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Abstract

2D slow-spinning, rotor-synchronized MAS exchange spectroscopy (SSRS-MASE) was applied to study local
secondary structure of three structurally different peptides, two of which were membrane-bound. Each peptide was
13C carbonyl labeled at two adjacent residues in the peptide backbone. In general, this methodology is attractive
for membrane-bound peptides because of its lenient spinning, decoupling, and RF homogeneity requirements.

For a single set of raw SSRS-MASE data, two linearly independent methods exist for obtaining a 2D spectrum
and each spectrum can be fit to obtain conformational constraints. An approach is described for combining the
results of these two fits and this method is shown to work for spectra with both resolved and unresolved labeled
site resonances. A spectrum is often fit well to a few different conformations which have somewhat different
values of the fitting parameter χ2. A simple statistical theory is developed which relates the �χ2 difference
between a local minimum and the global minimum χ2 to the likelihood that the local minimum conformation is
the correct structure. Because uncertainty in the simulated data can also contribute to the overall fitting uncertainty,
an empirical method is described for incorporating the simulation uncertainty into the �χ2 analysis.

These data analysis methods were tested on polycrystalline Ala-Gly-Gly and then applied to the membrane-
bound melittin and HIV-1 fusion peptides. Melittin gave a best-fit α helical structure at Ala-4 while the fusion
peptide gave a good-fit β strand structure at Phe-8. The melittin analysis is in agreement with the known overall
structure of this peptide.

Abbreviations: AGG – alanylglycylglycine; BCA – bicinchoninic acid; CP – cross-polarization; CSA – chemical
shift anisotropy; DQ – double quantum; DRAWS – dipolar recoupling with a windowless multipulse irradia-
tion; DTPC – di-o-tetradecyl-sn-glycero-3-phosphocholine; FMOC – 9-fluorenylmethoxycarbonyl; FP – fusion
peptide; HIV – human immunodeficiency virus, HPLC – high-performance liquid chromatography; MAS –
magic angle spinning; RFDR – radiofrequency-driven dipolar recoupling; RMSD – root-mean-squared deviation;
SSRS-MASE – slow-spinning, rotor-synchronized magic angle spinning exchange; 1D – one-dimensional; 2D –
two-dimensional.

Introduction

Magic angle spinning (MAS) solid state nuclear mag-
netic resonance (NMR) spectroscopy has become a
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weliky@cem.msu.edu

useful probe of local conformation in membrane-
bound peptide and protein systems. Recent studies
include rhodopsin-bound retinal, the serine bacterial
chemoreceptor, magainin, and the HIV-1 fusion pep-
tide (Hirsh et al., 1996; Creemers et al., 1999; Eilers
et al., 1999; Murphy et al., 2001; Yang et al., 2001a,
b). Chemical shifts are the most basic structural probe
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and provide evidence of helical or non-helical struc-
ture (Spera and Bax, 1991; Wishart et al., 1991).
More sophisticated techniques rely on measurement
of conformation-dependent dipolar couplings (Griffin,
1998) or on conformation-dependent relative orienta-
tion of shift tensors (Tomita et al., 1994; Tycko et al.,
1996; Gregory et al., 1997; Bower et al., 1999; Blanco
and Tycko, 2001). In this paper, we discuss one of
the latter methods, the application of two-dimensional
slow spinning, rotor-synchronized magic angle spin-
ning exchange (2D SSRS-MASE) spectroscopy to
analysis of local conformation in membrane-bound
and polycrystalline peptides. The methodology was
originally conceived as a probe of slow motion (Kent-
gens et al., 1987; Hagemeyer et al., 1989; Luz et al.,
1992) and was then applied to determine local con-
formation in polycrystalline, lyophilized, and frozen
solution peptide and protein systems (Weliky and Ty-
cko, 1996; Long and Tycko, 1998; Weliky et al., 1999;
Balbach et al., 2000).

For unoriented samples, exchange under both sta-
tic and spinning conditions relies on specific labeling
of two nearby homonuclei (13C in our case) and a
simple 2D experiment in which the magnetization
evolves under the anisotropic chemical shift of one
of the labeled sites during t1, diffuses to the second
site during the exchange period τ, and evolves un-
der the anisotropic chemical shift of the second site
during t2. If all of the molecules in the sample have
the same local structure near the two labeled sites,
then the chemical shift anisotropy (CSA) tensors of the
two sites will have a well-defined relative orientation
which will be manifested as correlation between the
anisotropic chemical shifts of the two nuclei. This cor-
relation will produce an off-diagonal intensity pattern
in the 2D exchange spectrum which is distinctively
characteristic of the relative CSA tensor orientation
and the particular local structure. Because of the low
probability of nearby natural abundance 13C/13C spin
pairs, the off-diagonal intensity will be dominated
by these labeled-site signals. In order to relate the
off-diagonal pattern to local structure, simulated 2D
spectra must be generated as a function of local struc-
ture and comparison made between the simulated and
experimental spectra. The simulations require knowl-
edge of the CSA principal values of each of the labeled
sites as well as the orientation of the CSA principal
axis system of each labeled site relative to its chem-
ical bonds. In many cases, the principal values can
be directly measured from 1D spectra and the princi-

pal axis system orientations are approximately known
from studies of model compounds.

Structural applications of this type of 2D exchange
spectroscopy were originally made using static sam-
ples, and an off-magic angle spinning variant of the
technique has also been reported (Edzes and Bernards,
1984; Henrichs and Linder, 1984; Tycko and Dab-
bagh, 1991; Asakura et al., 2001). For the static case,
the off-diagonal intensity pattern can be straightfor-
wardly simulated using the anisotropic chemical shift
formula and powder averaging.

Under MAS, there is periodic modulation of the
anisotropic shift interactions which concentrates the
NMR signal at the isotropic and spinning sideband
frequencies of the two labeled sites. These νn

M frequen-
cies for site n = 1 or 2 can be calculated as νn

M = νn
iso+

Mνr, where νn
iso and νr are the isotropic and MAS fre-

quencies, and M = 0, ±1, ±2, . . . If the shift tensors
of the two sites are not colinear, then the 2D exchange
spectrum will contain off-diagonal crosspeaks which
have frequency νn

M in one dimension and frequency
νn′

M′ (M′ �= M′, n �= n′) in the second dimension. If
the CSA principal values and principal axis orienta-
tions of each labeled site are known, then the relative
off-diagonal crosspeak intensities can be simulated as
a function of local structure. The equations for the
MAS crosspeak intensities are well-understood and
have been published in detail elsewhere (Hagemeyer
et al., 1989; Luz et al., 1992; Tycko et al., 1996; Tycko
and Berger, 1999). It is noted that a simple formula
does not exist to relate the MAS off-diagonal cross-
peak intensities to the off-diagonal intensity pattern of
a static spectrum.

This paper applies 2D MAS exchange spec-
troscopy (specifically 2D SSRS-MASE) to determine
local secondary structure in membrane-bound and
polycrystalline peptides. Relative to static exchange,
the slow-spinning MAS version has several advan-
tages including, most importantly, increased sensi-
tivity due to sharp MAS lines. In membrane-bound
peptide studies, one typically wishes to work with
fully hydrated lipids and with peptide:lipid mol ratios
≤ 1 : 20. In our experience, this constrains the peptide
quantity to ≤ 2 µmol in a 200 µl volume. Sensitivity
is paramount for these sample quantities, which are
significantly less than the 5–20 µmol quantities ac-
cessible in studies of pure solid peptides. In addition,
the 2D exchange experiment uses only a few pulses,
can be done with 60 kHz 1H decoupling, is insensi-
tive to RF inhomogeneity, and uses spinning speeds of
≤ 5 kHz. Because of these lenient conditions, com-
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mercial probes with large-volume (> 200 µl) rotors
can be used to provide either greater sample quantity
and NMR signal, or lower peptide:lipid ratio, which
may have greater biological relevance. 2D SSRS-
MASE does require rotor synchronization of pulses
over ∼ 1 s to suppress artifactual crosspeak intensity.

The samples contain 13C carbonyl labeling at two
adjacent residues in the peptide backbone. For 2D
SSRS-MASE, there are several advantages of 13C car-
bonyl over 15N amide or 13Cα labeling including: (1)
The detection sensitivity for 13C is higher than for 15N;
(2) the carbonyl CSA tensor is large and the orienta-
tion of its principal axis system relative to its chemical
bonds is well-characterized and approximately inde-
pendent of peptide structure (Oas et al., 1987); and
(3) 13C carboxyl labeled amino acids are more widely
available and less expensive than 13Cα labeled amino
acids.

