus have a local field which typically has opposite 
direction to the external field. The magnitude of this shielding depends strongly on the functional 
group and creates “chemical shift” dispersion in the NMR frequencies. 
 
Interactions between nuclear spins, between electron spins, and between electron and nuclear 
spins are typically both theoretically well-understood and largely decoupled from spatial 
electronic and nuclear motion (e.g. vibration). Electron and nuclear spin resonance 

 9



spectroscopies provide useful information about the spatial configurations of electrons and nuclei 
in molecules while the couplings of spins to spatial motions provide information about the 
locations and magnitudes of these motions. 
 
I.2.B Molecules 
 
Small molecule dimensions are similar to atomic dimensions. For example, the H2 equilibrium 
internuclear separation is 0.74 Å. So the electronic properties of small molecules should be 
similar to those of atoms. In macromolecules, it turns out that electrons are typically localized to 
functional groups containing 2 – 10 atoms and the electronic properties of the macromolecule 
can be considered as the properties of the “small molecule” functional groups. 
 
For the analysis of molecular rotation and vibration, a useful constant is the Born-Oppenheimer 
constant  = (m/M)1/4 ~ 0.1  .   
 
For molecular rotation, a simple model is a particle constrainted to move on a spherical surface. 
The particle mass is the molecular mass M and the sphere radius R reflects the radial dimension 
of the molecule. Consider a radial vector R from the origin to the particle and the particle 
momentum vector P = MV. Note that R and P are orthogonal. The rotational angular momentum 
L = R  P:  
 
 L = R  P = MRV ~ Ma0V ~ nrħ       (I.2.29) 
 
For this case, we consider that the molecule is small so that R ~ a0. In addition, L is assumed to 
be quantized in a manner similar to the electronic angular momentum of Eq. 1.2.4. For ne = nr =1, 
the electronic and rotational angular momenta are comparable: 
 
 Ma0V = ma0v

  V = (m/M)  v       (I.2.30) 
 
This result suggests that the molecular rotational velocity in a low energy rotational state is three 
to four orders of magnitude smaller than the electronic velocity in the ground electronic state. 
 
There is a will usually be a relatively constant potential energy associated with molecular 
rotation and the large variations in rotational energy will associated with the kinetic contribution: 
 

Erot ~ MV 
2/2 = M  (m/M)2  v2/2 = (m/M)  mv2/2 ~  

4 Eelectronic  = 10 cm-1 (I.2.31) 
 
Rotational transition energies will be of order-of-magnitude of Erot and for small molecules will 
generally occur in the microwave and far-infrared regions of the spectrum. For macromolecules, 
the transitions will occur at lower frequencies because of the larger M. 
 
Vibrational motion is motion of nuclei about their equilibrium structural positions. This motion 
should be correlated with the chemical bonds between the nuclei. The simplest vibrational model 
is two nuclear masses connected by a spring representing their chemical bond. The separation of 
the two masses is denoted x and the equilibrium separation is xe. The restoring force is: 
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 F(x) =  – k(x – xe)         (I.2.32) 
 
Note that the force constant k is different from the wavenumber k in Section I.1. The force 
constant will depend on the strength of the bonding between the two nuclei. For example, the 
force constant of a double bond will be larger than that of a single bond. 
 
The potential energy: 
 

V(x) = xe

x
–F(x) dx  = k/2  (x – xe)

2       (I.2.33) 
 
This is harmonic (parabolic) in (x – xe). Newton’s Second Law equation: 
 
 M  (d 

2x/dt 
2) =  – k(x – xe) =  – kx + kxe       

 
 d 

2x/dt 
2 = (– k/M)x + (k/M)xe        (I.2.34) 

 
In this equation, M will be a “reduced mass” calculated by a mathematical expression including 
the masses of both nuclei. 
 
One solution for Eq. I.2.34: 
 
 x(t) = xe + Acos(t)         (I.2.35) 
 
with  = (k/M)1/2 and A = x(0) – xe. For this solution, the initial velocity (dx/dt)t=0 = 0. 
 
The mass oscillates in time about x0. The angular frequency  = 2 where  is 1/(period of the 
oscillation). Note that the vibrational frequency is larger for bigger k (stronger bonding) and for 
lighter atoms (smaller M). 
 
For molecular vibration, consider the nuclei moving in a harmonic potential well of depth 
Eelectronic ~ 100000 cm-1 and width 2a0. Using Eq. I.2.33, we define Ee ~ ka0

2/2. 
 
Approximate the angular vibrational frequency: 
 
  = (k/M)1/2 ~ (2Ee/Ma0

2)1/2 = (1/4 0)  (2Eem
2e4/Mħ4)1/2 = 2(m/M)1/2 Ee/ħ       (I.2.36) 

 
We guess that vibrational energy will be quantized as nvħwhere nv is a non-negative integer: 


Evib ~ 2nv(m/M)1/2 Ee2nv
2Ee ~ 2nv(10–2)(100000 cm-1) ~  nv(2000 cm-1) (I.2.37) 

 
So vibrational energies are about two orders of magnitude smaller than electronic energies and 
about two orders of magnitude greater than rotational energies. 
 
Transitions between vibrational energy levels will yield vibrational spectra which largely lie in 
the infrared, intermediate between the rotational and electronic spectral regions. Thus, different 
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regions of the spectrum are appropriate for exciting different kinds of motion in molecules 
(electronic, rotation, vibration). 
 
It is also possible to excite different kinds of motion simultaneously, for example electronic + 
vibrational motion. 
 
A particular vibrational motion is typically confined to a single functional group so that the 
vibrational motion of a macromolecule can be approximated as a combination of independent 
vibrational motions of the individual functional groups of the molecule. 
 
If we assume that vibrational energy is evenly divided between kinetic and potential energy, then 
the kinetic energy for the nv = 1 state: 
 

Ekin = MV 
2/2 = (1/4 0)

2  me4/ħ2 
 
V = (1/40)  2½  (m/M)½  (e2/ħ) = 2½  

2  v 
 
V/v = 2½  

2   0.01         (I.2.38) 
 

The v and V represent the electron and nuclear vibrational velocities in the ne =1 and nv = 1 
states. The small value of V/v means that the nuclei move much slower than the electrons. This 
ratio is the basis of the Born-Oppenheimer approximation which states that the electrons relocate 
instantaneously in response to changes in nuclear positions. This means that it is possible to 
separate calculations of electron and nuclear motions. First, the nuclei are fixed at particular 
locations and the electronic motion and energy are calculated. The nuclei are then fixed at 
different positions and the electronic motion and energy are recalculated. An “electronic 
potential” is determined by many such calculations. Vibrational motion and energy of the nuclei 
are then considered within this electronic potential. 
 
Combining Eqs. I.2.30 and I.2.38: 
 
 Vrot/Vvib ~ (2)–½  

2   0.01        (I.2.39) 
 
Because molecular rotation is much slower than molecular vibration, rotational and vibrational 
motion can also be calculated independently. 
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QUANTUM MECHANICAL METHODS 
 
I. Postulates 
 
We set out to give some description of quantum mechanics which is useful for spectroscopy. 
 
1. The Postulates of Quantum Mechanics 
 

electron 

proto

r



 
 
 
 
 
 
 
 
 
 
 
 
 
 
A simple example will be used to illustrate the postulates of quantum mechanics. For the radial 
atom, an electron of mass m is constrained to move in an orbital of fixed radius r in the xy plane 
about the proton. The radial constraint makes the system different from that of the Bohr atom. 
 
First Postulate:  The state of an N-particle system is defined by a wavefunction (q, t).  A 
wavefunction is single-valued and continuous. The coordinates for the N particles are q = q1,.., qN 
and t refers to time. 
 
 qj = xj x + yj y + zj z   (xj, yj, zj)       (II.1.1) 
 
For example, for the radial atom, q could be (r, 0, 0) and would correspond to  = 0. 
 
A set of wavefunctions for the radial atom: 
 

 (, t) = (2)–½{eik}e–ik2ħt/2m}       (II.1.2) 
 
The “k” can be any integer and i = (–1)1/2. The first exponential describes the spatial dependence 
of the wavefunction and the second exponential describes the time dependence of the 
wavefunction. The k is integral so that (, t) = ( + 2, t). The azimuthal positions  and 
 + 2 are experimentally indistinguishable and integral k is necessary to have a single-valued .  
 
The k is an example of a quantum number. The wavefunction associated with each value of k 
would correspond to a different state of the atom with distinct properties (e.g. energy or angular 
momentum). 
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For some comparison, consider a classical description of the electron position: 
 

(t) =  t          (II.1.3) 
 
For this classical description, the electron orbits around the proton with uniform angular 
frequency . 
 
All of the properties of the atom or molecule (e.g. energy, angular momentum, dipole moment) 
can be obtained from the wavefunction. 
 
The quantity (qm,)*  (qm,) = (qm,)2 = - (qm,) describes the relative probability for 
finding the system with the specific coordinates qm at time . 
 
The * refers to the complex conjugate. Consider a complex number a + ib. The product (a + ib)  
(a + ib)* =  (a + ib)  (a – ib) = a2 + b2 which is a real number (good for a probability!). 
 
For the radial atom: 
 

- ( 0,) = ( 0,)*  ( 0,) = (2)–½ {e–ik
 

}eik2ħ
 
/2m}  (2)–½ {eik

 

}e–ik2ħ
 

/2m} 
 
= (2)–1          (II.1.4) 

 
For these radial atom wavefunctions, there is no dependence of electron density on  or on time. 
 
