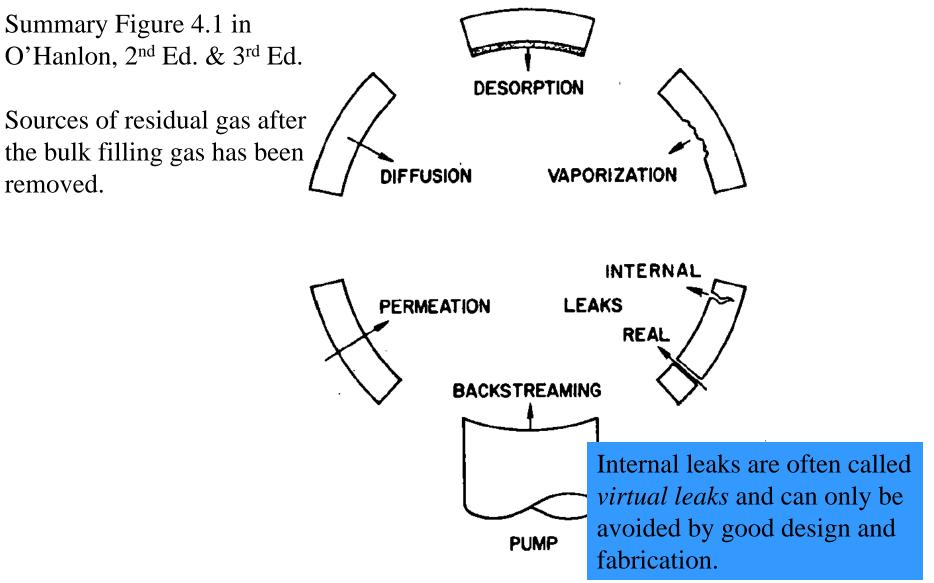
Interlude: Vacuum Technology in a Nutshell

Topics: Chamber: materials, seals Pump: speed, pressure range Pipes, valves: conductance, material

Component missing from photo?


Pressure has one of the largest dynamic ranges of any measured quantity. It also has a variety of units.

SI: $1Pa = 1 N/m^2$

1 atm = 760 torr = 101,325 Pa

 $1 \text{ bar} = 10^5 \text{ Pa}$ 1.33 mbar = 1 torr

Vacuum Technology, Gas Sources

MICHIGAN

Vacuum Technology, Gas Properties

The total pressure can be measured but the microscopic makeup and behavior of the gas(es) are very important in vacuum systems.

Dry Air: 78.08 % nitrogen, 20.94 % oxygen, 0.93% Ar, 0.03% CO₂ ...

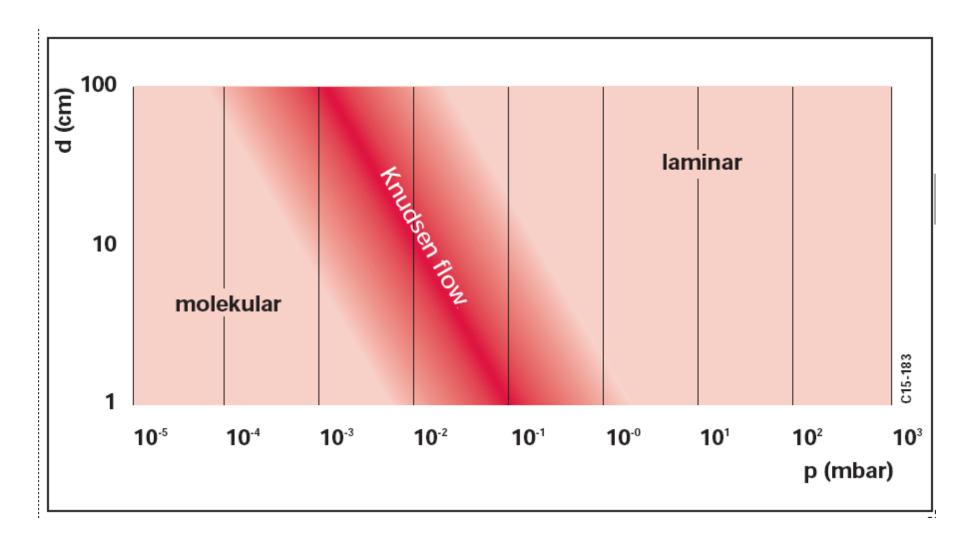
Humid Air: estimate partial pressure of H_2O as 24 Torr * (relative Humidity) (up to ~3% and is temperature dependent)

