Reducive and Transition-Metal-Free: Oxidation of Secondary Alcohols by Sodium Hydride

Xinbo Wang, Bo Zhang and David Zhigang Wang

School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China 518055

J. Am. Chem. Soc., Article ASAP
Publication Date (Web): July 21, 2009

Group Meeting Presentation
The Wulff Group
Anil Kumar Gupta
July 31, 2009
Normal Behavior of NaH

Brou&n, F-E.; Colobert, F. *Org. Lett.* **2005**, *7*, 3737-3740
NaH-Promoted Oxidation

\[
\text{NaH (2 eq)} \rightarrow \text{THF, rt, 10 h}
\]

NaH-Promoted Oxidation: Proposed Mechanism

With electron withdrawing group
- Retardation of the reaction rate

Increase in the Concentration of the reaction
- No Noticeable effect on the reaction rate

Enhancement of the reaction rate
- Substantial effect on the reaction rate

NaH-Promoted Oxidation: Reaction Conditions

![Reaction Scheme]

- **Reagents**
 - Na: Inactive
 - NaOMe: Less efficient
 - NaH: Most efficient
 - NaH = 2 equiv due to low solubility in THF

- **Solvents**
 - THF = Optimal Solvent
 - DMF
 - Toluene
 - Ether
 - (preliminary computational study suggest the coordination of THF to Na atom)

- **Concentration**
 - 0.2 M with respect to alcohol

- **Temperature**
 - 0 °C - rt

NaH-Promoted Oxidation: Substrate Scope

- Low yields for 11, 15
- 5 g scale of 5, 6, 7, 8, 13, 14
- 13, 14 in 83% and 88% using recovered NaH (2 eq.)

Reversible hydride conjugate reduction event following the alcohol oxidation

NaH-Promoted Tandem Alcohol Oxidation-Hydride Conjugative Reduction of Heterocyclic Allylic Alcohols

NaH-Promoted Oxidative Amidations of Some Heterocyclic Aldehydes

Conclusion

• Unprecedented reactivities of NaH uncovered on:
 1. Alcohol oxidation
 2. Tandem allylic alcohol oxidation-hydride conjugate reduction
 3. Aldehyde oxidative amidation

• A significant level of material accessibility

• Operational simplicity

• Environmental compatibility (no metal residue or decomposition waste)

• NaH can be recovered and has the same reactivity

• Large scale reactions up to 5 g

• Could be used for economic preparation of pharmaceutically meaningful heterocyclic compounds