Note that we often normalize the probability integrated over all coordinates: 
 
  (q, t)* (q, t) dq = 1         (II.1.5) 
 
This normalization is reasonable because it infers that at a given time, the particle has to be 
somewhere in space. The wavefunctions of Eq. II.1.2 are normalized. 
 
Second Postulate: Every observable (measurable) property of the system is described by a 
corresponding Hermitian operator A. 
 
Examples of these operators: 
 
Position of a one particle system: x     for position along the x direction 
     y     for position along the y direction   (II.1.6) 
     z     for position along the z direction    

 
Momentum in a one particle system: (–iħ)d/dx     for momentum along the x direction 
     (–iħ)d/dy     for momentum along the y direction (II.1.7) 
     (–iħ)d/dz     for momentum along the z direction  
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In classical mechanics, position would also be described by x, y, and z while momentum would 
be described by mvx, mvy, and mvz. 
 
Operators act on wavefunctions to yield new wavefunctions. So, a general operator expression 
for operator A(q, t) and wavefunctions (q, t) and (q, t): 
 
 A(q, t) (q, t)(q, t)        (II.1.8) 
 
The radial atom electron has angular momentum Lz along the z direction and the associated 
operator: 
 
 Lz  (–iħ) d/d         

 Lz(, t) = {(–iħ) d/d (2)–½ {eik}e–ik2ħt/2mr2

} = (kħ)(2)–½ {eik}e–ik2ħt/2mr2
}     

(II.1.10) 
 
For this case, the new wavefunction is a constant (kħ) times the old wavefunction. Note that 
classically, Lz = mvr for the radial atom. 
 
What is a Hermitian operator A? 
 
Two equivalent ways to express this property: 
 

  (q, t) A (q, t) dq =  {(q, t) A (q, t) dq }*         (II.1.11) 
 
Take the complex conjugate of this equation and rearrange the terms. 
 

 {A (q, t)}* (q, t) dq =   (q, t) A (q, t) dq     (II.1.12) 
 
This is a good time to introduce the bra/ket vector notation. This notation contains no new 
physics but allows us to concisely write quantum mechanical expressions. The integral equations 
above are expressed in a shorthand way as: 
 

A = A*        (II.1.13) 
 
(A = A        (II.1.14) 

 
The left-hand “bra” vector such as  contains implicitly a complex conjugate. The right-hand 
“ket” vector is not a complex conjugate. The intermediate operator position is also not a complex 
conjugate and allows greater clarity. For example: 
 
 A = A        (II.1.15) 
  
 A = A*        (II.1.16) 
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When we have an expression with a bra followed by a ket as above, the expression contains an 
implicit integration over all of the spatial variables q of the wavefunctions. Otherwise, there is no 
implicit integration. For an expression such as A, there is no integration. 
 
In all quantum mechanical expressions, the expression is calculated from left to right. The order 
can be important so one cannot indiscriminately change the order of operators and 
wavefunctions. For example: 
 
           (II.1.17)  
 
The expression on the left is an integral (a number) while the expression on the right is an 
operator. Also, in general for an operator A and ket : 
 
 A  A         (II.1.18) 
 
A radial atom example: 
 

Lz = {(–iħ) d/d(2)–½ {eik}e–ik2ħt/2mr2
} = (kħ)(2)–½ {eik}e–ik2ħt/2mr2

} 
 

Lz = (2)–½ {eik}e–ik2ħt/2m}{(–iħ) d/d    
 

In general for operators A and B: 
 
 AB  BA        (II.1.20) 
 
The difference operator AB – BA is written shorthand as [A, B] and is called the commutator. If  
[A, B] = 0, the operators A and B are said to commute. If [A, B]  0, then the operators A and B 
do not commute. 
 

[, Lz] = (–iħ) (d/d – (–iħ) (d/d(iħ){1 +  (d/d (d/d =  
 
(iħ)  [, Lz] = iħ         (II.1.21) 

 
Consider some constant c in a bra: 
 
 c = c*         (II.1.22) 
 
I can take constant out of the bra but have to remember the implicit complex conjugate. Finally, 
for two wavefunctions  and : 
 
  = *        (II.1.23) 
 
Because there is simple multiplication between the two wavefunctions, I can switch their order. 
 
I also introduce eigenvalue/eigenfunction equations: 
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A =            (II.1.24) 

 
In this equation,  is an eigenfunction of A and has eigenvalue  which is a number. For the 
radial atom, an eigenvalue/eigenfunction equation for Lz: 
 

Lz = {(–iħ) d/d(2)–1eik = (kħ)(2)–1eik    (II.1.25) 
 
For this example, kħ and  = (2)–1eik is the non-time-dependent part of  in Eq. II.1.2. 
 
Eigenvalue equations are at the core of quantum mechanics and spectroscopy. The operator for 
each physical observable has a set of eigenfunctions and eigenvalues associated with it and: 
 
Third Postulate: The only possible result of the measurement of a physical observable is one of 
its eigenvalues of its associated operator. 
 
Because the eigenvalues are what we measure, much effort goes into their calculation and into 
the calculation of their associated eigenfunctions. If our physical model of the molecule is 
reasonable, then the observed and calculated eigenvalues will be similar. Typical 
spectroscopically measurable observables are energy and dipole moments. In crystallography, 
the observable is electron density. 
 
In the quantum mechanical radial atom, the only observable values of Lz are kħ, again where k is 
an integer. This is similar to the neħ quantization condition for the semiclassical Bohr atom but 
there are some important differences. For example, k = 0 is allowed in the radial atom while 
ne = 0 is not allowed in the Bohr atom. In addition, the radial atom has k values which are 
independent of r while the value of r in the Bohr atom depends on ne (cf. Eq. I.2.8).  
 
The eigenvalues associated with Hermitian operators are always real. You can see why physical 
observables would be associated with Hermitian operators – we can only measure real quantities.   
 
Also, the eigenfunctions of a Hermitian operator associated with different eigenvalues are 
orthogonal, that is j k = 0 if j  k . 
 
If our system is in a state which corresponds to the eigenfunction of the operator, then 
measurement of the observable associated with this operator would be the eigenvalue. 
 
For example, if the radial atom  = (2)–½ e2i, then the observed value of Lz will be 2ħ. 
 
Suppose the system is not in an eigenfunction of its observable operator A. We will still measure 
only eigenvalues of the observable operator. But which eigenvalues and with what probabilities? 
 
We express the wavefunction  as a linear combination of the orthonormal eigenfunctions , 
,…  of A: 
 

  = j cj j          (II.1.26) 
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Don’t confuse the j which is a function with the angular variable  in our radial atom example. 
 
Orthonormality (orthogonality + normality):  
 
 jk = jk    (0 if j  k, 1 if j = k)      (II.1.27) 
 
The jk is known as the delta function. Note that our radial atom Lz eigenfunctions are 
orthonormal: 
 

 jk = (2)–½ eij(2)–½ eik  =  0
2 (2)–½{e–ij(2)–½{eikd


=0

2 (2)–1 ei(k – j)d{1/2i(k – j)} ei(k – j)
 2

    (II.1.28) 
 
For j  k, the definite integral yields 0/2i(k – j) = 0, while for j = k, the integral yields 0/0 which 
can be shown to be 1 in this case. 
 
Any particular ck can be found by projecting k onto both sides of Eq. II.1.26. This means 
multiplying by k

* and integrating over the coordinates q: 
 

 k = k j cj j = j cjkj = j cj jk = ck     (II.1.29) 
 
We are now ready to answer the eigenvalue probability question. 
  

Fourth Postulate: The probability of observing the eigenvalue k is -  = ck*ck/j|cj|
2 

= ck2/j|cj|
2 . 

 
If  is normalized, then -  = ck2. 
 
If the wavefunction of a molecule is not an eigenfunction of the observable property, it is 
possible to observe many different eigenvalues. However, for any single molecule, only one 
value will be observed. 
 
We typically make measurements on many molecules (e.g. 1023 ~ Avogadro’s number) so that 
our measurements give statistical probabilites for the observed eigenvalues. These statistical 
probabilities are expressed by the fourth postulate. 
 
Consider a normalized radial atom wavefunction: 
 
  = (3i/5)ei (4/5)e–i      II.1.30)

The probability of observing the angular momentum eigenvalues: 
 

- (ħ) = (–3i/5)(3i/5) = 9/25 
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- (–ħ) = (4/5)(4/5) = 16/25       (II.1.31) 

 
For this approach, some linear combination of wavefunctions j must completely describe any 
state of the molecule. In other words, the j eigenfunctions must form a complete set which 
span the entire state space. The eigenfunctions of an observable property always form a complete 
set. 
 
Completeness can be described mathematically with the closure relation: 
 

 j jj = 1         (II.1.32) 
 

The sum of projector operators  j jj has no effect on any wavefunction of the system. 
 
Let’s calculate the effect of the projector on :   
 

k kk  =  k kjk j cjj  =  k j cjkkj  =  k j cjk jk  
 

=  j cjj =       (No Effect!)      (II.1.33) 
 
The closure relation is used in many derivations and can be used to derive an important result 
about the average values of observable quantities. 