For carbonyls at adjacent peptide residues, the lo-
cal secondary structure dihedral angles (ϕ, ψ) are the
main unknown parameters which determine the rela-
tive orientation of the carbonyl CSA tensors and hence
the off-diagonal crosspeak intensities in a 2D SSRS-
MASE spectrum. Using the known bond geometry in
peptides and the known orientation of the carbonyl
CSA tensor relative to its local bonding, formulas have
been derived for the 2D SSRS-MASE crosspeak inten-
sities as a function of (ϕ, ψ) (Tycko et al., 1996; Tycko
and Berger, 1999). With the additional input of experi-
mental CSA principal values, the simulated crosspeak
intensities can be calculated and compared to the ex-
perimental intensities. Reasonable agreement between
experiment and simulation typically only occurs in a
few restricted regions of (ϕ, ψ) conformational space.

In the 2D SSRS-MASE analysis, the (ϕ, ψ) are
treated as unknown parameters and are fitted, while
the CSA and bond geometry are treated as known pa-
rameters. There are small uncertainties in these latter
parameters which can be considered as simulation un-
certainty in the fitting. This aspect of the analysis is
discussed in the Theory and Results sections of this
paper.

In 2D SSRS-MASE, four free-induction decays
(FIDs) are taken for each t1 time, and these data
can be processed in two different ways to produce
two linearly-independent, 2D exchange spectra (Tycko
and Berger, 1999). In the Hagemeyer, Schmidt-Rohr,
and Spiess (HSS) method, the experimental crosspeak
intensity is largely due to magnetization exchange
between the two labeled sites (Hagemeyer et al.,
1989). This is advantageous because the variation of

this intersite intensity with spinning sideband num-
ber provides the basis of the conformational analy-
sis. There is also intersite crosspeak intensity with
the Herzfeld, Roberts, and Griffin (HRG) processing
method (Herzfeld et al., 1987), and HRG intensity
variation with conformation is different from that of
the HSS method. Thus, use of HSS and HRG ‘dual
processing’ should provide independent verification of
the correct secondary structure.

One complication of the HRG method is that large
crosspeak intensity is also present for magnetization
which remains on the same carbonyl nucleus in the t1
and t2 dimensions. For both the HSS and HRG meth-
ods, the crosspeaks directly adjacent to the spectrum
diagonal have a small intensity contribution because
of rapid longitudinal 14N relaxation during τ. This
contribution arises from magnetization which is on
the same carbonyl nucleus during t1 and t2 but which
experiences a different 13C-14N dipolar coupling and
hence local field tensor during the different times. In
the context of 2D SSRS-MASE, the intrasite intensity
does not provide any useful structural information.

For the case of resolved chemical shifts of the two
labeled sites, the uninteresting intrasite crosspeaks do
not interfere with the structural analysis because they
are separated from the interesting intersite crosspeaks.
In the case of unresolved chemical shifts, the intra-
site crosspeaks overlap with the intersite crosspeaks,
and the intrasite contribution must be subtracted in the
structural analysis.

This paper demonstrates the accuracy and limita-
tions of 2D SSRS-MASE secondary structure analysis
of three different peptides, two of which were asso-
ciated with membranes. In spectra of one membrane-
bound peptide, melittin, the shifts of the two labeled
carbonyls were resolved while in the other case, the
HIV-1 fusion peptide (FP23), the shifts were not re-
solved. In addition, we recorded spectra of the model
polycrystalline tripeptide Ala-Gly-Gly (AGG) and fit-
ted both the naturally resolved spectra and spectra
which had been broadened such that the intrasite and
intersite crosspeaks were not resolved.

For resolved shifts, the accuracy of the 2D SSRS-
MASE methodology in determining the conformation
of small model systems was demonstrated in earlier
studies on AGG (Weliky and Tycko, 1996; Tycko and
Berger, 1999). An attempt was also made to simu-
late the HSS processing for unresolved shifts (Weliky
and Tycko, 1996). The experimental and calculated
intersite crosspeak intensities from a resolved spec-
trum were summed to produce a quasi-unresolved



52

spectrum, and fitting was done using the summed
crosspeaks. This was not a realistic simulation of
the unresolved case for two reasons. First, the sim-
ulation neglected intrasite crosspeak intensity arising
from relaxation of directly-bonded 14N. Second, the
simulation used CSA principal values derived from
resolved 1D MAS spectra. However, for the real case
of unresolved sites, only one set of principal values
can be obtained from the unresolved 1D MAS spectra.
The present study provides a more realistic simula-
tion of the case of unresolved sites for both HSS- and
HRG-processed data.

Both melittin and FP23 have interesting and bio-
logically relevant interactions with membranes. Melit-
tin (GIGAVLKVLTTGLPALISWIKRKRQQ) is the
major component of bee venom and is well-known
for its hemolytic activity (Dempsey, 1990). It has also
been shown at high concentrations (≥ 3 mol%) to in-
duce micellization of membrane bilayers (Dempsey,
1990; Yang et al., 2001b). Studies of melittin by
a variety of techniques, including solid state NMR,
are consistent with a predominantly helical confor-
mation of the membrane-bound form of the peptide
(Dempsey, 1990; Smith et al., 1994; Bechinger, 1997).

FP23 (AVGIGALFLGFLGAAGSTMGARS) is
the N-terminal ‘fusion peptide’ domain of the LAV1a

strain of the HIV-1 gp41 envelope protein. Mutagene-
sis studies on the fusion peptide domain of the HIV-1
virus have demonstrated that this domain plays a criti-
cal role in inducing viral/target cell fusion (Freed et al.,
1990, 1992; Schaal et al., 1995). In addition, the FP23
peptide by itself induces fusion between unilamellar
liposomes or between erythrocytes (Rafalski et al.,
1990; Mobley et al., 1995). Strong correlation be-
tween the mutagenesis/fusion activity relationships of
the viral fusion peptide domain and the FP23 peptide
provides evidence that the FP23 peptide is a use-
ful model system for understanding some aspects of
membrane fusion (Durell et al., 1997). FP23 appears
to have significant structural plasticity in membranes
and can adopt both helical and non-helical structures
(Rafalski et al., 1990; Nieva et al., 1994; Durell
et al., 1997). It is not clear whether one or both of
these structural types are fusogenic. At the 1 : 20
peptide:lipid mol ratio of the present study, the pre-
ponderance of experimental data is consistent with
non-helical structure (Martin et al., 1996; Durell et al.,
1997; Yang et al., 2001a).

Theory

A key feature in the analysis of 2D SSRS-MASE data
and in the analysis of nonlinear least squares fits in
general is the possibility that several distinct sets of pa-
rameters (the (ϕ, ψ) in this study) will each fit the data
reasonably well. Each of these good-fit (ϕ, ψ) confor-
mations is associated with either the global minimum
or a local minimum in the fitting parameter χ2:

χ2(ϕ,ψ) = χ2 =
∑

j

[
yexpt.

j −ycalc.
j (ϕ,ψ)

]2
/σ2, (1)

where yexpt.
j are the experimental data points (intersite

crosspeak intensities), ycalc.
j (ϕ,ψ) are the simulated

data points for (ϕ,ψ), and σ2 is the mean-squared un-
certainty, which is assumed to be the same for each
point, and which could contain contributions from
experiment and from simulation. The existence of
several distinct χ2 minima in the analysis was pre-
viously investigated for polycrystalline AGG (Tycko
et al., 1996) and may be expected whenever the fitting
function is not linear in the fitted parameters. Minima
were observed near the correct (ϕ,ψ) as well as at
other distinct (ϕ,ψ) whose relative orientation of la-
beled carbonyl CSA tensors happened to be close to
that found in the true structure. In the terminology of
nonlinear least squares, the fit is ill-conditioned, and
other information is required to determine ϕ and ψ

with absolute certainty. Even after consideration of
intercarbonyl dipolar couplings, it is still possible that
at least two distinct structures represent reasonable fits
to the experimental data (Weliky et al., 1999).

