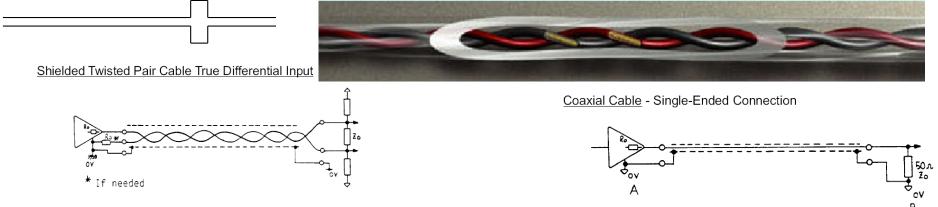


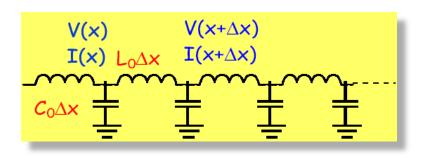
Pulse Processing: cables

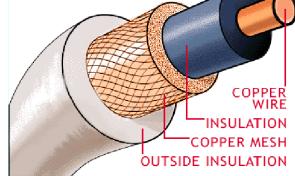
Twisted pairs – "differential" signals, logic or analogue



Coaxial conductor/shield – signal on the "center"

Each configuration has a RG/U name with a characteristic capacitance and inductance per unit length, and an impedance (with a negligible resistance). $d^2V = -\omega^2 L C V$





$$\frac{dx^2}{dx^2} = -\omega L_0 C_0 v$$

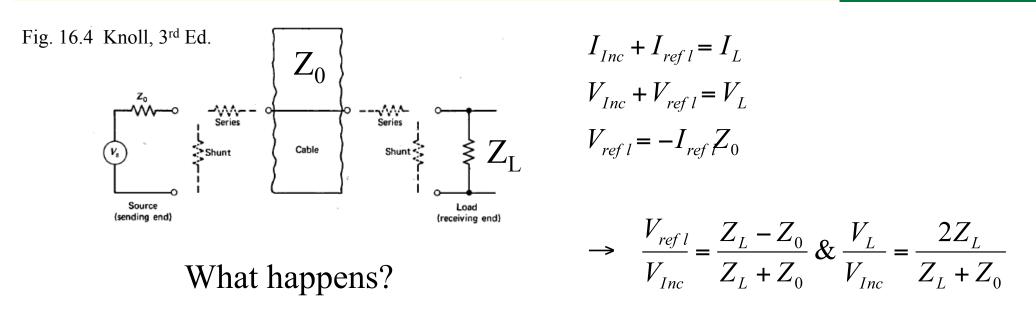
$$V = A e^{jkx} + B e^{-jkx} \quad k^2 = \omega^2 L_0 C_0$$

$$v = \frac{\omega}{k} = \frac{1}{\sqrt{L_0 C_0}}$$

$$Z_0 = \sqrt{\frac{L_0}{C_0}}$$

for coax $C_0 = 2\pi\varepsilon/\ln(r_2/r_1)$ $L_0 = (\mu/2\pi)\ln(r_2/r_1)$

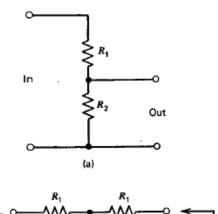
Pulse Processing: impedance matching



•Open circuit .. $Z_L \sim \infty$ •Short circuit .. $Z_L = 0$ •Match circuit .. $Z_L = Z_0$

<u>Match</u> to get maximum transmission to load (S/N), minimize reflections (ringing), maintain signal shape. <u>Don't Match</u> to minimize transmission .. Weak signals into high impedance loads or low power sources (but must use short cables).