 
The average value of the observable A for a wavefunction  is the probability weighted sum of 
the observable eigenvalues j (cf. Postulate 4). Consider a normalized : 
 

 A =  j cj2 j  =  j cj*cj j  =  j j* j j  =  j j j j 
 

=  j Aj j  =  A j jj   =  A   (II.1.34) 
 
The importance of the wavefunction for predicting system properties is clearly demonstrated.  
 
Consider Lz for the radial atom wavefunction of Eq. II.1.30: 
 
 Lz = (–iħ) d/d = {(–3i/5)ei + (4/5)e–i} (–iħ)d/d{(3i/5)eie–i} 
 
 = (ħ) {(–3i/5)ei + (4/5)e–i}{(3i/5)ei –e–i} = ħ (9/25 – 16/25) =  (–7/25) ħ 
 
           (II.1.35) 
 
Although Lz = (–7/25) ħ, only Lz = ħ and –ħ will be observed.   
 
How can we use wavefunctions to calculate the time evolution of our molecule? 
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Fifth Postulate: The time evolution of the wavefunction is described by the time-dependent 
Schrodinger equation: 
 
              iħ d(q, t)/dt = ,  (q, t)         (II.1.36) 
   
,  is the Hamiltonian operator for the system and is associated with the total energy. The 
eigenvalues of ,  are the possible energies of the system. ,  contains contributions from kinetic 
energy and potential energy terms. 
 

,  = T(q) + V(q, t)        (II.1.37) 
 

Classically, T = j mjvj
2/2mj  =  j pj

2/2mj  where  pj
2  = pxj

2 + pyj
2 + pzj

2 is the squared momentum 
of particle j and mj and vj are the mass and velocity of particle j. 

 
Using Eq. II.1.7: 
 

, (q, t) = j (2mj)
–1 pj

2 (q, t)  +  V(q, t)(q, t)   
 

=  –ħ2j (2mj)
–1 j

2 (q, t)  +  V(q, t)(q, t)     
 
j

2 = d 
2/dxj 

2 + d 
2/dyj 

2 + d 
2/dzj 

2      (II.1.38)   
 
The quantum mechanical V(q, t) are typically the same as the classical potential energy terms.  
 
For the radial atom: 
 

T = Lz
2/2mr2 = Lz

2/2I  = (–ħ2/2I ) d 
2/d 

2  
 
V = (1/40)  (–e2/r)        (II.1.39) 

 
For the radial atom, V is a constant because r is a constant. I = 2mr2 corresponds to the “moment 
of inertia”. 
 
Consider the case of a time-independent potential V(q) for which ,  is also time-independent. 
Important examples of a time-independent potential include the electrostatic potential among 
nuclei and electrons and vibrational potentials among nuclei. The possible energies of the 
molecule are found by solving the time-independent Schrodinger Equation: 
 
 , (q) k(q) = Ek k(q)       (II.1.40) 
 
In absorption or emission spectroscopy, we are observing energy differences between the energy 
eigenvalues of the system. Because the energy eigenvalues are typically quantized (discrete) we 
only observe absorption or emission at discrete frequencies. The experimental spectrum is 
compared to the results of solving the Schrodinger Equation for some model of the molecule. An 
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important requirement for a model is good agreement between some of the model energy 
eigenvalue differences and the observed frequencies. 
 
In many cases, the model is parameterized and the model parameters are determined by fitting to 
the experimental frequencies. Examples of fitting parameters include internuclear distances and 
angles and vibrational force constants. 
 
Neglecting V, the time-independent Schrodinger Equation for the radial atom: 
 

(Lz
2/2I) k () = (–ħ2/2I) d2/d2 k () = Ek k ()      

  
k () =  (2)–½ eik

Ek = (–k2ħ2/2I)         (II.1.41)  

 
For the radial atom, there are the same eigenfunctions for the ,  and the Lz operators. The same 
energy will be observed for k values of equal magnitude and opposite sign (e.g. 1 and –1). These 
two values correspond in classical mechanics to the electron moving with the same speed but in 
opposite directions around the ring. In classical mechanics, these two types of motion would also 
have the same energy. 
 
The predicted spectrum of the radial atom will depend in part on selection rules which provide 
information about the possible final k values given an initial k value. 
 
Assume the selection rule is k = 1. Some absorption transitions: 
 
 k = 1  0  or  k = –1  0  E/hc = ħ/4Ic 

k = 2  1  or  k = –2  –1  E/hc = 3ħ/4Ic 
 k = 3  2  or  k = –3  –2  E/hc = 5ħ/4Ic   (II.1.42) 
 
With the assumption r = a0, E/hc = 1.098  105 cm–1  1 Rydberg for the k = 1  0  or  
k = 1  0 transitions. 
 
Think about how well the radial atom model fits with the experimental H atom spectrum. What 
are some possible reasons for disagreement between the model and experiment? 
 
We now return to the general treatment of a time-independent potential. Although ,  is time-
independent, the wavefunction can still be time-dependent as governed by the time-dependent 
Schrodinger Equation II.1.36. 
 
Energy is an observable and its j eigenfunctions form a complete set for the system:   
 

 (q, t)  = j cj(t) j(q)       (II.1.43) 
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Because ,  is time-independent, its eigenfunctions are time-independent and the cj contain all of 
the time dependence. 
 
Eq. II.1.44 is incorporated into the time-dependent Schrodinger equation: 
 

 iħ d/dt j cj(t) j(q) = H(q) j cj(t) j(q)  
 

 iħ j dcj/dt j = j cj Ej j       (II.1.44) 
 
To solve for a particular ck(t), project k  onto both sides of Eq. II.1.44: 
 

iħ k j dcj/dt j = k j cj Ej j 
 

 iħ j dcj/dt jk  = j cj Ej jk  
 
 dck/dt  = (–iEk/ħ) ck 
 
 ck(t) = ck(0) e–iEkt/ħ = ck(0) e–ikt = ck(0) {cos(kt) – i sin(kt) }  (II.1.45) 
 
For a time-independent potential, the coefficient associated with each energy eigenfunction 
oscillates with a characteristic angular frequency k = Ek/ħ. 
 
Consider an initial radial atom wavefunction: 
 
  (0) = (1/4)1/2 ei (1/4)1/2 e2i     (II.1.46) 
 
This is a linear combination of two energy eigenfunctions with energy eigenvalues ħ2/2mr2 and 
2ħ2/mr2. If  = ħ/2mr2, the wavefunction at time : 
 
 () = (1/4)1/2 e–ei (1/4)1/2 e–4e2i    (II.1.47) 
 
If ck(0) = 0 except for k = n: 
 
 (q, t)  =  cn(0) e–int

 n (q)       (II.1.48) 
 
with cn(0)

2
 = 1 as the normalization condition. The system is in a stationary (time-independent) 

state. That is, the average value of any observable A (associated with a time-independent 
operator) is time-independent. Using Eq. II.1.34: 
 
 A = cn(0) e–int

 n  A  cn(0) e–int
 n =  cn(0)

2  n A n  =  n A n      (II.1.49) 
 
Because of the Schrodinger Equation, the energy eigenstates have a special status. 
 



QUANTUM MECHANICAL METHODS 
 
I. Postulates 
 
We set out to give some description of quantum mechanics which is useful for spectroscopy. 
 
1. The Postulates of Quantum Mechanics 
 

electron 

proto

r

φ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A simple example will be used to illustrate the postulates of quantum mechanics. For the radial 
atom, an electron of mass m is constrained to move in an orbital of fixed radius r in the xy plane 
about the proton. The radial constraint makes the system different from that of the Bohr atom. 
 
First Postulate:  The state of an N-particle system is defined by a wavefunction Ψ(q, t).  A 
wavefunction is single-valued and continuous. The coordinates for the N particles are q = q1,.., qN 
and t refers to time. 
 
 qj = xj x + yj y + zj z  ≡ (xj, yj, zj)       (II.1.1) 
 
For example, for the radial atom, q could be (r, 0, 0) and would correspond to φ = 0. 
 
A set of wavefunctions for the radial atom: 
 

 Ψ(φ, t) = (2π)–½{eikφ}{e–ik2ħt/2m}       (II.1.2) 
 
The “k” can be any integer and i = (–1)1/2. The first exponential describes the spatial dependence 
of the wavefunction and the second exponential describes the time dependence of the 
wavefunction. The k is integral so that Ψ(φ, t) = Ψ(φ + 2π, t). The azimuthal positions φ and 
φ + 2π are experimentally indistinguishable and integral k is necessary to have a single-valued Ψ.  
 
The k is an example of a quantum number. The wavefunction associated with each value of k 
would correspond to a different state of the atom with distinct properties (e.g. energy or angular 
momentum). 
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For some comparison, consider a classical description of the electron position: 
 

φ (t) = ω t          (II.1.3) 
 
For this classical description, the electron orbits around the proton with uniform angular 
frequency ω. 
 
All of the properties of the atom or molecule (e.g. energy, angular momentum, dipole moment) 
can be obtained from the wavefunction. 
 
The quantity Ψ(qm,τ )* × Ψ(qm,τ ) = |Ψ(qm,τ )|2 = - (qm,τ ) describes the relative probability for 
finding the system with the specific coordinates qm at time τ. 
 
The * refers to the complex conjugate. Consider a complex number a + ib. The product (a + ib) × 
(a + ib)* =  (a + ib) × (a – ib) = a2 + b2 which is a real number (good for a probability!). 
 
