Kinetic Monte Carlo simulation of the Yttria Stabilized Zirconia (YSZ) fuel cell

Kah Chun Lau, C. Heath Turner and Brett I. Dunlap

aDepartment of Chemistry, George Washington University, Washington D.C. 20052.
bDepartment of Chemical and Biological Engineering, University of Alabama, Bevil 132A, Box 870203, Tuscaloosa, AL 35487.
cCode 6189, US Naval Research Laboratory, Washington DC, 20375

A Kinetic Monte Carlo (KMC) model is developed to simulate non-symmetrically the cathode side of a Yttria Stabilized Zirconia (YSZ) fuel cell, in order to translate experimental, and ultimately theoretical rates into an atomistic model of the fuel cell1. The KMC model consists of a set of several electrochemical reaction rates, adopted from experiments and first-principles calculations. The KMC simulations are used to model these simultaneously occurring events, to determine potential limitations in cathode/YSZ performance. The focus of this work is ionic current density (J), studied as a function of various physical parameters: oxygen partial pressure (P_{O_2}), external applied bias voltage (V_{ext}), temperature (T), dopant concentration (mol \% Y_2O_3), relative permittivity (ε) of YSZ, and geometrical features of the YSZ electrolyte. This simple model can be used as a baseline to translate elementary chemical reaction rates into atomistic simulations of working solid oxide fuel cell cathodes, pertinent to the complete set of experimental operating conditions.

\textit{This work is supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.}