With a single set of 2D SSRS-MASE experimental
data, it is most reasonable to postulate that the confor-
mation corresponding to the global minimum χ2 has
the highest probability of being the correct structure.
In this section, we derive a measure of the likelihood
that a different local χ2 minimum conformation could
instead be the correct structure. To our knowledge, this
issue is not addressed in standard texts on the statisti-
cal treatment of scientific data and is different from
the well-studied analysis of uncertainties in parameter
values at one χ2 minimum (Bevington and Robinson,
1992; Press et al., 1996). For this latter analysis of
2D SSRS-MASE data, one would first assume that
a particular χ2 minimum conformation is the correct
structure. Each unit increase in χ2 about the minimum
is then associated with unit increases in the number of
root-mean-squared deviations (RMSDs) of the ϕ and
ψ parameters (1σ, 2σ, etc.).
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For membrane-bound peptides, which are exper-
imental targets of significant biological interest, the
signal-to-noise of the 2D SSRS-MASE spectra is low
enough that σ2 is dominated by experimental noise.
Therefore, in the next few paragraphs, we derive a
simple expression for the effect that experimental un-
certainty could have on the �eχ

2 difference between
the χ2 value at a local (ϕ,ψ) fitting minimum and the
χ2 value at the global minimum. This expression is
then related to the likelihood that the local minimum
conformation is the correct structure.

We focus on two χ2 minimum conformations,
denoted A and B, each of which corresponds to a
particular (ϕ,ψ) and can be considered as a potential
structure for the peptide. Suppose that one experimen-
tal data set is taken. If one assumes that a particular
structure is correct (either A or B), statistical factors
such as (χ2)A (for model A) or (χ2)B (for model B)
provide information about the probability of obtaining
this data set (Bevington and Robinson, 1992; Press
et al., 1996). We define the parameter

�χ2 = (χ2)B − (χ2)A (2)

and suppose that �χ2 > 0 for this data set. Because
�χ2 > 0, there is a higher probability for obtaining
this data set with model A than with model B. On
this basis, we infer that model A is more likely the
correct structure. Suppose that the experiment is re-
peated and fits of the new data set yield (χ2)A and
(χ2)B with �χ2 < 0. Considering only this second
data set, model B is more likely the correct structure.
Under ideal circumstances, the experiment would be
repeated many times so that the frequency with which
conformation A or B is the global χ2 minimum would
indicate the likelihood that it is the correct structure.

In practice, adequate 2D SSRS-MASE signal-to-
noise on membrane-bound peptides often requires
days of data collection. Therefore, a single data set
is taken, and one set of experimental values (χ2)A,
(χ2)B, and �eχ

2 (= (χ2)B −(χ2)A) is calculated. For
concreteness in the discussion, we assign superscript
A to the conformation with the global minimum χ2 so
that �eχ

2 > 0. The next step is to make an approxi-
mate calculation of σ�χ2 , the expected RMSD of �χ2

when all possible data sets are considered. The ratio
�eχ

2/σ�χ2 is then related to the relative likelihoods
that model A or model B is the correct structure.

To begin, consider that the experimental data con-
sist of N crosspeak intensities whose values can be
simulated correctly for any structural model, i.e., set
of (ϕ,ψ) values. The experimental data are E1, E2,

. . ., EN, the simulated data from model A are VA
1 , VA

2 ,
. . ., VA

N, and the simulated data from model B are VB
1 ,

VB
2 , . . ., VB

N. The parameter αj is defined:

αj = VB
j − VA

j (3)

and is the same for all experimental data sets. The
RMSD uncertainty for each experimental data point
has a value ‘s’ for our data set. (χ2)A and (χ2)B are
given by:

(χ2)A =
∑

j

(VA
j − Ej)

2/s2 (4a)

(χ2)B = ∑
j(V

B
j − Ej)

2/s2

= ∑
j (V

A
j + αj − Ej)

2/s2

= ∑
j (V

A
j − Ej)

2/s2 + ∑
j α

2
j /s2

+ 2
∑

j

{
αj × (VA

j − Ej)/s2
}

= (χ2)A + α2

+ (2/s2)
∑

j

{
αj × (VA

j − Ej)
}

,

(4b)

where

α2 =
∑

j

α2
j /s2. (5)

Thus,

�χ2 = (χ2)B − (χ2)A

= α2 + (2/s2)
∑

j

{
αj × (VA

j − Ej)
}

.
(6)

Because of the variation of Ej between differ-
ent data sets, there is a distribution of possible �χ2

values. Simulations were used to understand this dis-
tribution. Starting from a single structure (model A),
a group of simulated 2D SSRS-MASE data sets was
created in which the data points (i.e., crosspeak inten-
sities) also had a contribution from random Gaussian
noise. For each data set, �χ2 was calculated between
model A and another χ2 minimum structure (model
B). Analysis of the distribution of �χ2 values for 100
such sets showed an approximate Gaussian shape with
average value 〈�χ2〉 ≈ α2 and RMSD σ�χ2 ≈ 2α. As
the analytical derivation continues, these simulation
results are shown to be the average and RMSD values
of χ2 in Equation 6.

In the right-hand-most expression of Equation 6,
the only terms which vary between different exper-
imental data sets are (VA

j − Ej). We again consider
that model A is the correct structure, and because the
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noise in the experimental data points Ej is consid-
ered to be random with no component of systematic
error, an average over all possible data sets yields
〈(VA

j − Ej)〉 = 0. The average of �χ2 over all data
sets simplifies to:

〈�χ2〉 = 〈α2〉 +
〈
(2/s2)

∑
j

{
αj × (VA

j − Ej)
}〉

= α2 + (2/s2)
∑

j

{
αj ×

〈
(VA

j − Ej)
〉}

= α2.

(7)

The relationships 〈(VA
j − Ej)

2〉 = s2 and 〈(VA
j −

Ej)(VA
k − Ek)〉 = 0 (for j �= k) as well as Eqs. (5),

(6), and (7) are used to obtain σ�χ2 .

σ�χ2 =
√〈

(�χ2 − 〈�χ2〉)2
〉

=
√〈

(4/s4) (
∑

j

{
αj × (VA

j − Ej)
}
)2

〉

= (2/s2)

√∑
j(α

2
j ×

〈
(VA

j − Ej)2
〉
)

+ ∑
j
∑

k �=j

{
αjαk×

〈
(VA

j − Ej)(VA
k − Ek)

〉}
= 2α . (8)

The average value of �χ2 is α2, and for our exper-
imental data set, the value of �χ2 is �eχ

2. In order to
easily obtain a semi-quantitative value of �eχ

2/σ�χ2 ,
we approximate that �eχ

2 ≈ α2. It then follows from
Equation 8:

�eχ
2/σ�χ2 = α2/(2α) = α/2 ≈

√
�eχ2/2. (9)

The distribution of χ2 values obtained using data
sets which include Gaussian noise is the well-studied
‘χ2 distribution’ (Arley and Buch, 1966), but for
ease of approximation, a Gaussian distribution can be
found that matches a given χ2 distribution reasonably
well. Thus, a table of integrals of a Gaussian distri-
bution with mean and standard deviation linked as in
Equations 7 and 8 is used to provide some numerical
examples of Equation (9) (Bevington and Robinson,
1992). For example, if �eχ

2 = 4, Equation 9 shows
that �eχ

2/σ�χ2 ≈ 1, which implies a 16% probabil-
ity that a different experimental data set would yield
�eχ

2 < 0. This calculation gives some measure of
the likelihood that model B rather than model A is the
correct structure. If �eχ

2 = 16, �eχ
2/σ�χ2 ≈ 2, and

there is a 2% probability that a different data set would
yield �eχ

2 < 0. As our measured �eχ
2 increases,

there is increasing confidence in the sign of �eχ
2 and

a greater probability that the model with the lower χ2

is the correct structure.

In the Results section, we incorporate these ideas
into the presentation of χ2 (ϕ,ψ) contour plots. The
darkest shade is used for values of χ2 within four units
of the global minimum χ2 with the implication that the
correct structure is most likely found within this area.
The choice of four units is based on Equation 9; i.e.,
if �eχ

2 = 4, �eχ
2/σ�χ2 ≈ 1. Additional contours

are also shown for χ2 values between four and eight
units of the global minimum χ2 and for χ2 values be-
tween eight and twelve units of the global minimum.
Minima found within these regions are less likely to
correspond to the correct structure.