For the radial atom: 
 

- (φ 0,τ ) = Ψ(φ 0,τ )* × Ψ(φ 0,τ ) = (2π)–½ {e–ikφ
 

0}{eik2ħτ
 
/2m} × (2π)–½ {eikφ

 

0}{e–ik2ħτ
 

/2m} 
 
= (2π)–1          (II.1.4) 

 
For these radial atom wavefunctions, there is no dependence of electron density on φ or on time. 
 
Note that we often normalize the probability integrated over all coordinates: 
 
 ∫ Ψ(q, t)* Ψ(q, t) dq = 1         (II.1.5) 
 
This normalization is reasonable because it infers that at a given time, the particle has to be 
somewhere in space. The wavefunctions of Eq. II.1.2 are normalized. 
 
Second Postulate: Every observable (measurable) property of the system is described by a 
corresponding Hermitian operator A. 
 
Examples of these operators: 
 
Position of a one particle system: x     for position along the x direction 
     y     for position along the y direction   (II.1.6) 
     z     for position along the z direction    

 
Momentum in a one particle system: (–iħ)d/dx     for momentum along the x direction 
     (–iħ)d/dy     for momentum along the y direction (II.1.7) 
     (–iħ)d/dz     for momentum along the z direction  
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In classical mechanics, position would also be described by x, y, and z while momentum would 
be described by mvx, mvy, and mvz. 
 
Operators act on wavefunctions to yield new wavefunctions. So, a general operator expression 
for operator A(q, t) and wavefunctions Ψ(q, t) and Φ(q, t): 
 
 A(q, t) Ψ(q, t) = Φ(q, t)        (II.1.8) 
 
The radial atom electron has angular momentum Lz along the z direction and the associated 
operator: 
 
 Lz ≡ (–iħ) d/dφ          (ΙΙ.1.9) 
 
 LzΨ(φ, t) = {(–iħ) d/dφ} (2π)–½ {eikφ}{e–ik2ħt/2mr2

} = (kħ)(2π)–½ {eikφ}{e–ik2ħt/2mr2
}     

(II.1.10) 
 
For this case, the new wavefunction is a constant (kħ) times the old wavefunction. Note that 
classically, Lz = mvr for the radial atom. 
 
What is a Hermitian operator A? 
 
Two equivalent ways to express this property: 
 

 ∫ Ψ∗(q, t) A Φ(q, t) dq =  ∫{Φ∗(q, t) A Ψ(q, t) dq }*         (II.1.11) 
 
Take the complex conjugate of this equation and rearrange the terms. 
 

 ∫{A Φ(q, t)}* Ψ(q, t) dq =  ∫ Φ∗(q, t) A Ψ(q, t) dq     (II.1.12) 
 
This is a good time to introduce the bra/ket vector notation. This notation contains no new 
physics but allows us to concisely write quantum mechanical expressions. The integral equations 
above are expressed in a shorthand way as: 
 

〈Ψ|A|Φ〉 = 〈Φ|A|Ψ〉*        (II.1.13) 
 
〈(AΦ)|Ψ〉 = 〈Φ|AΨ〉        (II.1.14) 

 
The left-hand “bra” vector such as 〈Ψ| contains implicitly a complex conjugate. The right-hand 
“ket” vector is not a complex conjugate. The intermediate operator position is also not a complex 
conjugate and allows greater clarity. For example: 
 
 〈Ψ|A|Φ〉 = 〈Ψ|AΦ〉        (II.1.15) 
  
 〈Ψ|A|Φ〉 = 〈ΨA*|Φ〉        (II.1.16) 
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When we have an expression with a bra followed by a ket as above, the expression contains an 
implicit integration over all of the spatial variables q of the wavefunctions. Otherwise, there is no 
implicit integration. For an expression such as A|Ψ〉, there is no integration. 
 
In all quantum mechanical expressions, the expression is calculated from left to right. The order 
can be important so one cannot indiscriminately change the order of operators and 
wavefunctions. For example: 
 
 〈Ψ|Φ〉 ≠ |Φ〉〈Ψ|        (II.1.17)  
 
The expression on the left is an integral (a number) while the expression on the right is an 
operator. Also, in general for an operator A and ket |Ψ〉: 
 
 A|Ψ〉 ≠ |Ψ〉A         (II.1.18) 
 
A radial atom example: 
 

Lz|Ψ〉 = {(–iħ) d/dφ}|(2π)–½ {eikφ}{e–ik2ħt/2mr2
}〉 = |(kħ)(2π)–½ {eikφ}{e–ik2ħt/2mr2

}〉 
 

|Ψ〉Lz = |(2π)–½ {eikφ}{e–ik2ħt/2m}〉{(–iħ) d/dφ}     (ΙΙ.1.19) 
 

In general for operators A and B: 
 
 AB|Ψ〉 ≠ BA|Ψ〉        (II.1.20) 
 
The difference operator AB – BA is written shorthand as [A, B] and is called the commutator. If  
[A, B] = 0, the operators A and B are said to commute. If [A, B] ≠ 0, then the operators A and B 
do not commute. 
 

[φ, Lz]|Ψ〉 = φ (–iħ) (d/dφ) |Ψ〉 – (–iħ) (d/dφ)φ |Ψ〉  = (iħ){1 + φ (d/dφ) − φ (d/dφ)}|Ψ〉 =  
 
(iħ)|Ψ〉 ⇒ [φ, Lz] = iħ         (II.1.21) 

 
Consider some constant c in a bra: 
 
 〈cΨ| = 〈Ψ|c*         (II.1.22) 
 
I can take constant out of the bra but have to remember the implicit complex conjugate. Finally, 
for two wavefunctions |Φ〉 and |Ψ〉: 
 
 〈Φ|Ψ〉 = 〈Ψ|Φ〉*        (II.1.23) 
 
Because there is simple multiplication between the two wavefunctions, I can switch their order. 
 
I also introduce eigenvalue/eigenfunction equations: 
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A|ψ〉 = λ |ψ〉          (II.1.24) 

 
In this equation, |ψ〉 is an eigenfunction of A and has eigenvalue λ which is a number. For the 
radial atom, an eigenvalue/eigenfunction equation for Lz: 
 

Lz|ψ〉 = {(–iħ) d/dφ}|(2π)–1eikφ 〉 = (kħ)|(2π)–1eikφ 〉    (II.1.25) 
 
For this example, λ = kħ and |ψ〉 = |(2π)–1eikφ 〉 is the non-time-dependent part of Ψ in Eq. II.1.2. 
 
Eigenvalue equations are at the core of quantum mechanics and spectroscopy. The operator for 
each physical observable has a set of eigenfunctions and eigenvalues associated with it and: 
 
Third Postulate: The only possible result of the measurement of a physical observable is one of 
its eigenvalues of its associated operator. 
 
Because the eigenvalues are what we measure, much effort goes into their calculation and into 
the calculation of their associated eigenfunctions. If our physical model of the molecule is 
reasonable, then the observed and calculated eigenvalues will be similar. Typical 
spectroscopically measurable observables are energy and dipole moments. In crystallography, 
the observable is electron density. 
 
In the quantum mechanical radial atom, the only observable values of Lz are kħ, again where k is 
an integer. This is similar to the neħ quantization condition for the semiclassical Bohr atom but 
there are some important differences. For example, k = 0 is allowed in the radial atom while 
ne = 0 is not allowed in the Bohr atom. In addition, the radial atom has k values which are 
independent of r while the value of r in the Bohr atom depends on ne (cf. Eq. I.2.8).  
 
The eigenvalues associated with Hermitian operators are always real. You can see why physical 
observables would be associated with Hermitian operators – we can only measure real quantities.   
 
Also, the eigenfunctions of a Hermitian operator associated with different eigenvalues are 
orthogonal, that is 〈ψλj |ψλk〉 = 0 if λj ≠ λk . 
 
If our system is in a state which corresponds to the eigenfunction of the operator, then 
measurement of the observable associated with this operator would be the eigenvalue. 
 
For example, if the radial atom |ψ〉 = |(2π)–½ e2iφ 〉, then the observed value of Lz will be 2ħ. 
 
Suppose the system is not in an eigenfunction of its observable operator A. We will still measure 
only eigenvalues of the observable operator. But which eigenvalues and with what probabilities? 
 
We express the wavefunction |ψ〉 as a linear combination of the orthonormal eigenfunctions |ϕ1〉, 
|ϕ2〉,…  of A: 
 

 |ψ〉 = Σj cj |ϕj〉          (II.1.26) 
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Don’t confuse the |ϕj〉 which is a function with the angular variable φ in our radial atom example. 
 
Orthonormality (orthogonality + normality):  
 
 〈ϕj|ϕk〉 = δjk    (0 if j ≠ k, 1 if j = k)      (II.1.27) 
 
The δjk is known as the delta function. Note that our radial atom Lz eigenfunctions are 
orthonormal: 
 

 〈ϕj|ϕk〉 = 〈(2π)–½ eijφ |(2π)–½ eikφ 〉  =  0∫
2π (2π)–½{e–ijφ }(2π)–½{eikφ }dφ 

 
 = 0∫

2π (2π)–1 ei(k – j)φ dφ  = {1/2πi(k – j)} ei(k – j)φ ⎜0
 2π

    (II.1.28) 
 
For j ≠ k, the definite integral yields 0/2πi(k – j) = 0, while for j = k, the integral yields 0/0 which 
can be shown to be 1 in this case. 
 
