Chap. 14 – Slow Neutron Detection

MICHIGAN STATE

All neutron detection relies on observing a neutron-induced nuclear reaction.

The nuclear cross sections have a characteristic variation with energy: •Charged particle reactions are dominated by the coulomb energy since both reaction partners have a positive charge: $\sigma(E) \sim \pi r^2 (1 - V/E)$ where "V" is the coulomb barrier.

•Neutron-induced reactions also have a characteristic shape .. The interaction is always attractive and the cross section for l=0 capture reactions always grows with 1/v at (very) low energies. The form is derived from the Breit-Wigner lineshape:

$$\sigma_{Cap} = \pi \hbar^{2} \frac{\Gamma_{n} \Gamma_{\gamma}}{(\mathbf{E} - E_{0})^{2} + (\Gamma/2)^{2}}$$

$$\sigma_{0} = \pi \hbar^{2} \frac{4\Gamma_{n} \Gamma_{\gamma}}{\Gamma^{2}} \qquad \mathbf{E} = E_{0}; \Gamma = \Gamma_{n} + \Gamma_{\gamma} + \cdots \cong \Gamma_{\gamma}$$

$$\sigma_{0} = 4\pi \hbar^{2} \frac{\Gamma_{n}}{\Gamma_{\gamma}} \qquad \hbar = \frac{\hbar}{mv} \qquad \Gamma_{n} \sim v$$

$$\sigma_{0} \sim \frac{1}{v}$$

'Popular' Slow Neutron Reactions

MICHIGAN STATE

Slow n Detection: Gas-filled counters

Gas-filled proportional counter .. usual gas-gain amplification on the central anode

Slow n Detection: Gas-filled Pulse Height

$n + {}^{3}\text{He} \rightarrow p (573 \text{ keV}) + {}^{3}\text{H} (191 \text{ keV})$

Slow n Detection: BF₃

Multiple Gas Proportional Counters

Slow n Detection: Fission Chambers

 $n + {}^{235}U \rightarrow ({}^{236}U)^* \rightarrow (fission frags) Q \sim 200 MeV, TKE \sim 160 MeV, abundance = 0.72\%$

Absorption efficiency of all devices (from text):

 $\varepsilon(E_n) = 1 - e^{-\Sigma(E)x} \text{ where } \Sigma(E) = \rho_N \sigma(E)$ $\varepsilon(E_n) \sim \rho_N \sigma(E)x \text{ f or small values}$

Boron-loaded GEM device

http://www.physi.uni-heidelberg.de/physi/cascade/konzept.html

Slow n Detection: lithium scintillators

Lithium loaded materials .. usual scintillation device with PMT for ToF

Li glass .. Scintillation efficiency ~ 0.45% 395nm, with ~ 7k photons/n LiI (Eu) .. 2.8% 470 nm with ~51k photons/n

 $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H$, Q=4.79 MeV $\sigma \sim 940 \lambda / 1.8$ barns

Chap. 14 – Slow n Detection Question

Estimate the intrinsic efficiency and signal height from a fission chamber for thermal neutrons made up as follows: a ²³⁵U coating of 1mg/cm² on the inside of a 1cm diameter tube with a 50µm central anode. The tube is filled with Ar/Methane (P-10) at 1 atm pressure and is operated at 1000V and has a (stray) capacitance of 50 pF.