Mean gas velocity:
$$v = \left(\frac{8k_BT}{\pi m}\right)^{1/2} = \left(\frac{8RT}{\pi MM}\right)^{1/2} = \frac{2512 \, m/s}{\sqrt{MM (g/mol)}}$$

Effusion: $\frac{v_1}{v_2} = \left(\frac{MM_2}{MM_1}\right)^{1/2}$
1 6.6 mm Pa

Mean Free path:
$$\lambda = \frac{1}{\sqrt{2} \pi d^2 \rho_n} = \frac{0.0 \, mm}{P}$$

Vacuum Technology, Gas Flow –1–


Two dimensionless numbers are used to characterize gas flow regimes:

Knudsen's Number: $Kn = \lambda / d$ λ – mean free path, d – pipe diameter

Reynold's Number: $Re = U \rho d / \eta$ U – stream velocity, ρ – density, η – viscosity

	Kn	Re	
Turbulent	< < 0.01	> 2200	flow
			pathlines
Viscous	< 0.01	< 1200	
Laminar			R
Molecular	>1	< 1200	visco8

Flow Regimes auf deutsch

Pfeiffer Vacuum, "Working with Turbopumps"

http://www.pfeiffer-vacuum.de/cnt/en/706/ "Literature"

MICHIGAN STA

Vacuum Technology, Gas Flow –2–

Gas flow can be analyzed in terms of the volume of gas, at some pressure, that passes a plane in a fixed period of time: Q = d (PV)/dt where Q is called the "throughput" and has many sets of dimensions along the lines of torr-l/s.

All gases behave ideally at low pressure and nearly ideal under standard conditions.

$$Q = \frac{d PV}{dt}$$
 $PV = nRT \rightarrow Q = RT \frac{d n}{dt}$ (if isothermal)

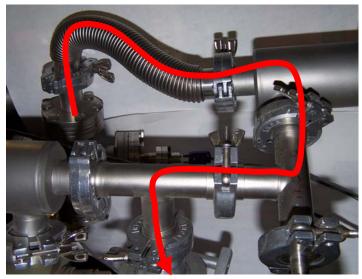
Thus, Q also has units of energy/time = power (i.e. watts).

(A) When the system is in a steady state with a constant pressure:

$$Q = P \frac{dV}{dt} = P S$$
 S is the *Speed* of the pump, e.g. liter/s

(B) Whereas for continuous flow through a pipe with a pressure difference:

$$Q = C(P_2 - P_1)$$
 C is the *Conductance* of the pipe, e.g. liter/s


Vacuum Technology, Gas Flow –3–

MICHIGAN STATE

The so-called fundamental vacuum equation is $PS = C \Delta P$ The pump speed, S, is a function that depends on the design of the pump *and* the pressure. Similarly, the conductance, C, depends on the design of the plumbing and also on the pressure.

	Laminar	Molecular
Aperture	(complicated)	A v /4
Long Pipe	$\frac{\pi d^4}{128\eta l} \frac{P_1 + P_2}{2}$	$(\pi/12) v d^3 / l$

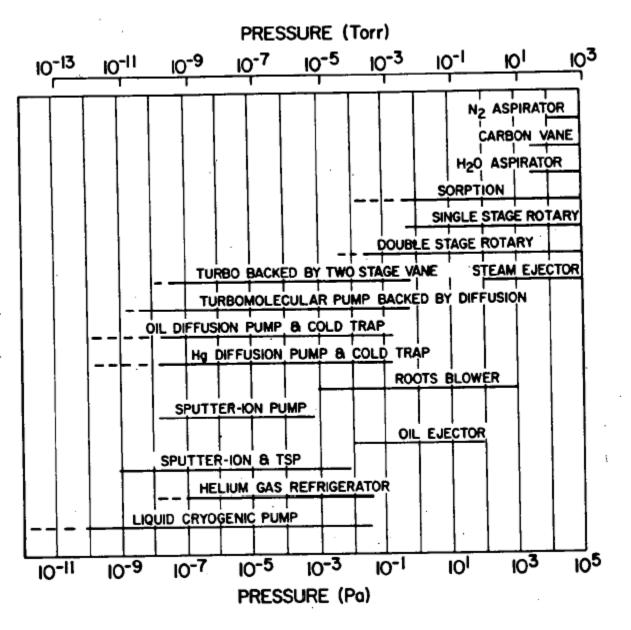
Conductances are combined in reciprocal: $1/C_{total} = 1/C_1 + 1/C_2 + ...$

 $L = L_1 + L_2 + L_3$

Want: the shortest, straight tubes with largest diameters connected by rounded corners.