Any particular ck can be found by projecting 〈ϕk| onto both sides of Eq. II.1.26. This means 
multiplying by ϕk

* and integrating over the coordinates q: 
 

 〈ϕk|ψ〉 = 〈ϕk| Σj cj |ϕj〉 = Σj cj 〈ϕk|ϕj〉 = Σj cj δjk = ck     (II.1.29) 
 
We are now ready to answer the eigenvalue probability question. 
  

Fourth Postulate: The probability of observing the eigenvalue λk is -  = ck*ck/Σj|cj|
2

= |ck|2/Σj|cj|
2 . 

 
If |ψ〉 is normalized, then -  = |ck|2. 
 
If the wavefunction of a molecule is not an eigenfunction of the observable property, it is 
possible to observe many different eigenvalues. However, for any single molecule, only one 
value will be observed. 
 
We typically make measurements on many molecules (e.g. 1023 ~ Avogadro’s number) so that 
our measurements give statistical probabilites for the observed eigenvalues. These statistical 
probabilities are expressed by the fourth postulate. 
 
Consider a normalized radial atom wavefunction: 
 
 |ψ〉 = (3i/5)|eiφ 〉  +  (4/5)|e–iφ 〉        (II.1.30) 
 
The probability of observing the angular momentum eigenvalues: 
 

- (ħ) = (–3i/5)(3i/5) = 9/25 
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- (–ħ) = (4/5)(4/5) = 16/25       (II.1.31) 

 
For this approach, some linear combination of wavefunctions |ϕj〉 must completely describe any 
state of the molecule. In other words, the |ϕj〉 eigenfunctions must form a complete set which 
span the entire state space. The eigenfunctions of an observable property always form a complete 
set. 
 
Completeness can be described mathematically with the closure relation: 
 

 Σj |ϕj〉〈ϕj| = 1         (II.1.32) 
 

The sum of projector operators  Σj |ϕj〉〈ϕj| has no effect on any wavefunction of the system. 
 
Let’s calculate the effect of the projector on |ψ〉:   
 

Σk |ϕk〉〈ϕk|ψ〉  =  Σk |ϕk〉〈ϕjk| Σj cj|ϕj〉  =  Σk Σj cj|ϕk〉〈ϕk|ϕj〉  =  Σk Σj cj|ϕk〉 δjk  
 

=  Σj cj|ϕj〉 = |ψ〉      (No Effect!)      (II.1.33) 
 
The closure relation is used in many derivations and can be used to derive an important result 
about the average values of observable quantities. 

 
The average value of the observable A for a wavefunction |ψ〉 is the probability weighted sum of 
the observable eigenvalues λj (cf. Postulate 4). Consider a normalized |ψ〉: 
 

 〈A〉 =  Σj |cj|2 λj  =  Σj cj*cj λj  =  Σj 〈ϕj|ψ〉* λj 〈ϕj|ψ〉  =  Σj 〈ψ|ϕj〉 λj 〈ϕj|ψ〉 
 

=  Σj 〈ψ|A|ϕj〉 〈ϕj|ψ〉  =  〈ψ|A Σj |ϕj〉〈ϕj| ψ〉  =  〈ψ|A|ψ〉   (II.1.34) 
 
The importance of the wavefunction for predicting system properties is clearly demonstrated.  
 
Consider 〈Lz〉 for the radial atom wavefunction of Eq. II.1.30: 
 
 〈Lz〉 = 〈ψ|(–iħ) d/dφ |ψ〉 = {(–3i/5)〈eiφ | + (4/5)〈e–iφ |} (–iħ)d/dφ {(3i/5)|eiφ 〉 + (4/5)|e–iφ 〉} 
 
 = (ħ) {(–3i/5)〈eiφ | + (4/5)〈e–iφ |}{(3i/5)|eiφ 〉 – (4/5)|e–iφ 〉} = ħ (9/25 – 16/25) =  (–7/25) ħ 
 
           (II.1.35) 
 
Although 〈Lz〉 = (–7/25) ħ, only Lz = ħ and –ħ will be observed.   
 
How can we use wavefunctions to calculate the time evolution of our molecule? 
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Fifth Postulate: The time evolution of the wavefunction is described by the time-dependent 
Schrodinger equation: 
 
              iħ dΨ(q, t)/dt = ,  Ψ(q, t)         (II.1.36) 
   
,  is the Hamiltonian operator for the system and is associated with the total energy. The 
eigenvalues of ,  are the possible energies of the system. ,  contains contributions from kinetic 
energy and potential energy terms. 
 

,  = T(q) + V(q, t)        (II.1.37) 
 

Classically, T = Σj mjvj
2/2mj  =  Σj pj

2/2mj  where  pj
2  = pxj

2 + pyj
2 + pzj

2 is the squared momentum 
of particle j and mj and vj are the mass and velocity of particle j. 

 
Using Eq. II.1.7: 
 

, Ψ(q, t) = Σj (2mj)
–1 pj

2 Ψ(q, t)  +  V(q, t)Ψ(q, t)   
 

=  –ħ2Σj (2mj)
–1 ∇j

2 Ψ(q, t)  +  V(q, t)Ψ(q, t)     
 
∇j

2 = d 
2/dxj 

2 + d 
2/dyj 

2 + d 
2/dzj 

2      (II.1.38)   
 
The quantum mechanical V(q, t) are typically the same as the classical potential energy terms.  
 
For the radial atom: 
 

T = Lz
2/2mr2 = Lz

2/2I  = (–ħ2/2I ) d 
2/dφ 

2  
 
V = (1/4πε0) × (–e2/r)        (II.1.39) 

 
For the radial atom, V is a constant because r is a constant. I = 2mr2 corresponds to the “moment 
of inertia”. 
 
Consider the case of a time-independent potential V(q) for which ,  is also time-independent. 
Important examples of a time-independent potential include the electrostatic potential among 
nuclei and electrons and vibrational potentials among nuclei. The possible energies of the 
molecule are found by solving the time-independent Schrodinger Equation: 
 
 , (q) |ϕk(q)〉 = Ek |ϕk(q)〉       (II.1.40) 
 
In absorption or emission spectroscopy, we are observing energy differences between the energy 
eigenvalues of the system. Because the energy eigenvalues are typically quantized (discrete) we 
only observe absorption or emission at discrete frequencies. The experimental spectrum is 
compared to the results of solving the Schrodinger Equation for some model of the molecule. An 
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important requirement for a model is good agreement between some of the model energy 
eigenvalue differences and the observed frequencies. 
 
In many cases, the model is parameterized and the model parameters are determined by fitting to 
the experimental frequencies. Examples of fitting parameters include internuclear distances and 
angles and vibrational force constants. 
 
Neglecting V, the time-independent Schrodinger Equation for the radial atom: 
 

(Lz
2/2I) |ϕk (φ)〉 = (–ħ2/2I) d2/dφ2 |ϕk (φ)〉 = Ek |ϕk (φ)〉      

  
|ϕk (φ)〉 = | (2π)–½ eikφ 〉 
 
Ek = (–k2ħ2/2I)         (II.1.41)  

 
For the radial atom, there are the same eigenfunctions for the ,  and the Lz operators. The same 
energy will be observed for k values of equal magnitude and opposite sign (e.g. 1 and –1). These 
two values correspond in classical mechanics to the electron moving with the same speed but in 
opposite directions around the ring. In classical mechanics, these two types of motion would also 
have the same energy. 
 
The predicted spectrum of the radial atom will depend in part on selection rules which provide 
information about the possible final k values given an initial k value. 
 
Assume the selection rule is Δk = ±1. Some absorption transitions: 
 
 k = 1 ← 0  or  k = –1 ← 0  ΔE/hc = ħ/4πIc 

k = 2 ← 1  or  k = –2 ← –1  ΔE/hc = 3ħ/4πIc 
 k = 3 ← 2  or  k = –3 ← –2  ΔE/hc = 5ħ/4πIc   (II.1.42) 
 
With the assumption r = a0, ΔE/hc = 1.098 × 105 cm–1 ≡ 1 Rydberg for the k = 1 ← 0  or  
k = −1 ← 0 transitions. 
 
Think about how well the radial atom model fits with the experimental H atom spectrum. What 
are some possible reasons for disagreement between the model and experiment? 
 
We now return to the general treatment of a time-independent potential. Although ,  is time-
independent, the wavefunction can still be time-dependent as governed by the time-dependent 
Schrodinger Equation II.1.36. 
 
Energy is an observable and its |ϕj〉 eigenfunctions form a complete set for the system:   
 

 |Ψ(q, t)〉  = Σj cj(t) |ϕj(q)〉       (II.1.43) 
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Because ,  is time-independent, its eigenfunctions are time-independent and the cj contain all of 
the time dependence. 
 
Eq. II.1.44 is incorporated into the time-dependent Schrodinger equation: 
 

 iħ d/dt Σj cj(t) |ϕj(q)〉 = H(q) Σj cj(t) |ϕj(q)〉  
 

 iħ Σj dcj/dt |ϕj〉 = Σj cj Ej |ϕj〉       (II.1.44) 
 
To solve for a particular ck(t), project 〈ϕk | onto both sides of Eq. II.1.44: 
 

iħ 〈ϕk | Σj dcj/dt |ϕj〉 = 〈ϕk | Σj cj Ej |ϕj〉 
 

 iħ Σj dcj/dt δjk  = Σj cj Ej δjk  
 
 dck/dt  = (–iEk/ħ) ck

 
 ck(t) = ck(0) e–iEkt/ħ = ck(0) e–iωkt = ck(0) {cos(ω kt) – i sin(ωkt) }  (II.1.45) 
 
For a time-independent potential, the coefficient associated with each energy eigenfunction 
oscillates with a characteristic angular frequency ω k = Ek/ħ. 
 