The derivation in this section considers the impact
that different experimental data sets could have on χ2

(ϕ,ψ) and �χ2 values. This is a reasonable approach
for membrane-bound peptides for which uncertainty
in the 2D SSRS-MASE analysis appears to be domi-
nated by experimental noise. However, for pure solid
peptides, there is often sufficient sample to obtain
experimental data with high signal-to-noise and rela-
tively small uncertainty in the yexpt.

j . In this case, there
can be a significant contribution to the total fitting
uncertainty from simulation uncertainty in the ycalc.

j
(ϕ,ψ). To model simulation uncertainty, we can con-
sider that there are groups of simulated data sets {WA}
and {WB} which are based on narrow distributions
of simulation input parameters (e.g., CSA principal
values). These distributions are centered around the
true parameter values found in VA and VB. Fits using
{WA} and {WB} will produce a distribution of �χ2

values whose mean and width can be approximately
calculated in a manner similar to the previous deriva-
tion. For example, when simulation is the major source
of uncertainty and when variation of simulation input
parameters produces correlated changes in the χ2 val-
ues at the two minima, Equations 7 and 8 will still be
approximately correct, with the ‘s’ dominated by sim-
ulation instead of experimental uncertainty. This type
of correlation between χ2 minima values is sometimes
evident in our fitting.

Materials and methods

Materials

Rink amide resin was purchased from Advanced
Chemtech (Louisville, KY), and 9-fluorenylmethoxy
carbonyl (FMOC)-amino acids were obtained from
Peptides International (Louisville, KY). 13C carbonyl
labeled amino acids were purchased from Icon Ser-
vices Inc. (Summit, NJ) and the FMOC group was
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added using literature methods (Chang et al., 1980;
Lapatsanis et al., 1983). Di-o-tetradecyl-sn-glycero-3-
phosphocholine (DTPC) was purchased from Avanti
Polar Lipids, Inc. (Alabaster, AL). The Micro BCA
protein assay was obtained from Pierce (Rockford,
IL) and is a colorimetric approach for determining
peptide concentration. Unlabeled AGG was obtained
from Sigma (St. Louis, MO). All other reagents were
analytical grade.

Sample preparation

Melittin was synthesized as its C-terminal amide us-
ing a peptide synthesizer (ABI 431A, Foster City, CA)
equipped for FMOC chemistry. FP23 peptides corre-
sponding to the 23 N-terminal residues of the LAV1a
strain of the HIV-1 gp41 protein were synthesized by
similar methods. AGG was synthesized as an acid
and was subsequently recrystallized from water. All
amino acids were single-coupled using two hour cou-
pling times. Reversed-phase HPLC was used to purify
melittin and FP23 while precipitation from acetone
was used to purify AGG. Mass spectroscopy was used
to verify peptide purity. Purified yields were ∼ 25%.

Melittin was 13C labeled at the carbonyl carbons of
Gly-3 and Ala-4. FP23 was 13C labeled at the carbonyl
carbons of Leu-7 and Phe-8. AGG was 13C labeled at
the carbonyl carbons of Ala-1 and Gly-2.

Melittin:DTPC and FP23:DTPC NMR samples
were prepared using 0.01% NaN3 in water at pH ∼
6. DTPC is a convenient lipid for peptide carbonyl
NMR because it is ether- rather than ester-linked and
hence has no natural abundance carbonyl background.
Mixtures of dissolved peptide and DTPC dispersion
were mixed to form ∼ 200 µl total volume. The fi-
nal peptide and DTPC concentrations were 10 mM
and 200 mM, respectively. Phosphate buffer (50 mM,
pH 7.0) was added to the FP23:DTPC sample after
initial peptide/lipid binding. There was little change in
the peptide carbonyl NMR spectrum and presumably
the FP23 Leu-7, Phe-8 local structure after addition of
the phosphate buffer.

For the melittin sample, peptide binding to mem-
brane was immediately apparent in the change in the
sample transparency from opaque to translucent. This
change has been correlated in lipid NMR experiments
with formation of non-lamellar structures (Dempsey,
1990; Yang et al., 2001b). For the FP23 sample, pep-
tide binding was measured by adding ∼ 800 µl water
to the peptide/lipid dispersion, vortexing the mixture,
and then centrifuging at 12,000 × g. The BCA assay
was used to determine the concentration and quantity

of peptide in the supernatant and this was compared to
the total quantity of peptide in the sample. Compari-
son of the two quantities demonstrated that > 80% of
the peptide was bound to the DTPC. Under these cen-
trifugation conditions all of the lipid was pelleted, and
there was no interference from unpelleted lipid in the
BCA assay. Calibration of the BCA assay was done
using a solution containing a known mass of FP23.

A qualitative assay was used to demonstrate the
fusogenicity of FP23 at concentrations comparable to
those used for NMR experiments. A clear sonicated
100 mM vesicle solution was prepared, and this solu-
tion immediately changed from clear to opaque upon
addition of 0.3 mM FP23. This change is associated
with formation of larger fused lipid structures. No
change was observed in vesicle solution clarity upon
addition of a mutant peptide with a Val-2 → Glu-2
point mutation. This data is consistent with previous
studies which demonstrated that the mutation abol-
ishes the fusogenicity of both the free peptide and the
virus (Freed et al., 1992; Pereira et al., 1995).

The AGG sample was made by grinding a single
AGG crystal which had been grown by slow evapo-
ration of an aqueous solution containing labeled and
unlabeled AGG in a 1:19 mol ratio. The NMR sample
contained 17 µmol labeled AGG.

NMR experiments and data analysis

Measurements were made on a 9.4 T spectrometer
(Varian VXR, Palo Alto, CA) using a double reso-
nance magic angle spinning (MAS) probe equipped
for 7 mm diameter Si3N4 rotors. The sample volume
was 220 µl. The NMR detection channel was tuned
to 13C at 100.6 MHz, and the decoupling channel was
tuned to 1H at 400.0 MHz. Chemical shifts were ex-
ternally referenced to the methylene carbon resonance
of adamantane (38.2 ppm). For the melittin and FP23
samples, strong 13C signals could not be observed
above −20 ◦C, presumably because of signal attenu-
ation due to slow motion. Hence, samples were cooled
to −50 ◦C either slowly in the NMR probe or by fast
freezing in liquid nitrogen. Both freezing techniques
gave comparable spectra. The AGG spectra were taken
at ambient temperature.

1D spectra were obtained using 1 ms of cross-
polarization (CP) at 47 kHz followed by signal de-
tection with decoupling at 65 kHz. The recycle delay
was 0.5 s for the melittin and FP23 samples and 1 s
for the AGG sample. For both the melittin and FP23
samples, the one-dimensional (1D) carbonyl signal
contains ∼ 10% contribution from peptide natural
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abundance sites. The natural abundance signal is not
resolved from signals from the labeled sites.

2D exchange spectra were obtained at 2.5 kHz
spinning frequency using the 2D SSRS-MASE pulse
sequence (CP) – t1 – (π/2) - τ - (π/2) – t2, in which
(CP) represents cross-polarization from 1H to 13C, t1
is the evolution period, π/2 represents a 13C pulse,
τ (500 ms) is the spin diffusion period, and t2 is the
13C detection period (Tycko et al., 1996; Weliky and
Tycko, 1996). The spinning speed was controlled to
±1 Hz and the pulse program was actively synchro-
nized to the tachometer signal. For the melittin and
FP23 samples, the experiments were run under the
following conditions: (1) 800 µs CP was made with
13C RF radiation at 50 kHz and a linear ramp on 1H
between 45 kHz and 55 kHz (Metz et al., 1994); (2)
50 kHz 13C π/2 pulses were applied; (3) 72 t1 points
were taken with an increment of 40 µs; (4) signals
were acquired for 10 ms during t2; (5) decoupling at
70–75 kHz was applied during t1 and t2 but not during
τ; (6) the recycle delay was 0.5 s; and (7) phase cycling
consisted of x, −x alternation of the first 13C π/2 pulse
and CYCLOPS alternation of the final 13C π/2 and
receiver phase (Hoult, 1975). Complete data sets were
collected in twelve-hour blocks and then summed to-
gether, with 10–15 blocks in a final data set. Similar
conditions were used for the AGG spectra except that
a single data set was collected during 10 h with 1.2 ms
contact time, 128 t1 points, 65 kHz decoupling, and a
recycle delay of 1.5 s.