Vacuum Technology, Gas Flow -4-

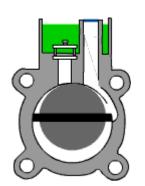
State of Gas Viscous Intermediate Rarefied **Flow Summary** 106 Figure 3.17 bulent O'Hanlon, 2nd Ed. 104 ow R=2200 · 新闻学出。在2月19日,在2月1日日 R=1200 Figure 3.18 10² O'Hanlon, 3rd Ed. Q/d (Pa-m²-s^{-l}) Undeveloped **Viscous Flow** 100 Poiseuille Equation OK Round tube **Molecular Flow** Transition (Fully Developed Flow Flow) 10⁻² D 10=0 Aperture) L 0 0 10~4 10-6 10² 104 10-4 100 10⁻⁶ 10-2 10⁻⁸ ·Pd (Pa-m)

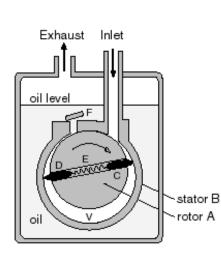

MICHIGAN STA

Vacuum Technology, Production –1–

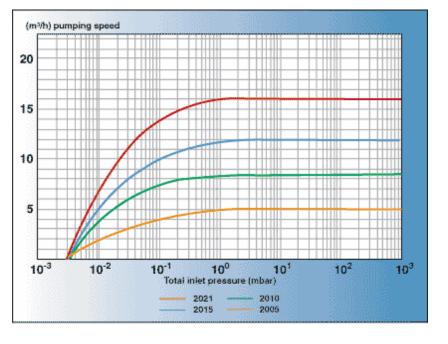
A huge variety of vacuum pumps have been developed over time that use various physical techniques to trap, and in a few cases move, the gas and so are limited to certain pressure ranges.

An important distinction among pumps: Is it sealed or does it have a path from inside to outside during operation?


Another distinction is: Are there moving parts or not?