Consider an initial radial atom wavefunction: 
 
  |Ψ(0)〉 = (1/4π)1/2 |eiφ 〉  +  (1/4π)1/2 |e2iφ 〉     (II.1.46) 
 
This is a linear combination of two energy eigenfunctions with energy eigenvalues ħ2/2mr2 and 
2ħ2/mr2. If β = ħ/2mr2, the wavefunction at time τ : 
 
 |Ψ(τ )〉 = (1/4π)1/2 e–βτ |eiφ 〉  +  (1/4π)1/2 e–4βτ |e2iφ 〉    (II.1.47) 
 
If ck(0) = 0 except for k = n: 
 
 |Ψ(q, t)〉  =  cn(0) e–iωnt

 |ϕn (q)〉       (II.1.48) 
 
with ⎜cn(0)⎜

2
 = 1 as the normalization condition. The system is in a stationary (time-independent) 

state. That is, the average value of any observable A (associated with a time-independent 
operator) is time-independent. Using Eq. II.1.34: 
 
 〈A〉 = 〈cn(0) e–iωnt

 ϕn | A | cn(0) e–iωnt
 ϕn〉 =  ⎜cn(0)⎜

2  〈ϕn| A |ϕn〉  =  〈ϕn| A |ϕn〉      (II.1.49) 
 
Because of the Schrodinger Equation, the energy eigenstates have a special status. 
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IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance 
 
The foundation of electronic spectroscopy is the exact solution of the time-independent 
Schrodinger equation for the hydrogen atom. This is the only atomic or molecular system for 
which there is an exact solution. 
 
In section I, the Bohr model of the hydrogen atom yielded correct energies with correlation of 
energy levels with the z-component of electronic orbital angular momentum. Greater angular 
momentum correlated with higher energy. 
 
The potential energy contribution to the Hamiltonian is the Coulombic interaction 
−(1/4πε 0)(e 

2/r). Polar coordinates (r, θ, φ ) are good for the hydrogen atom Schrodinger equation 
because the potential is radial: 
 
(2mr 

2)–1{–ħ 
2[d/dr(r 

2dψ/dr)] – ħ 
2[(1/sinθ ) d/dθ (sinθ dψ/dθ )] – ħ 

2[(1/sin2θ ) d 
2ψ/dφ 

2]} 
  

– (1/4πε 0)(e 
2/r)ψ  =  Eψ  (IV.1) 

 
The kinetic energy term in braces is split between the first term which only contains derivatives 
with respect to r and the second two terms which contain derivatives with respect to θ, φ . These 
second two terms are the squared angular momentum of the electron: 
 

(2mr 
2)–1{[(–ħ 

2 )d/dr (r 
2dψ/dr)] + L2ψ} – (1/4πε 0)(e 

2/r)ψ = Eψ   (IV.2) 
 
 L2 = L . L = (r × p) . (r × p)        (IV.3) 
 
 L = r × p = (x x + y y + z z) × –iħ {(d/dx ) x + (d/dy ) y + (d/dz ) z}   (IV.4) 
 
L2 can be written in spherical polar coordinates using the following equations: 
 
 x = r sinθ cosφ          (IV.5) 
 
 y = r sinθ sinφ          (IV.6) 
 
 z = r cosθ          (IV.7) 
 
In Eq. IV.2, the kinetic energy operator L2/2mr 

2 corresponds to the kinetic energy operator for an 
electron moving on a sphere of radius r. This operator is analogous to the kinetic energy operator 
of the radial atom Hamiltonian (Eq. II.39). The other kinetic energy operator in Eq. IV.2 
corresponds to kinetic energy along the r direction. 
 
Eq. IV.2 is solved by separation of variables: 
 

ψ(r,θ,φ ) = R(r)Y(θ ,φ )        (IV.8) 
 
 (2mr 

2)–1{[(–ħ2Y )d/dr (r 
2dR/dr)] + RL2Y } – (1/4πε 0)(e 

2/r)RY = E(RY )  (IV.9) 
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Note that L2 operates on Y which includes taking derivatives. Multiply Eq. IV.9 by 
2mr 

2/(RY ): 
 
 (–ħ 

2/R)d/dr (r 
2dR/dr) – (1/4πε 0)(2mre 

2) – 2mr 
2E + L2Y/Y = 0   (IV.10) 

 
The first three terms depend only on r while the last term depends only on θ and φ. Eq. (IV.10) is 
only possible for all r, θ, φ when the sum of the first three terms is equal to a constant and the 
last term is equal to –1 times that constant. With foresight, the constant is called –l (l + 1)ħ 

2 so 
that an equation can be written for the last term: 
 
 L2(Y ) = l (l + 1)ħ 

2Y          (IV.11) 
 
Consider: 
 
 Y(θ ,φ ) = Θ(θ ) Φ(φ )         (IV.12) 
 
Eq. IV.12 is rewritten using the expression for L2 from Eq. IV.1: 
  

–ħ 
2{[(1/sinθ ) d/dθ (sinθ d(ΘΦ)/dθ )] + [(1/sin2θ ) d 

2(ΘΦ)/dφ 
2]}  =  l (l + 1)ħ 

2 (ΘΦ) 

            (IV.13) 
 
Multiply Eq. IV.13 by –sin 

2θ /(ΘΦ): 
 
 ħ 

2 (sinθ /Θ) d/dθ (sinθ d Θ/dθ )  +  l (l + 1) ħ 
2 sin 

2θ  +  ħ 
2

 (1/Φ) d 
2Φ/dφ 

2  =  0 (IV.14) 
 
The first two terms depend only on θ and the last term depends only on φ. In order for the sum to 
be 0 for all θ, φ  , the first two terms and last term must be constants with opposite sign. Set the 
constants as m 

2
 ħ 

2 and –m 
2

 ħ 
2 . For the third term: 

 
 ħ 

2d 
2Φ/dφ 

2  =  –m 
2

 ħ 
2  Φ        (IV.15) 

 
  (–iħ d/dφ ) 

2 Φ =  m 
2

 ħ 
2  Φ        (IV.16) 

 
 Lz

2 Φ  =  m 
2

 ħ 
2  Φ         (IV.17) 

 
The eigenvalues and eigenfunctions for this equation are taken from Eqs. II.25 and II.41.   
 
 Φm(φ ) = (2π) 

–1/2 eimφ,  m = integer      (IV.18) 
 
These are the eigenfunctions of the angular momentum along the z direction. The eigenvalue for 
the projection of rotational angular momentum on the space-fixed z axis is mħ. This is the only 
cartesian projection of angular momentum which we know with certainty. 
 
The Θ eigenfunctions are the Legendre polynomials and are functions of cosθ :  

 32



 
 Θlm = Pl

|m| (cosθ )   l, m are integers with l ≥ 0    (IV.19) 
 
Ylm (θ,φ ) = Θlm (θ )Φm (φ ) are known as the spherical harmonics and a few representative 
normalized Ylm are presented: 
 
 |Y00〉 =  (1/4π)1/2

  
|Y10〉 =  (3/4π)1/2 cosθ 

  
|Y1±1〉 =  –+(3/8π)1/2 sinθ e 

±iφ

  
|Y20〉 = (5/16π)1/2 (3cos2θ  – 1)       (IV.20) 

  
|Y2±1〉 =  –+(15/8π)1/2 cosθ sinθ e 

±iφ

  
|Y2±2〉 =  (15/32π)1/2 sin 

2θ e 
±2iφ

 
Note: 
 

L2 |Ylm 〉  =  l (l + 1) ħ 
2

 |Ylm 〉        (IV.21) 
 

Lz |Ylm 〉  =  mħ |Ylm 〉         (IV.22) 
 
Lz

2 |Ylm 〉  =  m 
2ħ 

2
 |Ylm 〉         (IV.23) 

 
Note that 〈Lz

2
 〉 ≤ 〈L2

 〉 because the magnitude of angular momentum along one axis cannot be 
greater than the total magnitude of angular momentum. This physical limitation leads to the 
restriction |m| ≤ l . For example, for l = 2, m = –2, –1, 0, 1, 2. 
 
Ylm are commonly denoted by letters with l = 0, 1, 2, 3 referred to as s, p, d, and f orbitals. 
 
The parity or space inversion of Ylm has a (–1)l

 dependence.  The parity operation is described in 
cartesian coordinates by the operation x → –x, y → –y, z → –z or r → –r. In polar coordinates, 
the parity operation is described by θ → π – θ , φ → φ + π and: 
 
 Ylm (π – θ , φ + π) = (–1)l Ylm (π, φ )       (IV.24) 
 
The Ylm with even l have even parity and the Ylm with odd l have odd parity. The even parity Ylm 
do not change with coordinate inversion while the odd parity Ylm change sign with space 
inversion. 
 
The parity of the Ylm can be useful in calculating integrals over the angular θ, φ coordinates. An 
integral can only be non-zero if the parity of the total product of the wavefunctions and the 
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operator function is even. For two functions, odd × odd = even, even × even = even, and 
even × odd = odd.  
 