Pulse Processing: simplest manipulations



Voltage divider (recall PMT base)

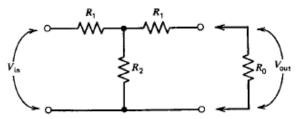
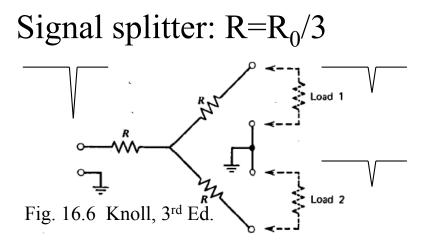


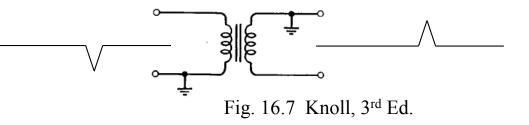
Fig. 16.5 Knoll, 3rd Ed.

Attenuation $\alpha = V_{out}/V_{in}$ $R_1 = R_0 \alpha - 1 / \alpha + 1$ $R_2 = R_0 2 \alpha / \alpha 2 - 1$

Signal Inverter

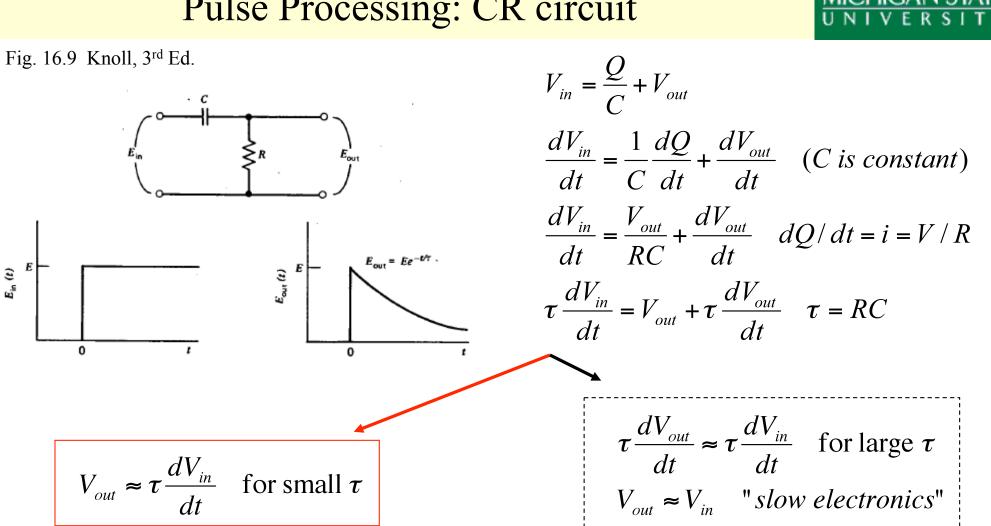
MICHIGAN





All loads must be present, or else see previous discussion about reflections!

Pulse Processing: CR circuit

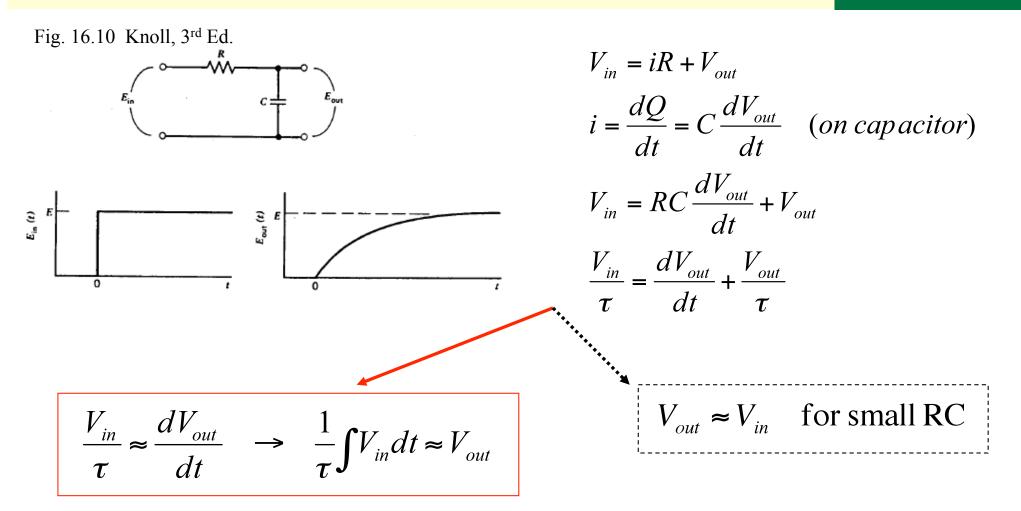


The differentiator (when τ is small, "fast" electronics) .. Should remove low frequency components and is called a "high-pass" filter.