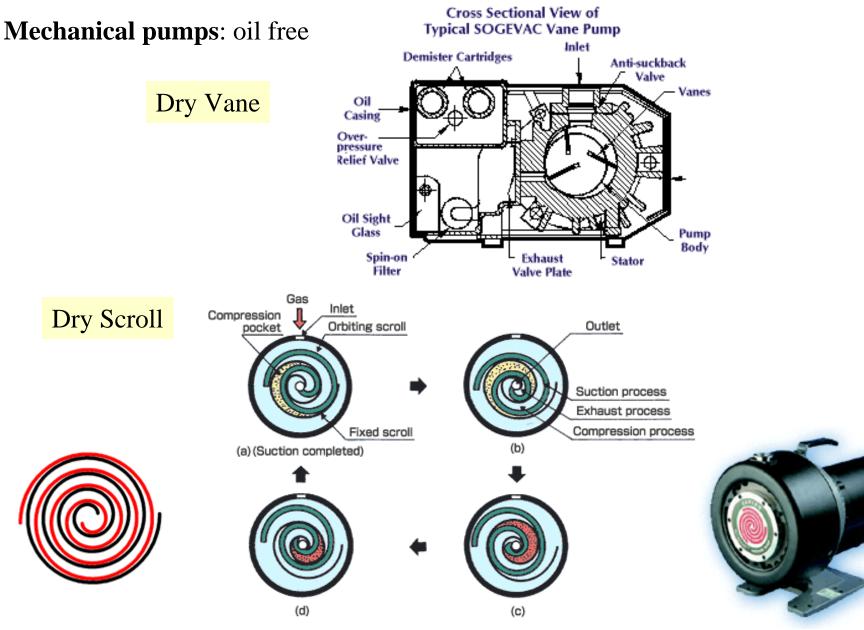


Vacuum Technology, Production –2–

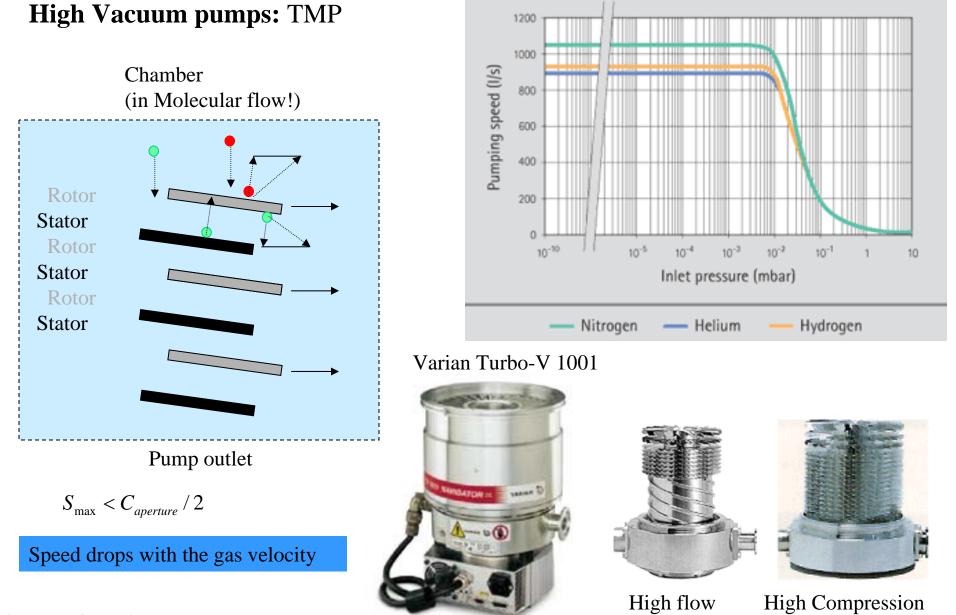

Mechanical pumps: characterized by an eccentric rotor, vanes and stages

Oil-sealed

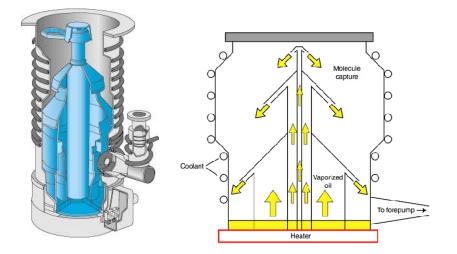
$$S = \frac{dV}{dt} \approx \frac{\Delta V}{\Delta t}$$