Consider the dipole selection rules for transition intensities between different RYlm  (Eq. III.21):  
 
I ∝ |〈 RYl2m2 | μ x | RYl1m1 〉|2 Є x 

2 +  |〈 RYl2m2 | μ y | RYl1m1 〉|2 Є y 

2  +  |〈 RYl2m2 | μ z | RYl1m1 〉|2 Є z 

2 (IV.25) 
 

〈 RYl2m2 | μ x | RYl1m1 〉 = – 〈 RYl2m2 | er sinθ cosφ | RYl1m1 〉 = – 〈 R | er | R 〉〈 Yl1m1 |  sinθ cosφ | Yl1m1 〉
 (IV.26) 

 
〈 RYl2m2 | μ y | RYl1m1 〉 = – 〈 RYl2m2 | er sinθ sinφ | RYl1m1 〉 = – 〈 R | er | R 〉〈 Yl2m2 |  sinθ sinφ | Yl1m1 〉 (IV.27) 

 
〈 RYl2m2 | μ z | RYl1m1 〉 =  – 〈 RYl2m2 | cosθ | RYl1m1 〉 =  – 〈 R | er | R 〉〈 Yl2m2 | cosθ | Yl1m1 〉  (IV.28) 
 
The integrals in Eqs. IV.26-28 are separated into r and θ, φ integrals. The dipole moment 
operator μ = – er and its three components μ x , μ y , and μ z  have odd parity and one dipole 
selection rule is that transitions only occur between Ylm with opposite parity. This is shown by 
Eqs. IV.26-28. Further analysis shows there are only non-zero transition dipole moments for 
Δl = ±1. 
 
The m selection rule can be derived from considering only the φ part of the transition dipole 
moment integrals. For the μ x component for a m 2 ← m 1 transition: 
 

 0 ∫ 

2π Φm2
* cosφ  Φm1 dφ  =  (2π)–1 0 ∫ 

2π e 
–im2φ cosφ  e 

im1φ  dφ   = 
 

(4π)–1 { 0 ∫ 

2π e 
–im2φ e 

iφ e 
im1φ  dφ   +  0 ∫ 

2π e 
–im2φ e 

–iφ e 
im1φ  dφ  } =  

 

(4π)–1 { 0 ∫ 

2π e 
i

 
(m1 – m2 + 1)

 
φ  dφ   +  0 ∫ 

2π e 
i

 
(m1 – m2 – 1)

 
φ  dφ  }    (IV.29) 

 
Each integral is only non-zero if the argument of the exponential is 0 and results in a Δm = ±1 
selection rule. Analysis of the μ y component also results in a Δm = ±1 selection rule and analysis 
of the μ z component results in a Δm = 0 selection rule. The overall m selection rule is then 
Δm = 0, ±1. 
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Magnetic Resonance 
 
Much of the quantum mechanics of angular momentum described for the electron can be directly 
applied to nuclear and electron spin magnetic resonance. Recall Eqs. I.2.23 and I.2.24 for the 
spin magnetic moment: 
 

μ  =  γ L =  γ ħ S  = γ ħ (Sx x + Sy y + Sz z)      (IV.30) 
 
S = L/ħ is the “spin operator” and is unitless. Assuming that Eqs. IV.21 and IV.22 are general for 
any angular momentum: 
 

S 
2 | S, m 〉  =  L 

2/ħ 
2 | S, m 〉  =  S (S + 1) | S, m 〉      (IV.31) 

 
Sz | S, m 〉  =  m | S, m 〉         (IV.32)  

 
There is a confusing convention that “ S ” refers both to the spin operator and to the spin 
quantum number S ≡ l. 
 
Unlike the orbital angular momentum of the electron which can have any integral l ≥ 0, S has a 
single integer or half-integer value specific to the electron or particular nuclear isotope. For 
example, S = ½ for e 

–, 1H, and 13C, S = 1 for 2H and 14N, and S = 3/2 for 23Na. The | m | ≤ S so 
that for 2H, m =  –1, 0, 1. 
 
A time-independent Schrodinger Equation for magnetic resonance in an external magnetic field 
BBext = B0 B z (Eq. I.2.22): 
 
 ,  | S, m 〉 = {–μ . BBext } | S, m 〉 = Em | S, m 〉      (IV.33) 
 
 {–γ ħ (Sx x + Sy y + Sz z) . BB0 z }| S, m 〉 = Em | S, m 〉     (IV.34) 
 
 –γ ħ BB0 Sz | S, m 〉 = Em | S, m 〉        (IV.35) 
 

Em = –γ ħ BB0 m          (IV.36) 
 
Determination of selection rules is aided by raising and lowering operators: 
 

S +  = L + / ħ  =  S x + i S y (raising operator)     (IV.37) 
     
 S –  = L – / ħ  =  S x – i S y   (lowering operator)     (IV.38) 
 
These operators have the properties: 
 
 S + | S, m 〉 = [S(S + 1) – m (m + 1)]1/2 | S, m + 1 〉     (IV.39) 
 
 S – | S, m 〉 = [S(S + 1) – m (m – 1)]1/2 | S, m – 1 〉     (IV.40) 
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The μ x transition dipole moment integral for the | S, m2 〉 ← | S, m1 〉 transition: 
 

〈 S, m2 | μ x | S, m1 〉 = (γ ħ /2 ){ 〈 S, m2 | S + | S, m1 〉 + 〈 S, m2 | S –  | S, m1 〉} 
 

= (γ ħ /2 ){[S(S + 1) – m (m + 1)]1/2 〈 S, m2 |  S, m1 + 1 〉 + [S(S + 1) – m (m – 1)]1/2 〈 S, m2 | S, m1 – 1 〉} 
 
            (IV.41) 
 
The first integral is non-zero for m2 = m1 + 1 and the second integral is non-zero for m2 = m1 – 1 
and result in a Δm = ±1 selection rule. This result is confirmed by the μ y and the μ z transition 
dipole moment integrals. 
 
The magnetic resonance transition frequency: 

 
ν  = γ BB0 / 2π          (IV.42) 

 
In addition to the large external field BB0 z, there are smaller internal magnetic fields within the 
molecule that vary with chemical and geometric structure. These internal or “local” fields are 
different for different nuclei and electrons and determination of these fields from the magnetic 
resonance spectrum provides most of the chemical and structural information. 
 
The most important internal fields are along the z direction: 
 
 B = (BB0 + Bint B ) z         (IV.43) 
 
 ν  = (γ /2π) (BB0 + Bint B )         (IV.44) 
 
For nuclear spins, the most important internal fields are due to chemical shielding. There are 
electronic currents induced by the external field and the chemical shielding fields are the 
magnetic fields of the induced currents (see page 1). The induced currents, chemical shielding, 
and NMR frequency depend on the chemical bonds of the nucleus: 
 

BBshield  =  – σ B0B  z         (IV.45) 
 
where σ  is typically positive and 10 

–6 < σ typical < 10 
–3 . Note that BBshield is typically antiparallel 

to BextB  and therefore reduces ν . 
 
The induced currents and σ  will also depend on the orientation of the chemical bonds in the 
magnetic field and this dependence is called the chemical shielding anisotropy. 
 
Inclusion of BBshield in Eq. IV.44: 
 
 νshield  = γ ħ BB0 (1 – σ )         (IV.46) 
 

 36



Experimental determination of σ  as defined in Eq. IV.44 is difficult because measurement of ν  
in a compound with σ = 0 corresponds to the nucleus with no electrons. It is more practical to 
measure Δν  and therefore σ  relative to some reference compound: 
 
 Δνshield  = – γ BB0σ / 2π         (IV.47) 
 
 δ  = – σ  = 2π Δνshield /γ BB0        (IV.48) 
 
The δ  is called the chemical shift and is typically reported in ppm. 
 
Another significant internal field is scalar or J-coupling : 
 
 BBscalar  =  – (2π JM /γ )  z        (IV.49) 
 
  νscalar  =  JM           (IV.50) 
 
In these equations, M refers to the m value of a nearby nuclear spin which has chemical bond 
connectivity with the nuclear spin undergoing a transition and J is a “coupling constant” 
particular to the two spins and their chemical bond connectivity. For example, J ~ 150 Hz for a 
directly bonded 1H-13C spin pair. 
 
In a typical sample, the nearby spin has nearly equal probabilities of being in any of its M states. 
A multiplet of transitions are observed and each transition corresponds to a different M value. 
For example, consider detection of 13C in a 1H-13C spin pair. S (1H) = ½ and J = 150 Hz: 
 
 M = ½  νscalar  =  J/2  =  75 Hz 
            (IV.51)  
 M = – ½    νscalar  =  – J/2  =  – 75 Hz 
 
 Δνscalar  = J = 150 Hz         (IV.52)  
 
The scalar fields result in splittings in the spectra. 
 
The chemical shift and scalar couplings are both sensitive to the local bonding of the nucleus and 
measurement of these parameters in the NMR spectrum is helpful in assignment of individual 
peaks to specific nuclei. Because the chemical shifts and scalar couplings of particular functional 
groups are well-known, NMR spectra are also very useful for determination of the chemical 
structures of unknown compounds. 
 