To obtain exchange spectra, four FIDs were taken
at each t1 value. Each of the FIDs, labeled as F(τ,
Re), F(τ, Im), F(t1 + τ, Re), or F(t1 + τ, Im),
was characterized by: (1) having either the τ or the
t1 + τ time as an integral number of rotor periods;
and (2) containing either the real (Re) or imaginary
(Im) component of magnetization in t1. Hypercom-
plex data were generated in HSS processing with the
expressions:

FHSS,Re = F(τ, Re) + iF(τ, Im)

+ F(t1 + τ, Re) − iF(t1 + τ, Im)
(10a)

FHSS,Im = −iF(τ, Re) + F(τ, Im)

+ iF(t1 + τ, Re) + F(t1 + τ, Im)
(10b)

and the corresponding data were obtained in HRG
processing with the expressions:

FHRG,Re = F(τ, Re) − iF(τ, Im)

+ F(t1 + τ, Re) + iF(t1 + τ, Im)
(11a)

FHRG,Im = iF(τ, Re) + F(τ, Im)

− iF(t1 + τ, Re) + F(t1 + τ, Im).
(11b)

The theory behind these formulas has been previously
described in detail (Kentgens et al., 1987; Hage-
meyer et al., 1989; Luz et al., 1992; Tycko et al.,
1996; Tycko and Berger, 1999). The HSS and HRG
FIDs were transformed into their respective 2D spec-
tra using standard methods for hypercomplex data and
NMRPipe software (States et al., 1982; Delaglio et al.,
1995).

Line broadening was 150 Hz for the melittin and
FP23 samples and either 50 Hz or 350 Hz for the
AGG sample. The intrasite and intersite crosspeaks
were resolved for melittin but not for FP23. For the
AGG sample, the crosspeaks were resolved with 50
Hz line broadening and unresolved with 350 Hz line
broadening.

For the melittin and FP23 samples, integrated
crosspeak intensities were calculated by summing the
intensities of nine points enclosed by a 150 Hz ×
150 Hz area. For the AGG spectra processed with
50 Hz line broadening, the integrated intensities were
calculated by summing the intensities of nine points
enclosed by a 75 Hz × 75 Hz area. For AGG spectra
processed with 350 Hz line broadening, the integrated
intensities were calculated by summing the intensities
of 169 points enclosed by a 325 Hz × 325 Hz area.

In addition to their dependence on ϕ and ψ, the
simulated intersite intensities depend on the orien-
tation of the carbonyl CSA principal axes relative
to the carbonyl chemical bonds and on the carbonyl
CSA principal values. The former were taken from
the literature with the following orientations: δ33 per-
pendicular to the peptide plane and δ22 at an angle
χ = 130◦ from the C-N bond (Oas et al., 1987). The
CSA principal values were experimentally determined
from measurements of the 1D peak spinning sideband
intensities measured at a few different spinning fre-
quencies between 2 kHz and 4 kHz (Herzfeld and
Berger, 1980). The effect of 13C-14N dipolar coupling
was taken into account in the principal value deter-
mination. For melittin, the individual site spinning
sideband intensities were derived from deconvolu-
tion of each experimental spinning sideband into two
Gaussian peaks. The best-fit Gly-3 and Ala-4 δ11, δ22,
δ33 CSA principal values are 239, 189, 91 ppm and
242, 198, 92 ppm, respectively. For FP23 the unre-
solved CSA principal values are 241, 179, 93 ppm.
For resolved AGG sites, the Ala-1 and Gly-2 prin-
cipal values are 245, 186, 88 ppm and 242, 182,
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89 ppm (Weliky and Tycko, 1996). Analysis of a 1D
AGG spectrum at 2.5 kHz spinning speed with 350 Hz
line broadening yielded unresolved resonances with
a single set of principal values 243, 182, 91 ppm.
The experimental uncertainty of each principal value
is ±2 ppm. Simulated 2D SSRS-MASE AGG spec-
tra were generated using both the resolved and the
unresolved principal values.

Although the anisotropic local field experienced by
the labeled carbonyl is dominated by the CSA, the
smaller but well-understood 13C– 14N dipolar cou-
pling also contributes to the field. Using the obser-
vation that the 14N longitudinal relaxation is longer
than t1 or t2 but shorter than τ (Weliky and Tycko,
1996), the 13C–14N coupling was incorporated into the
calculation of simulated HSS or HRG intersite intensi-
ties with a sum of nine equally weighted components,
each of which had a particular 14N azimuthal quan-
tum number in t1 and an uncorrelated 14N azimuthal
quantum number in t2.

Finally, in the case of unresolved crosspeaks, it is
necessary to subtract the intrasite intensity from the
experimental crosspeak intensity before fitting the re-
maining intersite intensity. The intrasite contribution
was calculated using our knowledge of the number
of labeled and natural abundance carbonyls in the
sample.

The simulated spectral intensities were compared
to experimental integrated peak intensities using the
χ2 metric:

χ2(ϕ,ψ) = ∑
j

{
Ej −

[
λ(ϕ,ψ) × Sj(ϕ,ψ)

]}2
/σ2

j = 1 to N,
(12)

where Ej and Sj(ϕ,ψ) are experimental and simulated
off-diagonal crosspeak intensities, σ2 is the mean-
squared uncertainty per data point, λ(ϕ,ψ) is a scaling
factor fitted to minimize χ2 at each (ϕ,ψ) pair, and
N is the total number of data points. Equation 12 is
equivalent to Equation 1 except that yj

expt. is replaced
by Ej and ycalc.

j is replaced by λ(ϕ,ψ)×Sj(ϕ,ψ). Be-
cause mirror image (across-the-diagonal) crosspeaks
always have the same simulated intensity, the ex-
perimental mirror image crosspeak intensities were
summed. Thus, for a 5 × 5 2D spectral array of
spinning sidebands, the forty (resolved) or twenty
(unresolved) off-diagonal crosspeak intensities were
reduced to twenty or ten data points. A few represen-
tative fits were also done without summing and were
similar to those with summed data.

It was assumed that the most likely (ϕ,ψ) were
those at χ2 minima and there was a two-step process
for finding these minima. First, λ was uniquely ob-
tained for each (ϕ,ψ) using linear fitting that min-
imized χ2 at each (ϕ,ψ) pair. Second, because
Sj(ϕ,ψ) is nonlinear in ϕ and ψ, χ2 was calculated
at a large number of points in the total grid of possible
(ϕ,ψ) values and χ2 minimum locations were identi-
fied by visual inspection of contour plots of χ2 vs. ϕ

and ψ. The points in the (ϕ,ψ) grid were separated
by 5◦ increments in the ranges −180◦ ≤ ϕ ≤ 0◦ and
−180◦ ≤ ψ ≤ 180◦. These ranges cover the entire
Ramachandran plot because the simulated crosspeak
intensity pattern for a (ϕ,ψ) pair is the same as for its
mirror image pair (−ϕ,−ψ). For residues other than
glycine, steric considerations often imply that one of
the pairs is highly improbable (Cantor and Shimmel,
1980).

For the membrane-bound peptide spectra, the value
of σ2 in Equation 12 was set to be the instrumental
noise, or more precisely twice the mean-squared devi-
ation of a set of spectral intensities measured near but
not on the array of exchange crosspeaks. The factor
of two was included because each data point is the
sum of mirror-image crosspeak intensities. For AGG,
uncertainty in the simulated intensities also made a
significant contribution to the total uncertainty and
this simulation uncertainty was incorporated into the
analyses by a method described in the Results section.

Because the HSS and HRG spectra contain inde-
pendent information, their fitting results were com-
bined to improve discrimination between the χ2 min-
ima. First, χ2 was calculated for each spectrum and
then χ2

sum = χ2
HSS + χ2

HRG was calculated at each
(ϕ,ψ). Because the sum of two χ2 distributions is
again a χ2 distribution, we can apply the �χ2 method
described in the Theory section to χ2

sum. The validity
of the overall approach is supported by the finding that
for both resolved and unresolved AGG spectra, the
(ϕ,ψ) conformation at the global minimum χ2

sum is
very close to the correct structure.