MICHIGAN

Alcatel Vane pump

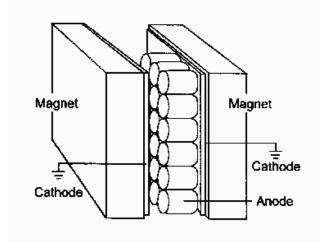

Vacuum Technology, Production –2a–

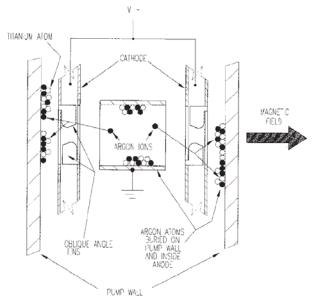
Vacuum Technology, Production –3–


MICHIGAN STATE

Vacuum Technology, Production -4-

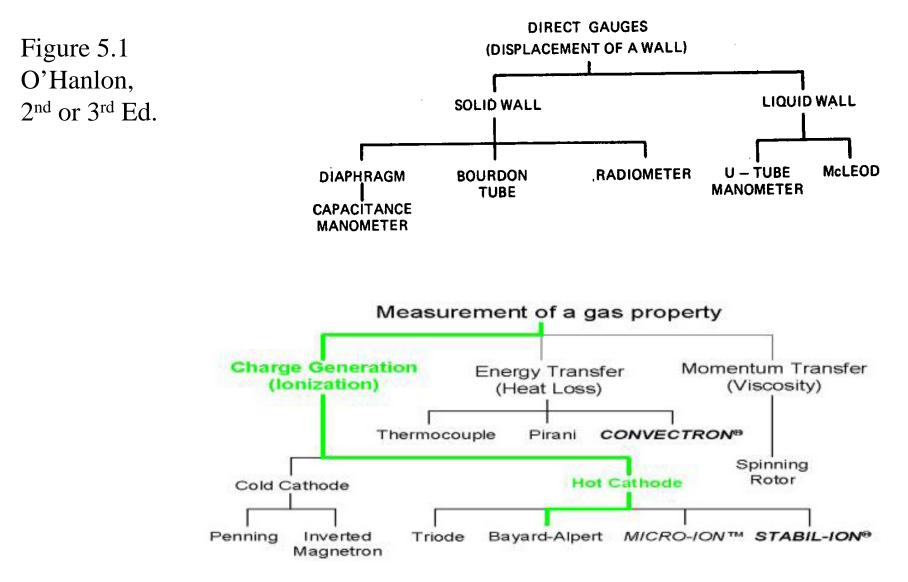
High Vacuum pumps: Diffusion pumps

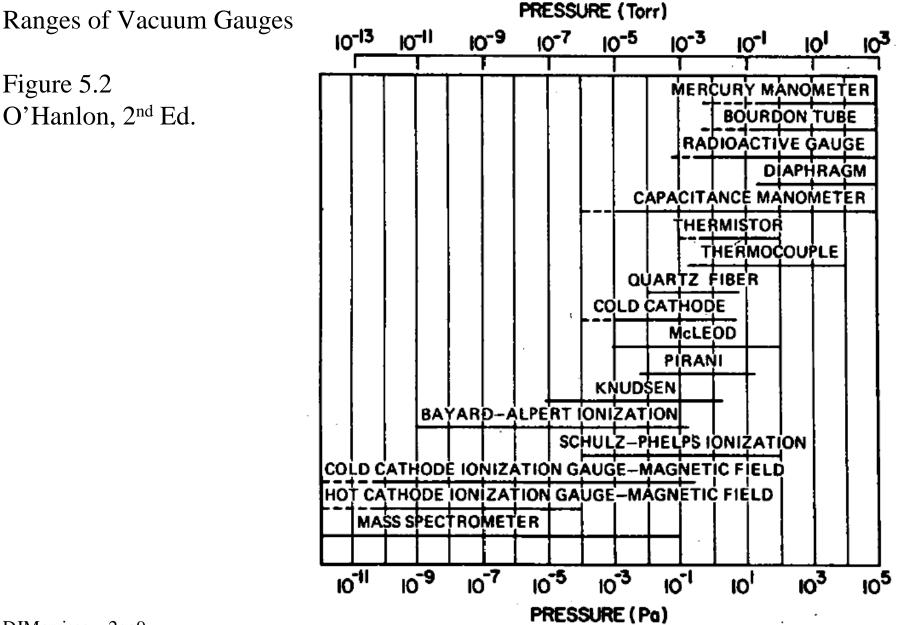

Hot oil-filled, need cold traps Highest pumping speeds for He No real limit to size



MICHIC

High Vacuum pumps: Ion pumps – closed system




Vacuum Technology, Measurement –1–

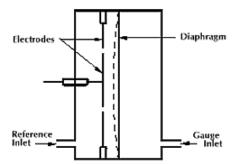
Categorization of Vacuum Gauges

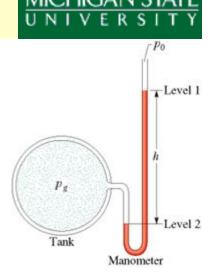
Vacuum Technology, Measurement –2–

Vacuum Technology, Measurement –3–

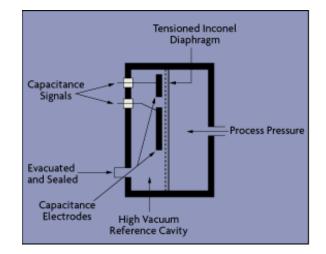
High pressure:

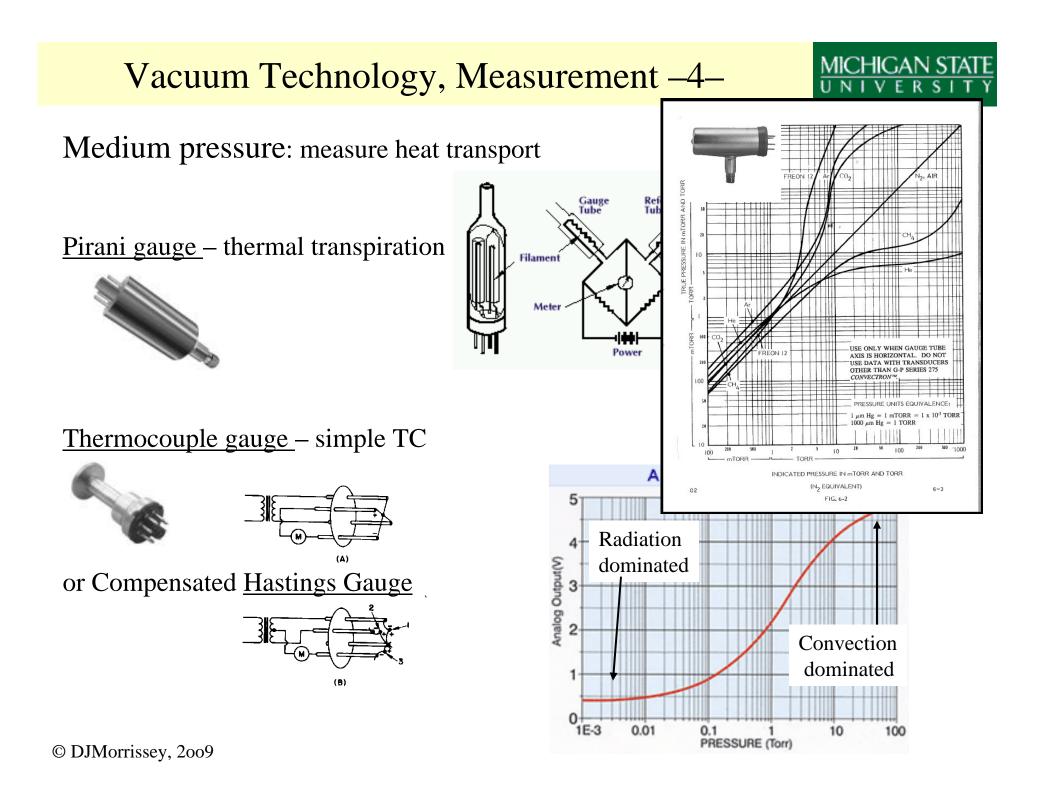
Mechanical or Moving wall

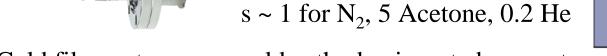

Liquid wall – classical manometer, key feature is the density of the liquid, low pressure limit is set by the vapor pressure of the liquid, p_0 , and small differences in column heights.


Solid wall – key feature is stiffness of the metal wall (tuned to the pressure region), low pressure limit due to small physical motion.

Bourdon tubes measure relative to external pressure connected to a mechanical gauge.

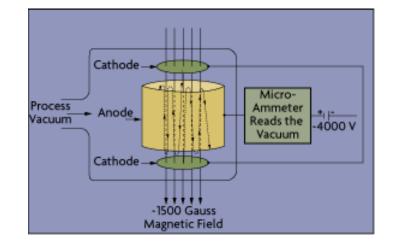

Capacitance manometers, Electronic readout, compatible with UHV

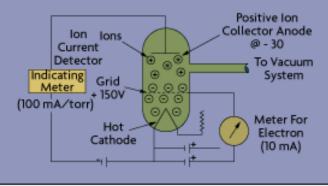


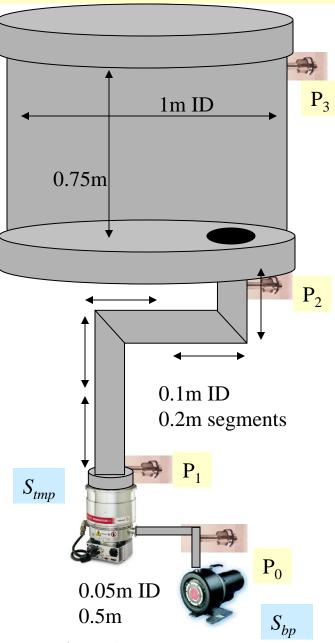

© DJMorrissey, 2009

Vacuum Technology, Measurement –5–

 $I^+ \propto s I^- P$


Low pressure: create & measure ion current and thus the ρ_n or number density of the gas (T dependent because n/V = P/RT).


Hot filament gauge – hot cathode, Bayard-Alpert ...