Distinguishing between Δνshield and Δνscalar is most straightforwardly done by taking NMR 
spectra at two different BB0 fields. Note that Δνshield ∝ B0B  while Δνscalar is independent of BB0. 
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Return to Hydrogen Atom 
 
The radial part of the time-independent Schrodinger equation for the hydrogen atom will now be 
solved. The first three terms of Eq. IV. 10: 
 

(–ħ 
2/R) d/dr (r 

2dR/dr) – (1/4πε 0)(2mre 
2) – 2mr 

2E  =  – ħ 
2

 l (l + 1)   (IV.53) 
 
Multiply by R / 2mr 

2 and rearrange terms: 
 

(–ħ 
2/ 2mr 

2 ) d/dr (r 
2dR/dr) + [(ħ 

2/ 2mr 
2 ) l (l + 1) – (1/4πε 0)(e 

2/r)]R  =  ER  (IV.54) 
 
The first term in this equation is the radial kinetic energy, the second term is the centrifugal 
potential, and the third term is the Coulomb potential. The centrifugal potential reflects the 
“conservation” of angular momentum; i.e. L2 = ħ 

2
 l (l + 1) ≡ constant. In order for L2 = |r × p|2 to 

be independent of r, p2 and the kinetic energy associated with angular motion (centrifugal 
potential) are proportional to r 

–2. The centrifugal potential is also apparent in the classical 
mechanics solution of two particles with an attractive radial potential. 
 
The R eigenfunctions are the associated Laguerre Polynomials Rnl (r) which are indexed by the 
radial or “principal” quantum number n, an integer greater to or equal to 1 and the angular 
momentum or “azimuthal” quantum number l with n > l , l = 0 ≡ s, l = 1 ≡ p, l = 2 ≡ d . 
 
 1s R10  =  (a 0) 

–3/2 2 e 
–r/a0        (IV.55) 

  
2s R20  =  (a 0) 

–3/2 (1/8)1/2 [2 – (r/a0)] e 
–2

 
r/a0     (IV.56) 

  
2p  R21  =  (a 0) 

–3/2 (1/24)1/2 (r/a0) e 
–2

 
r/a0      (IV.57)  

 
3s  R30  =  (a 0) 

–3/2 (1/243)1/2 [6 – (4r/a0) + (4r 
2/9a0

2 )] e 
–3

 
r/a0   (IV.58) 

 
3p R31  =  (a 0) 

–3/2 (1/486)1/2 [4 – (2r/3a0)] e 
–3

 
r/a0    (IV.59) 

 
3d  R32  =  (a 0) 

–3/2 (1/2430)1/2 (r /a0
 ) 

2 e 
–3

 
r/a0     (IV.60) 

 
The total eigenfunction: 
 

ψnlm (r, θ , φ ) = R nl (r) Ylm (θ , φ )       (IV.61) 
 
It is interesting to calculate the integrated probability for the electron over a spherical shell of 
radius r. This “radial probability density” is independent of θ , φ and is proportional to the 
surface area of the sphere = 4πr 2: 
 

(Radial probability density) nl  ∝  r 2 Rnl 
2      (IV.62) 

 
(Angular probability density) lm  ∝  Ylm

2      (IV.63) 
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The hydrogen atom enegy eigenvalues: 
 
 E = – (1/4πε 0)

2 × (1/n 

2) × me 
4/2ħ 

2       (IV.64) 
 
This is the same solution as the Bohr atom semiclassical approach, Eq.1.2.9. Note though that the 
‘n’ in the Bohr atom is the component of angular momentum along the z axis. In the quantum 
mechanical solution, the Bohr atom ‘n’ is the “magnetic” quantum number ‘m’ whose value has 
no effect on the energy. In the quantum mechanical approach, the energy for a give n is 
independent of l and m. So, the energy (although not the wavefunction) is independent of the 
angular momentum. Note that as n increases, 〈 r  〉 increases, 〈 Vcoulomb  〉 increases, and E increases. 
 
Different eigenfunctions with the same energy are “degenerate”. For example, n = 1 has a 
degeneracy of 1 (1s), n = 2 has a degeneracy of 4 (1s, 2p), and n = 3 has a degeneracy of 9 (3s, 
3p, 3d ). 
 
The selection rule for changes in the radial quantum number n are calculated from the integration 
over r in Eqs. IV.26-IV.28 along with incorporation of the Δl = ±1 selection rule: 
 
 – 〈 Rn 2, l + 1 | er | R n 1 , l  〉         (IV.65) 
 
 – 〈 Rn 2, l – 1 | er | R n 1, l  〉         (IV.66) 
 
The radial quantum number selection rule: 
 
 Δn = anything           (IV.67) 
 
This selection rule and energy levels are consistent with the experimental hydrogen atom 
spectrum. 
 
One interesting aspect of the hydrogen atom is that although there is kinetic energy associated 
with θ , φ  motion, the total energy is only dependent on the the radial quantum number n: 
 
 〈 Lz

2/2mr 

2
 〉nl  =  [l (l + 1)ħ 

2/2m][〈 r –
 

2
 〉nl ]      (IV.68) 

 
 〈 – (1/4πε 0)(e 

2/r) 〉nl  =  – (e 
2/4πε 0)(〈r 

–1
 〉nl      (IV.69) 

 
In order for the 2s (l = 0) and 2p (l = 1) orbitals to have the same energy, 〈 r 

 〉 21 < 〈 r 
 〉 20 . In 

general, as l increases for fixed n, 〈 r 
 〉 nl decreases. The decreased Coulomb energy compensates 

for the increased angular kinetic energy. 
 
Because S = ½ for electrons, the total electron wavefunction is |ψnlm 〉|½ , m 〉 where the first part 
is the spatial function and the second part is the electron spin function. Each spatial function can 
be associated with either the m = ½ or the m = – ½ spin function. 
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The orbitals for atoms with larger numbers of electrons are based on the hydrogen atom orbitals. 
Electrons are fermions which means that there can be only one electron per hydrogen atom 
wavefunction. For example, the ten electrons in neon are considered to occupy all of the n = 1 
and n = 2 orbitals (5 spatial orbitals: 1s, 2s, 2p (m = – 1, 0, 1). 
 
The independence of energy on l for the hydrogen atom is not obtained for other atoms. The 
difference is interelectron repulsion. 
 
Understanding electronic structure in molecules begins with creation of atomic orbitals whose 
spatial orientations are the same as those of the chemical bonds. These orbitals are linear 
combinations of the hydrogen atom orbitals. For example, the l = 1, m = ±1 hydrogen orbitals 
have no preferred orientation in the xy plane but defined direction can be created by linear 
combinations of these orbitals. In particular: 
 
 ψpx ∝ (ψ1, +1  +  ψ1, –1 )  ∝  sinθ (e 

iφ  +  e 
–

 
iφ ) /2  =  sinθ cosφ      (IV.70) 

 
 ψpy ∝ (ψ1, +1  –  ψ1, –1 )  ∝  sinθ (e 

iφ  –  e 
–

 
iφ ) /2  =  sinθ sinφ      (IV.71) 

 
Some molecular electronic spectra are interpreted in terms of perturbed atomic orbitals. For 
example, visible spectra of first-row transition metal complexes are often interpreted in terms of 
3d ← 3d transitions of the metal ion. Directional 3d hydrogen atom orbitals are perturbed by the 
ligands of the complex. Note that these transitions violate the Δl = 1 selection rule for hydrogen 
atom transitions. 
 
Most molecular electronic spectra are understood as transitions between “molecular orbitals” 
which are linear combinations of atomic orbitals of different different atoms in the molecule. The 
individual atomic orbitals may be “hybridized” as linear combinations of the hydrogen atom 
orbitals which point along the chemical bond directions. A specific example is the tetrahedrally 
oriented 2sp 

3 orbitals of carbon which are formed from linear combinations of the 2s, 2px, 2py, 
and 2pz (l = 1, m = 0) orbitals. 
 
 ½ 2s  +  (3/4)½ 2pz points along z direction     (IV.72) 
 
 ½ 2s  –  (1/12)½ 2pz  +  (2/3)½ 2px lies in xz plane     (IV.73) 
 
 ½ 2s  –  (1/12)½ 2pz  –  (1/6)½ 2px  +  ( ½ )½ 2py     (IV.74) 
 
 ½ 2s  –  (1/12)½ 2pz  –  (1/6)½ 2px  –  ( ½ )½ 2py     (IV.75) 
 
Note that the four sp 

3 orbitals are orthonormal and that the total number of hybridized orbitals 
equals the number of input hydrogen atom orbitals. 
 
The hydrogen molecule with hydrogen atoms A and B is the simplest example of molecular 
orbitals: 
 

1sσ  ∝  1sA + 1sB         (IV.76) B
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1sσ 

*  ∝  1sA – 1sB         (IV.77) B

 
An electron in the 1sσ  “bonding” orbital has a higher probability of being between the two 
hydrogen nuclei than does an electron in the 1sA or the 1sB orbital. Electrons in this in-between 
region experience the attractive Coulomb interaction with both hydrogen nuclei and leads to 
lower overall energy relative to the atomic orbitals. 

B

 
An electron in the 1sσ 

* “anti-bonding” orbital has lower probability of being between the two 
nuclei and has higher energy relative to the atomic orbitals. 
 
Because they have opposite values of the spin quantum number m, the two electrons can both be 
in the 1sσ  orbital and form the chemical bond, i.e. a region of significant electron density 
between two nuclei. 
 
A π molecular orbital is formed by a linear combination of p atomic orbitals whose direction is 
perpendicular to the internuclear axes. 
 
Electronic spectral transitions are typically localized to molecular orbitals of a specific functional 
group within the molecule. In this context, the functional group is called a “chromophore”. 
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