Results

1D spectra

The 1D 13C CP-MAS spectra for the AGG, melit-
tin, and FP23 samples are displayed in Figure 1. For
the AGG spectra in (a), processing was done with
25 Hz (top) and 350 Hz (bottom) line broadening.
The isotropic chemical shifts of the Ala-1 and Gly-2
carbonyls are 173 and 171 ppm, respectively (Weliky
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Table 1. χ2 Minima in fits of 2D SSRS-MASE data for melittin and
FP23

Sample Processing Figure χ2 a ϕ, ψ (◦)

HSS 2c 18 −45, −35

19 −50, −120

19 −110, −35

Melittin:DTPC 22 −120, 145

23 −125, 95

HRG 2d 10 −85, −45

12 −60, −45

Sum 2e 35 −85, −45

38 −60, −45

HSS 3c 7 −130, 130

12 −65, −105

13 −50, −40

HRG 3d 5 −105, −70

5 −60, −105

5 −100, 110

FP23:DTPC 9 −75, 95

11 −30, −100

11 −90, 65

Sum 3e 17 −60, −105

17 −120, 105

18 −100, −70

25 −30, −100

aThe χ2 values were calculated with the σ2 uncertainty based on the
experimental spectral noise.

and Tycko, 1996). The inherent carbonyl linewidths
for AGG are ∼ 1 ppm and contain some contribu-
tion from residual 13C-14N dipolar couplings (Hexem
et al., 1982). 25 Hz line broadening was used for
the membrane-bound melittin and FP23 spectra dis-
played respectively in (b) and (c). The isotropic shifts
of the melittin Gly-3 and Ala-4 carbonyls are 173 and
177 ppm, respectively, and the isotropic shift of the
FP23 Leu-7 and Phe-8 carbonyls is 171 ppm. The
linewidths for melittin and FP23 are ∼ 3 ppm and
∼ 2 ppm, respectively, which represent reasonably
structured although not crystalline conformational dis-
tributions (Yang et al., 2001b).

2D spectra and analyses of membrane-bound
peptides

Figure 2 displays 2D SSRS-MASE spectra of the
melittin sample processed by (a) HSS and (b) HRG
methods and the corresponding fits in (c) and (d).
The sum fit is displayed in (e) and Table 1 lists the

Figure 1. One-dimensional 13C CP-MAS spectra of (a) AGG, (b)
melittin:DTPC, and (c) FP23:DTPC. The melittin and FP23 sam-
ples had a peptide:lipid mol ratio of 1:20. All spectra were taken
at 2.5 kHz spinning frequency and the spinning sideband numbers
between −2 and +2 are marked. The top spectrum in (a) and the
spectra in (b) and (c) were processed with 25 Hz line broadening.
The bottom spectrum in (a) was processed with 350 Hz line broad-
ening. In (a), (b), and (c), the number of transients was 64, 4800,
and 5600, respectively. In (b) and (c), the top of the lipid methylene
resonance is truncated.

χ2 minima. In general, the HRG fit is more strongly
constrained than the HSS fit, and the sum fit closely
resembles the HRG fit with a global minimum at
(−85◦, −45◦) and a local minimum at (−60◦, −45◦)
with �eχ

2 = 3. Both of these minima correspond to
helical structure at Ala-4 and are consistent with previ-
ous observations of an overall helical conformation of
this membrane-bound peptide (Dempsey, 1990; Smith
et al., 1994; Bechinger, 1997).
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Table 2. χ2 minima in fits of 2D SSRS-MASE data for AGG

Spectruma CSA PVb Processing Figure χ2 c ϕ, ψ (◦)

Resolved Resolved HSS 4c 17 (90) −90, 170

19 (100) −95, −130

HRG 4d 17 (104) −95, 165

24 (149) −95, −130

Sum 4e 40 −95, 165

43 −95, −130

Unresolved Resolved HSS 4h 7 (22) −65, 165

9 (29) −170, 65

13 (43) −105, 165

13 (43) −170, 110

HRG 4i 7 (65) −135, −95

7 (66) −90, −135

7 (68) −175, 100

8 (76) −100, 165

Sum 4j 22 −100, 165

27 −175, 100

27 −75, 170

Unresolved Unresolved HSS 4k 7 (38) −105, 165

8 (42) −170, 110

8 (44) −65, 160

9 (52) −170, 65

HRG 4l 7 (31) −150, −90

8 (34) −135, −95

12 (50) −90, −135

12 (52) −175, 100

12 (52) −80, −180

14 (59) −100, 165

Sum 4m 21 −100, 165

24 −175, 100

28 −80, 175

aFor resolved spectra, 50 Hz line broadening was applied. For unresolved spectra, 350 Hz line
broadening was applied.
bChemical shift anisotropy principal values. Fitting was based on simulated spectra calculated
with CSA PV which were either distinct for the two carbonyl sites (resolved) or the same for the
two sites (unresolved).
cThe χ2

n value is followed by the χ2
u value in parentheses. As described in the text, the χ2

u
values only consider the experimental noise contribution to σ2 while the χ2

n values also consider
the simulation uncertainty contribution to σ2. The χ2 values for the sum fits are obtained by
summing χ2

n from HSS and HRG fits.



60

Figure 2. Two-dimensional SSRS-MASE spectra and least-squares fits of melittin:DTPC. The (a) HSS and (b) HRG spectra were processed
with 150 Hz line broadening in each dimension. The corresponding χ2 fits are presented in (c) and (d). For these fits, the uncertainty was
dominated by experimental noise. The fit in (e) is the sum of (c) and (d). In (c), (d), and (e), the darkest regions represent χ2 between 18 and
22, 10 and 14, and 35 and 39, respectively. Each increasingly lighter contour represents an increment of four units of χ2.
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Figure 3. Two-dimensional SSRS-MASE spectra and least-squares fits of FP23:DTPC. The (a) HSS and (b) HRG spectra were processed with
150 Hz line broadening in each dimension. The corresponding χ2 fits are presented in (c) and (d). For these fits, the uncertainty was dominated
by experimental noise. The fit in (e) is the sum of (c) and (d). In (c), (d), and (e), the darkest regions represent χ2 between 7 and 11, 5 and 9,
and 17 and 21, respectively. Each increasingly lighter contour represents an increment of four units of χ2.
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Figure 3 displays 2D SSRS-MASE NMR spectra
of the FP23 sample processed by (a) HSS and (b) HRG
methods and the corresponding fits in (c) and (d). The
sum fit is displayed in (e) and Table 1 lists the χ2

minima. The sum fit has three minima within one unit
of χ2 of each other and with (ϕ,ψ) values of (−60◦,
−105◦), (−120◦, 105◦), and (−100◦, −70◦). The un-
resolved Leu-7/Phe-8 chemical shift of 171.2 ppm is
consistent with β strand structure at Phe-8, which sug-
gests that the (−120◦, 105◦) conformation in the sum
fit is the correct one (Wishart et al., 1991; Yang et al.,
2001a).

As described in the Theory section, it is most likely
that the correct structure will be near the global χ2

minimum conformation or near a local χ2 minimum
conformation which has �eχ

2 < 4. Therefore, in
Figures 2 and 3, the darkest regions correspond to
�eχ

2 < 4. Additional displayed regions with 4 <

�eχ
2 < 8, and 8 < �eχ

2 < 12 are less likely to
include the correct structure. Because �eχ

2 is used in
this quantitative manner, it is of some importance to
know σ2 accurately so that the χ2 and �eχ

2 are cor-
rectly calculated. For the membrane-bound peptides,
σ2 was calculated solely from spectral noise, because
it appeared that simulation uncertainty had minimal
impact on the fits. For example, HSS and HRG fits
based on different but reasonable simulation parameter
values (e.g. CSA principal values) showed relatively
small (≤ 4) variations in the �eχ

2 values and only
small (≤ 10◦) variations in the (ϕ,ψ) values at the χ2

minima. In addition, the HSS and HRG fits in Fig-
ures 2 and 3 had global minimum χ2 values which
were close to ν, the number of degrees of freedom in
the analysis. This result is significant because for the
correct structure, correct fitting function, and correct
value of σ2, the most probable value of χ2 should be
about equal to ν (Arley and Buch, 1966; Bevington
and Robinson, 1992; Press et al., 1996). For fitting
of resolved HSS or HRG spectra, ν = 17, and for
unresolved spectra, ν = 7, as calculated from the dif-
ference between the number of data points (20 or 10)
and the number of fitted parameters (3 for λ, ϕ, ψ).
When HSS and HRG fits are summed, the value of ν

is doubled to 34 or 14.