<u>Cold filament gauge</u> – cold cathode, inverted magnetron

Vacuum Technology, Simple System –1–

© DJMorrissey, 2009

Complete system: Molecular Flow & no leaks! SS chamber, $S_{tmp} = 300 \text{ l/s}$, $(S_{bp} = 200 \text{ l/min})$

$$\begin{aligned} q_{SS} &\sim 2x10^{-5}t^{-1.3} (W/m^2) \qquad Q_{off-gas} = q_{SS} A_{Total} \\ Q_{off-gas} &\sim 2x10^{-5} \Big[(\pi (0.5)^2 + 2\pi (0.5) 0.75 + \pi (0.5)^2) + \pi (0.1) 1 \Big] \\ & \text{Top} \qquad \text{Wall} \qquad \text{Bottom} \qquad \text{Pipe} \\ Q_{off-gas} &= 7x10^{-5}t^{-1.3} W \end{aligned}$$

Pump entrance: P₁ [ignoring time dependence]

$$Q_{off-gas} = P_1 S_{tmp}$$
$$P_1 = \left(\frac{7x10^{-5}W}{300l/s*10^{-3}m^3/l}\right) = 2.4x10^{-4} Pa$$

760 torr/101,325 Pa \rightarrow P₁=1.8x10⁻⁶ torr

MICHIGAN STATE

Vacuum Technology, Simple System –2–

- P_3 1m ID 0.75m P_2 0.1m ID 0.2m segments P_1 S_{tmp} P_0 0.05m ID 0.5m S_{bp}

Complete system: no leaks! SS chamber, $S_{tmp} = 300 \text{ l/s}$, $(S_{bp} = 200 \text{ l/min})$

MICHIGAN ST

 $P_1 = 2.4 \times 10^{-4} \text{ Pa} \rightarrow 1.8 \times 10^{-6} \text{ torr}$

Chamber entrance: P_2

$$Q_{off-gas} = C(P_2 - P_1) \rightarrow P_2 = P_1 + \begin{pmatrix} Q_{off-gas} \\ C \end{pmatrix}$$

$$C_{line} \sim 103. \ l/s \qquad (C_{aperture} \sim 910 \ l/s)$$

$$P_{2} = 2.4x10^{-4} Pa + \left(\frac{7x10^{-5}W}{0.103 m^{3}/s}\right) = 9.2x10^{-4} Pa$$

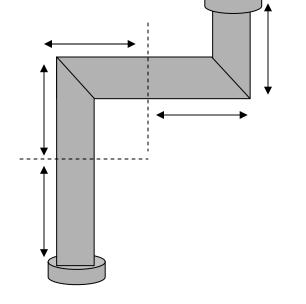
$$P_{2} = 6.9x10^{-6} \text{ torm}$$

Effective Speed: S_{eff}

$$\frac{1}{S_{eff}} = \frac{1}{C} + \frac{1}{S_{tmp}} \rightarrow \frac{1}{103} + \frac{1}{300} \sim \frac{1}{77}$$

Vacuum Technology, Simple System –2a–

Conductance in Molecular Flow Oatley Method to combine conductances


0.1 m ID, i.e., r = 0.05 m0.2 m segments $C = a C_{aperature}$ = a Av/4 where "a" is a transmission coefficient

1- a) / a = (1-
$$a_1$$
) / a_1 + (1- a_2) / a_2 + (1- a_3) / a_3 + ...

Two elbows with L=0.2 m arms, L/r =4, $a_1 = a_2 = 0.35$ One pipe with L=0.2 m , L/r = 4, $a_3 = 0.25$

(1- a) / a = 0.75/0.25 + 0.75/0.25 + 0.65/0.35 (1- a) / a = 7.86 a = 0.113

 $\begin{array}{l} C = 0.113 \, * \, 11.6 \ A \ l/s{\text -}cm^2 \ , \ A{=} \, \pi \ (5)^2 \\ C = 0.113 \, * \, 911. \ l/s \ = 103 \ l/s \end{array}$

Vacuum Technology, System Summary

Complete system:

<u>Chamber</u>: materials – unless you are very careful, off-gassing generally determines the lowest pressure the system will attain.

<u>Chamber</u>: seals – better know as "leaks"

<u>Pumps</u>: speed – depends on the design, gas, and pressure. Is higher pumping speed always the best answer?

<u>Pipes & valves</u>: conductance – limited by size and shape of plumbing and is probably the most ignored concept in vacuum technology.

<u>Gauges & pressure</u>: measurement principle? – range is limited by technique and is probably the most over interpreted aspect of vacuum technology.