© DJMorrissey, 2009

 $E_{\rm in}$ (t)

Pulse Processing: RC circuit

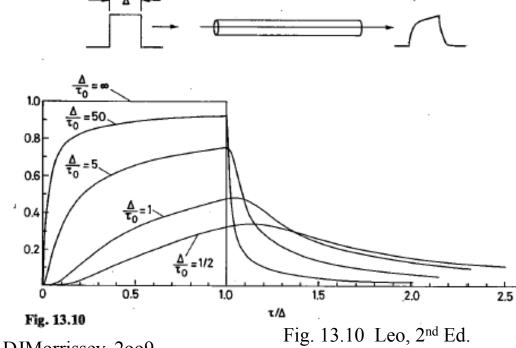


The integrator (when τ is large, "slow" electronics) .. Should remove high frequency components and is called a "low-pass" filter.

Pulse Processing: Cable Consequences

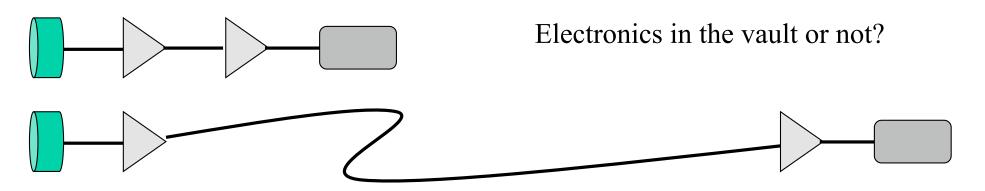
$$v = \frac{\omega}{k} = \frac{1}{\sqrt{L_0 C_0}}$$
$$Z_0 = \sqrt{\frac{L_0}{C_0}} \quad so \ that \quad Z_0 C_0 = \sqrt{L_0 C_0} = \tau$$

However, this is an unusual time constant – note that it has dimensions of (s / length) The τ depends on the length of the cable. Some (poor) examples from Beldin Cables:



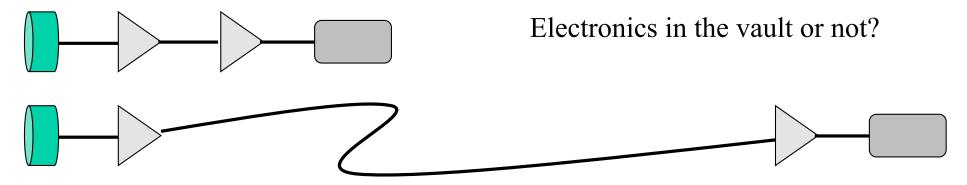
	58 /U	59 /U	316 /U
Zo	50 Ω	75	50
Со	24.3 pF/ft	16.3	29
Lo	0.064 µH/ft	0.107	0.067
v/c	0.77	0.83	0.695
τ	1.2 ns/ft	1.3 ns/ft	1.4 ns/ft

Pulse Processing: Question



Compare the output of a preamp step-function pulse that passes through a 1m Beldin RG-58/U cable to that that passing through 50 m of the same cable. Use the Fermi function with a=1ns , t_0 =10, and t in ns.

 $f(t) = 1/(1 + e^{-(t-to)/a})$



Compare the output of a preamp step-function pulse that passes through a 1m Beldin RG-58/U cable to that that passing through 50 m of the same cable. Use the Fermi function with a=1ns, t_0 =10, and t in ns.