2D spectra and analyses of AGG

Figure 4 displays the 2D SSRS-MASE spectra and
fits of AGG and Table 2 lists the χ2 minima. In Fig-
ures 4a and b, the spectra were processed by the HSS
and HRG methods, respectively, and with 50 Hz line
broadening in each dimension. χ2 fits of the HSS and

HRG spectra are displayed in (c) and (d), respectively,
and are based on simulations which used the resolved
Ala-1 and Gly-2 CSA principal values. The sum fit
is displayed in (e). The global minimum of the sum
fit lies at (−95◦, 165◦), which is close to the struc-
ture of (−83◦, 170◦) obtained by neutron diffraction
(Subramanian and Lalitha, 1983; Lalitha et al., 1985).

Spectra (f) and (g) represent HSS- and HRG-
processed AGG spectra, respectively, which were un-
resolved because of 350 Hz line broadening in each
dimension. The χ2 contour plots in (h) and (k) are fits
of spectrum (f) using simulations based on resolved
and unresolved principal values, respectively, while
the plots in (i) and (l) are the corresponding fits of
spectrum (g). The (j) and (m) plots are the sum fits
(h) + (i) and (k) + (l), respectively. Both of the sum
fits have similar appearance, indicating that they are
robust with respect to uncertainty in CSA principal
values, and each has its global χ2 minimum at (−100◦,
165◦) which is close to the correct structure. These
results demonstrate that 2D SSRS-MASE analysis
provides accurate structural information when the la-
beled sites have unresolved chemical shifts and when
unresolved CSA principal values are used in the sim-
ulations. These results are significant because many
membrane-bound peptides have unresolved carbonyl
chemical shifts.

As with the fits of membrane-bound peptides,
there are multiple χ2 minima in the AGG fits which
have significantly different conformations. Because
the (ϕ,ψ) values of χ2 minimum conformations can
be different in HSS and HRG processing, the sum
fits are useful in discriminating against incorrect struc-
tures. It is visually apparent that the sum fits in (j)
and (m) constrain the conformation more strongly to
its correct value than the individual HSS and HRG fits
in (h), (i), (k), and (l).

Simulation uncertainty in AGG analyses

For AGG, we first calculated χ2 using a σ2 value
based only on spectral noise. The resulting values
of χ2, denoted ‘χ2

u’, are listed in parentheses in Ta-
ble 2. However, two lines of evidence suggested that
σ2 also contained a significant contribution from sim-
ulation uncertainty. First, we observed that the χ2

u
values at the global minima were always significantly
higher than ν, which is statistically highly unlikely if
we were treating uncertainty correctly. Unreasonably
large χ2

u values were also observed in previous 2D
SSRS-MASE studies of AGG which used a different
console, pulse programming language, and probe, so
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Figure 4. Two-dimensional SSRS-MASE spectra and least-squares fits of polycrystalline AGG. The correct AGG structure lies at (−83◦,
170◦). The resolved (a) HSS and (b) HRG spectra were processed with 50 Hz line broadening in each dimension. The accompanying χ2 fits
are displayed in (c) and (d). The fit in (e) is the sum of (c) and (d). The unresolved (f) HSS and (g) HRG spectra were processed with 350 Hz
line broadening in each dimension. The accompanying χ2 fits for the HSS spectrum are displayed in (h) and (k) and the χ2 fits for the HRG
spectrum are displayed in (i) and (l). The (h), (i) fits were based on simulations which used resolved Ala-1 and Gly-2 CSA principal values
while the (k), (l) fits were based on simulations which used a single set of unresolved principal values for both sites. The fit in (j) is the sum
of the (h) and (i) fits and the fit in (m) is the sum of the (k) and (l) fits. In the fits, the darkest region represents χ2 between the following
values: (c), (d), 17–21; (e), 40–44; (h), (i), (k), (l), 7–11; (j), 22–26; and (m) 21–25. For all fits, each increasingly lighter contour represents an
increment of four units of χ2.
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Figure 4. Continued.
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it is unlikely that these values were due to a problem
specific to our experimental setup (Tycko and Berger,
1999). Additional evidence for simulation uncertainty
was found in HSS or HRG fits based on different
but reasonable simulation input parameter values (e.g.
CSA principal values and/or χ angles). Comparison
of the simulations showed variations in �eχ

2
u which

were much larger than four, which is unlikely if the un-
certainty were dominated by experimental noise. For
example, when unresolved HSS spectra were fit with
either resolved or unresolved principal values, �eχ

2
u

for the mimima (−65◦, 165◦) and (−105◦, 165◦)
changed from 21 to −6 (cf. Table 2). Significantly,
the simulation-induced variations in (ϕ,ψ) values at
minima were small (≤ 10◦ and typically 0◦ or 5◦).

We incorporated simulation uncertainty into the
AGG analysis by considering it as a random error
which contributes to σ2. The magnitude of its contri-
bution is not known very accurately, so we used an
empirical approach in which σ2 in Equation 12 was
set so that the global minimum χ2 equals ν. The rea-
soning for this choice is that for the correct structure,
correct fitting function, and correct value of σ2, the
most probable value of χ2 should be approximately
equal to ν. Table 2 lists these ‘χ2

n’ minima values and
χ2

n is also plotted in the HSS and HRG fits in Figure 4.
The χ2

sum values listed in Table 2 are calculated using
χ2

n values and the fits in (j) and (m) are the sums of the
χ2

n fits. The fitting plots in (h–j) and in (k–m) are based
on different simulation input parameters and the simi-
larity between corresponding plots (e.g., (j) and (m)) is
evidence that the χ2

n approach is a reasonable method
to treat simulation uncertainty. The large contribution
of simulation uncertainty in the AGG fitting but not
in the membrane peptide fitting is likely a result of
the much higher signal-to-noise and the corresponding
smaller experimental uncertainty in the AGG data.

Fitting robustness

Since the 2D SSRS-MASE analysis relies on accu-
rate measurement of experimental crosspeak inten-
sities and accurate simulation of these intensities, a
systematic investigation was made of the dependence
of the fitting on spectral processing parameters (base-
line correction, phasing, and integration width) and
simulation parameters (intrasite intensity, CSA prin-
cipal values, and CSA χ angles). In these analyses,
principal values were changed by ±2 ppm and χ an-
gles were changed by ±5◦, which are the approximate
uncertainties in these parameters (Oas et al., 1987).
Intrasite intensity was varied between 80% and 120%

of its correct value. We focused on sum fits because
they provided the greatest information about peptide
structure. These analyses were carried out on both
membrane peptide and AGG data and yielded two
main conclusions. First, use of different but reason-
able choices of processing or simulation parameters
caused little change in the (ϕ,ψ) values at χ2

sum min-
ima. More specifically, comparison of twenty different
membrane peptide fits showed an average variation of
1.8◦ in ϕ or ψ, and comparison of twenty-six dif-
ferent AGG fits showed an average variation of 1.6◦
in ϕ or ψ. Second, the changes in �eχ

2
sum values

were typically less than four, which is the approximate
�eχ

2 significance range derived in the Theory section.
In particular, variation of processing and simulation
parameters yielded an average change in �eχ

2
sum of

1.8 ± 1.7 for the membrane peptides and 5.9 ± 7.0
for AGG. In AGG fitting, the largest �eχ

2
sum changes

were detected with variation of the CSA χ angles;
when χ angle variation was not included, the average
change in AGG �eχ

2
sum was only 2.8 ± 2.5. Rela-

tive to membrane peptides, the larger dependence of
the AGG �eχ

2
sum on simulation parameters is consis-

tent with the larger relative contribution of simulation
uncertainty in the AGG fitting.

Discussion

Membrane-bound peptides and proteins are impor-
tant biological systems, but it is difficult to study
their structures in native membrane environments by
crystallographic or solution NMR methods. Thus,
they represent an important niche for solid state
NMR methodologies. The solid state NMR spectra of
membrane-bound peptides typically have low signal-
to-noise ratios because of ≤ 2 µmol sample quantities
and 1–3 ppm linewidths. Therefore, in order to ob-
tain greater signals, it is often advantageous to use
larger volume (≥ 200 µl) rotors, which have the
disadvantages of reduced decoupling fields, RF ho-
mogeneity, and MAS frequencies. 2D SSRS-MASE is
not sensitive to these parameters and our main result
is that the method provides accurate local conforma-
tional constraints for membrane peptides in these large
rotors.

Conformations of melittin and FP23

The two membrane-bound peptides under study,
melittin and FP23, both interact strongly with mem-
branes but are shown in our work to likely have
different local conformations (α helical and β strand,
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respectively) in the labeled regions. For melittin, the
conformational data were consistent with previous in-
frared, electron spin resonance, and NMR results of an
overall helical conformation (Dempsey, 1990; Smith
et al., 1994; Bechinger, 1997). For FP23, a β strand
structure is consistent with the carbonyl chemical shift
and with the preponderance of previous evidence sug-
gesting an overall β conformation at 1:20 peptide:lipid
mol ratio (Durell et al., 1997; Yang et al., 2001a).
At lower peptide:lipid mol ratios in particular lipid
compositions, some investigators have also observed
helical structure (Martin et al., 1996; Durell et al.,
1997; Gordon et al., 2002; Saez-Cirion and Nieva,
2002; Bodner and Weliky, unpublished data). The β

strand structure which we observe would be consis-
tent with formation of a β sheet structure composed
of oligomerized peptides. Such oligomerization has
been postulated as a structural requirement for fu-
sion peptide-induced membrane fusion (Kliger et al.,
1997; Pereira et al., 1997; Curtain et al., 1999), and
investigation of FP23 oligomer structure is currently
underway in our laboratory.

General applicability of dual processing

Tycko et al. previously demonstrated the greater infor-
mation obtained using HSS and HRG dual processing
of resolved 2D SSRS-MASE AGG data (Tycko and
Berger, 1999). Our work extends the utility of dual
processing in several ways. First, sum fitting was
shown for resolved AGG spectra to be an accurate
and useful means of combining the results from the
two processing methods (Bennett et al., 1998b; We-
liky et al., 1999; Balbach et al., 2000). Second, for
membrane-bound melittin, sum fitting was shown to
provide greater conformational constraints than HSS
processing. Third, sum fitting was shown to work even
when there are unresolved chemical shifts. An impor-
tant part of this third result was that the HRG fits
were relatively insensitive to the magnitude of sub-
tracted intrasite intensity over at least a ±20% range
of its expected value. This observation is important
for membrane peptides for which there can be some
uncertainty in intrasite intensity because of uncertainty
in the peptide:lipid ratio and because of the presence
of carbonyl-containing ester-linked lipids.

Accuracy of 2D SSRS-MASE in determining
conformation

The accuracy of 2D SSRS-MASE can be gauged by
comparing the correct AGG structure at (−83◦, 170◦)
to the (ϕ,ψ) values of sum fit χ2 minima which are

near it. For the resolved spectra, the χ2 minimum at
(−95◦, 165◦) is close to the correct structure while
for the unresolved spectra, the χ2 minima at (−100◦,
165◦), (−75◦, 170◦), and (−80◦, 175◦) are all close to
the correct structure. These results suggest an accuracy
of about ±20◦ in ϕ and about ±5◦ in ψ. Variation of
processing and simulation parameters for the fits of
the melittin, FP23, and AGG spectra suggests a pre-
cision of about ±5◦ in the (ϕ,ψ) values at each χ2

minimum. For FP23, there are also significant regions
surrounding each minimum which are reasonable fits
to the data.

For both the AGG and FP23 samples, the sum
fittings show χ2 minima whose (ϕ,ψ) values are sig-
nificantly different than those at the global minima.
The �eχ

2 analysis is a reasonable approach for evalu-
ating the likelihood that the local minimum structure is
correct. In many cases, the �eχ

2 differences are small
enough that other information will be required to find
the most probable structure. The carbonyl chemical
shift can be useful (as it was for FP23) and it has also
been useful to apply another structure determination
methodology (usually multiple-pulse) for doubly car-
bonyl labeled peptides (Wishart et al., 1991). Possible
methods include RFDR, DRAWS, and DQCSA tech-
niques (Gregory et al., 1997; Bennett et al., 1998a;
Bower et al., 1999; Blanco and Tycko, 2001). By com-
bining the results of these methods, it is sometimes
possible to constrain the peptide to a single confor-
mation (Bennett et al., 1998a; Weliky et al., 1999;
Balbach et al., 2000).

Comparison of 2D SSRS-MASE with other structural
methodologies

The general technical strengths of 2D SSRS-MASE
for peptide conformational measurements are: (1) Use
of slow spinning frequencies; (2) sparseness of pulses
and insensitivity to RF inhomogeneity; (3) insensitiv-
ity to 1H decoupling field; (4) accuracy and robust-
ness of the fitting; and (5) use of widely available
and inexpensive 1-13C labeled amino acids. In addi-
tion, the 2D and slow spinning aspects provide for
multiple crosspeaks (i.e., data points) which lead to
strong constraints on both ϕ and ψ. On the other
hand, these latter aspects also degrade the sensitivity
of 2D SSRS-MASE with respect to quasi-1D struc-
tural methods such as multiple-pulse techniques which
probe intercarbonyl dipolar coupling. By ‘quasi-1D’,
we mean acquisition of several 1D spectra with dif-
ferent parameter values (e.g., dephasing times). In a
few cases, 2D SSRS-MASE has been done in conjunc-
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tion with a RFDR-based dipolar recoupling method
and 2D SSRS-MASE appeared to require about 1.5–3
times more signal averaging time than RFDR (Ben-
nett et al., 1998a; Weliky et al., 1999; Balbach et al.,
2000). However, the conformational constraints of 2D
SSRS-MASE were much better defined than those of
the RFDR method. Relative to 2D SSRS-MASE, the
experimental sensitivity and simulation accuracy of
multiple-pulse methods typically have a greater de-
pendence on RF inhomogeneity and 1H decoupling
field.

Uncertainty in 2D SSRS-MASE analysis

For 2D SSRS-MASE analysis, our study presents evi-
dence that there are both experimental and simulation
contributions to the overall fitting uncertainty. For
membrane peptides, the experimental signal-to-noise
will usually be low enough that the overall uncertainty
is dominated by the spectral noise. Hence, longer
signal averaging time will lower uncertainty and will
result in improved discrimination between χ2 minima
as well as tighter constraints on the conformation at
a particular minimum. For pure solid peptides such as
AGG, the signal-to-noise can be high enough that sim-
ulation uncertainty is also an important factor in the
χ2 analysis. In this case, longer signal averaging time
will not improve discrimination between χ2 minima.
This result should be considered when applying 2D
SSRS-MASE to structurally interesting solid peptides
such as those which form fibrils (Lansbury et al., 1995;
Benzinger et al., 1998; Balbach et al., 2000) and to
solid proteins such as elastin (Hong et al., 2002; Perry
et al., 2002).

Conclusions

2D SSRS-MASE spectroscopy was applied to provide
constraints on local secondary structure of two pep-
tides which interact with membranes. One of these
peptides, melittin, is the major component of bee
venom and has hemolytic activity while the other pep-
tide, FP23, is derived from the HIV-1 gp41 fusion pro-
tein and is the most critical domain for viral/target cell
membrane fusion. In the conformational analyses, the
linearly independent HSS and HRG data processing
schemes were applied to each data set and the resulting
fits were summed to provide the greatest conforma-
tional information. The sum fits were consistent with a
best-fit α helical structure for membrane-bound melit-
tin at its Ala-4 residue and a good-fit β strand structure
for membrane-bound FP23 at its Phe-8 residue. The

melittin analysis is consistent with the known over-
all helical peptide structure, and the FP23 structure is
consistent with the carbonyl chemical shift and with
results from other biophysical studies.

The accuracy and robustness of the 2D SSRS-
MASE analysis was further explored through studies
of polycrystalline AGG, a peptide of known structure.
It was shown that the method has high accuracy for
peptides with unresolved carbonyl resonances. Fur-
ther methodological work on melittin, FP23, and AGG
demonstrated the robustness of the analysis to reason-
able variation of processing parameters, CSA princi-
pal values and χ angles, and magnitude of intrasite
crosspeak intensity. For high signal-to-noise experi-
mental data, an empirical method was introduced to
account for the impact of simulation uncertainty on the
data analysis.

The fitting of 2D SSRS-MASE data often re-
sults in local χ2 minima whose conformations are
very different from the global minimum conformation.
We derived an approximate formula, �eχ

2/σ�χ2 ≈√
�eχ2/2, to semi-quantitatively assess differences

in χ2 between the minima. Application of this for-
mula suggests that �eχ

2 differences ≤ 4 do not have
great significance. Although the �eχ

2/σ�χ2 formula
is specifically applied to interpretation of 2D SSRS-
MASE data, it should be generally applicable to any
data analysis for which least squares fitting yields
multiple minima.
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